In the high-latitude ionosphere dense plasma formations called polar cap patches are sometimes observed. These patches are often associated... Show moreIn the high-latitude ionosphere dense plasma formations called polar cap patches are sometimes observed. These patches are often associated with ionospheric scintillation, a rapid fluctuation in the amplitude and phase of a radio signal that degrades communications and navigation systems. Predicting polar cap patch movement across the polar cap is an important subject for enabling forecasting of the scintillation.Lagrangian coherent structures (LCSs) are ridges indicating regions of maximum fluid separation in a time-varying flow. In previous studies, the Ionosphere-Thermosphere Algorithm for Lagrangian Coherent Structures (ITALCS) predicted the location of LCSs. These LCSs were shown to constrain polar cap patch source and transport regions for flow assumed to due to $\vec{E} \times \vec{B}$ plasma drift. The LCSs were predicted based on an empirical model of the high-latitude electric field for $\vec{E}$. In this thesis, the LCSs are generated using the first principles ionospheric model SAMI3 (SAMI3 is Another Model of the Ionosphere) as the model for electric field. The work relies on an understanding of various magnetic coordinate systems in space science, and includes three different approaches for attempting to generate the $\vec{E} \times \vec{B}$ drift as the flow fields that are to input to ITALCS. Finally, a representative LCS result is obtained with SAMI3 and shown to be at the high latitudes on the dayside, similar to prior work, but spanning a shorter longitudinal range. Show less