Today 55 percent of population in the world lives in urban areas which is expected to increase to 68 percent by the year 2050. In the cities,... Show moreToday 55 percent of population in the world lives in urban areas which is expected to increase to 68 percent by the year 2050. In the cities, high-rise buildings as symbols of the modern cityscape are dominating the skylines, but the data to demonstrate their embodied energy and environmental impacts are scarce, compared to low- or mid-rise buildings. Reducing the embodied energy and environmental impacts of buildings is critical as about 42 percent of primary energy use and 39 percent of the global greenhouse gas (GHG) emissions come from the building sector. However, it is an overlooked area in embodied energy and environmental impacts of tall buildings. This doctoral research aims to investigate the effects of tall buildings on embodied energy and environmental impacts by using process-based life cycle assessment (LCA) methodology within Building Information Modelling (BIM) environment, which provides construction industry platform to incorporate sustainability information in architectural design. This doctoral research is carried out through a literature review on embodied energy of high-rise buildings. Current LCA methods of buildings are also discussed in the literature review. It then develops a framework for BIM-based assessment of the embodied energy and environmental impacts of tall buildings. To achieve that, a case study of tall reinforced concrete building is applied, by using ISO 14040 and 14044 guidelines with available database, Revit and Tally application in Revit. The author concentrates on embodied energy and environmental impacts of reinforced concrete tall buildings. Finally, the association between design and construction variables with embodied energy and environmental impacts is explored.
This research will lead to significant contributions. A comprehensive study on embodied energy and environmental impacts of high-rise building will address a major gap in LCA literature. Researchers and environmental consultants can use the results of this research to create design tools to evaluate environmental impacts of high-rise buildings. Also, architects can use the results of this research to develop insight into the environmental performance of tall buildings in early design stage. Architects and engineers can also use the results to optimize tall building design for low embodied energy and environmental impacts. Finally, the results of this research will enable architects, engineers, planners, and policymakers develop more sustainable built environments. Show less