Search results
(1 - 2 of 2)
- Title
- Development of data assimilation for analysis of ion drifts during geomagnetic storms
- Creator
- Hu, Jiahui
- Date
- 2024
- Description
-
The primary objective of this dissertation is to gain insight into geomagnetic storm effects at mid-latitudes induced by solar activity....
Show moreThe primary objective of this dissertation is to gain insight into geomagnetic storm effects at mid-latitudes induced by solar activity. Geomagnetic storms affect our everyday lives because they give rise to transient signal loss, data transmission errors, negatively impacting users of satellite navigation systems. The Nighttime Localized Ionospheric Enhancement (NILE) is a localized plasma enhancement that because it is not well understood, drives the design of satellite-based augmentationsystems. To better secure operation of technological infrastructure, it is essential to build a comprehensive understanding of the atmospheric drivers, especially during solar active periods. Instrument measurements and climate models serve as valuable tools in obtaining information regarding the occurrence of space weather events; nonetheless, both sources exhibit quantitative and qualitative limitations. Data assimilation, an evolving technique, integrates measurements and model information to optimize the state estimations. This dissertation presents developments in a data assimilation algorithm known as Estimating Model Parameters from Ionospheric Reverse Engineering (EMPIRE), and its applications in investigating the atmospheric behaviors under varying solar conditions. EMPIRE is a data assimilation algorithm specifically designed for upper atmospheric driver estimation of neutral wind and ion drifts at user-defined spatial and temporal scales. The EMPIRE application in this work aims to contribute to a more comprehensive understanding of the effects of the NILE. EMPIRE utilizes the Kalman filter to optimize state calculations primarily based on electron density rates, provided by other data assimilation algorithms. Earlier runs of the algorithm used pre-defined values for the background state covariance cross time. To address model limitations under changing geomagnetic conditions, the algorithm is enhanced by concurrently updating the background state covariance during assimilation processes. Additionally, representation error is incor- porated as a component of the observation error, and error analysis is performed through a synthetic-data study. Previously, EMPIRE fused Fabry-Perot Interferometer (FPI) neutral wind measurements, demonstrating increased agreement with validation neutral wind data. In this work, this approach is extended to augment Coherent Scatter Radar (CSR) ion drift measurements from Super Dual Auroral Radar Network (SuperDARN), providing additional insights into EMPIRE’s estimated field-perpendicular ion motion. For an in-depth exploration of storm-related NILE, both EMPIRE and another data assimilation method, the Whole Atmosphere Community Climate Model with thermosphere and ionosphere eXtension coupled with Data Assimilation Research Testbed (WACCM-X + DART), is implemented for a storm event to test the proposed NILE driving mechanism. Furthermore, this dissertation introduces a Kalman smoother technique into the EMPIRE to enhance its ability to assess past storm events, and to explore the potential for algorithm improvements.
Show less
- Title
- Development of data assimilation for analysis of ion drifts during geomagnetic storms
- Creator
- Hu, Jiahui
- Date
- 2024
- Description
-
The primary objective of this dissertation is to gain insight into geomagnetic storm effects at mid-latitudes induced by solar activity....
Show moreThe primary objective of this dissertation is to gain insight into geomagnetic storm effects at mid-latitudes induced by solar activity. Geomagnetic storms affect our everyday lives because they give rise to transient signal loss, data transmission errors, negatively impacting users of satellite navigation systems. The Nighttime Localized Ionospheric Enhancement (NILE) is a localized plasma enhancement that because it is not well understood, drives the design of satellite-based augmentationsystems. To better secure operation of technological infrastructure, it is essential to build a comprehensive understanding of the atmospheric drivers, especially during solar active periods. Instrument measurements and climate models serve as valuable tools in obtaining information regarding the occurrence of space weather events; nonetheless, both sources exhibit quantitative and qualitative limitations. Data assimilation, an evolving technique, integrates measurements and model information to optimize the state estimations. This dissertation presents developments in a data assimilation algorithm known as Estimating Model Parameters from Ionospheric Reverse Engineering (EMPIRE), and its applications in investigating the atmospheric behaviors under varying solar conditions. EMPIRE is a data assimilation algorithm specifically designed for upper atmospheric driver estimation of neutral wind and ion drifts at user-defined spatial and temporal scales. The EMPIRE application in this work aims to contribute to a more comprehensive understanding of the effects of the NILE. EMPIRE utilizes the Kalman filter to optimize state calculations primarily based on electron density rates, provided by other data assimilation algorithms. Earlier runs of the algorithm used pre-defined values for the background state covariance cross time. To address model limitations under changing geomagnetic conditions, the algorithm is enhanced by concurrently updating the background state covariance during assimilation processes. Additionally, representation error is incor- porated as a component of the observation error, and error analysis is performed through a synthetic-data study. Previously, EMPIRE fused Fabry-Perot Interferometer (FPI) neutral wind measurements, demonstrating increased agreement with validation neutral wind data. In this work, this approach is extended to augment Coherent Scatter Radar (CSR) ion drift measurements from Super Dual Auroral Radar Network (SuperDARN), providing additional insights into EMPIRE’s estimated field-perpendicular ion motion. For an in-depth exploration of storm-related NILE, both EMPIRE and another data assimilation method, the Whole Atmosphere Community Climate Model with thermosphere and ionosphere eXtension coupled with Data Assimilation Research Testbed (WACCM-X + DART), is implemented for a storm event to test the proposed NILE driving mechanism. Furthermore, this dissertation introduces a Kalman smoother technique into the EMPIRE to enhance its ability to assess past storm events, and to explore the potential for algorithm improvements.
Show less