Search results
(1 - 1 of 1)
- Title
- Effect of Phosphorus Additions on Polycrystalline Ni-base Superalloys
- Creator
- Li, Linhan
- Date
- 2020
- Description
-
In recent years, advanced polycrystalline Ni-base superalloys have been developed with elevated levels of γ′ forming elements and high level...
Show moreIn recent years, advanced polycrystalline Ni-base superalloys have been developed with elevated levels of γ′ forming elements and high level of refractory elements as solid-solution strengtheners in an effort to extend the temperature capability. Moreover, the properties of the grain boundaries become more important and this necessitates the need to study of effects of minor additions of interstitial P for grain structure optimization. Due to the increased level of refractory elements employed, powder-processed Ni-base superalloys tend to have a high propensity to form Topologically Close-Packed (TCP) phases, which was found to be further promoted by the addition of P. A systematic study of the phase stability of high refractory content powder-processed Ni-base superalloys with three levels of P additions revealed an increased tendency to form Laves phase as a function of P additions. Additions of P were discovered to not only depress the incipient melting temperature to stabilize the eutectic Laves phase, but also promote Laves phase formation during the aging heat treatment and the following isothermal exposure. During the thermal exposure, excessive formation of Laves phase promoted the formation of a basket-weave structure comprised of an intertwined mixture of Laves and Sigma phase. The stabilization of the Laves phase structure due to P additions was found to be consistent with Density Functional Theory (DFT) calculations and could be rationalized through structure maps that relate the valence electron concentration and relative size differences. Additionally, a variation of grain structure obtained via either a sub-solvus or super-solvus solution heat treatment was noted to some extent vary the P segregation level at high-angle grain boundaries, thereby affecting the phase stability. For a sub-solvus solutioned grain structure that possessed a high length density of high-angle grain boundaries, the Laves phase formation was depressed for alloys with a low level of P addition. However, the phase stability variation associated with Laves phase formation was moderate when high concentrations of P were present. The effect of P addition on the γ′ microstructure variation is limited, which was confirmed by microstructure observations as well as through the short-term 0.6%-strain stress relaxation tests at high temperature. Heat treatment variations to modify the secondary and tertiary γ′ microstructures were discovered to exert a much more significant influence on the 0.6%-strain stress relaxation behavior. When a higher initial strain of 2% was applied, the stress relaxation behavior of the powder-processed Ni-base superalloys was found to be microstructure independent. The creep ductility of Waspaloy was determined to be notably reduced by the P additions due to the enhanced precipitation of M23C6 carbide at the grain boundaries. Excessive precipitation of M23C6 carbide increased the likelihood of brittle fracture when tested under low temperature/high stress creep conditions. However, the P addition as well as the excessive precipitation of M23C6 carbide did not impact the creep behavior as the dominant deformation was transgranular in nature when tested under high temperature/low stress conditions.
Show less