Search results
(1 - 2 of 2)
- Title
- Modeling and Optimization of Embedded Active Flow Control Systems
- Creator
- Henry, James M.
- Date
- 2024
- Description
-
This thesis presents research focused on the aerodynamic performance of circulation control on two-dimensional and quasi-two-dimensional wings...
Show moreThis thesis presents research focused on the aerodynamic performance of circulation control on two-dimensional and quasi-two-dimensional wings. Aerodynamic loads, namely lift, drag, and moment coefficients, are measured through Reynolds Averaged Navier Stokes (RANS) modeling and wind tunnel experiment. A simplified and parameterized RANS model is presented as a rapidly iterable approach to estimating the performance of trailing-edge circulation control on two dimensional airfoils, with the hypothesis that an optimized airfoil shape can be found which maximizes the lift coefficient increment generated by circulation control, through modification of the wing profile. The simplified modeling setup is compared with more conventional approaches to numerical simulation of circulation control. The performance of the simplified modeling scheme is then compared with wind tunnel studies, for both steady-state and dynamic performance, as functions of both momentum coefficient dCμ and chord-based Reynolds number Re_c. The dynamic performance for the model is studied to find an analog to the theoretical unsteady models of Wagner and Theodorsen. An adjoint optimization framework is used to find an optimal airfoil profile for circulation control. The optimized profile is then compared in both a simulation and a wind tunnel test study against a NACA0015 airfoil. In simulation, improvement between 12% and 15% is seen for the lift control authority for all values of dCμ and Re_c tested. In experiment, the optimized profile demonstrated improvements of up to 28% in lift control authority, dCL/dCμfor values of Cμ, and decreased performance for higher values of Cμ.
Show less
- Title
- Modeling and Optimization of Embedded Active Flow Control Systems
- Creator
- Henry, James M.
- Date
- 2024
- Description
-
This thesis presents research focused on the aerodynamic performance of circulation control on two-dimensional and quasi-two-dimensional wings...
Show moreThis thesis presents research focused on the aerodynamic performance of circulation control on two-dimensional and quasi-two-dimensional wings. Aerodynamic loads, namely lift, drag, and moment coefficients, are measured through Reynolds Averaged Navier Stokes (RANS) modeling and wind tunnel experiment. A simplified and parameterized RANS model is presented as a rapidly iterable approach to estimating the performance of trailing-edge circulation control on two dimensional airfoils, with the hypothesis that an optimized airfoil shape can be found which maximizes the lift coefficient increment generated by circulation control, through modification of the wing profile. The simplified modeling setup is compared with more conventional approaches to numerical simulation of circulation control. The performance of the simplified modeling scheme is then compared with wind tunnel studies, for both steady-state and dynamic performance, as functions of both momentum coefficient dCμ and chord-based Reynolds number Re_c. The dynamic performance for the model is studied to find an analog to the theoretical unsteady models of Wagner and Theodorsen. An adjoint optimization framework is used to find an optimal airfoil profile for circulation control. The optimized profile is then compared in both a simulation and a wind tunnel test study against a NACA0015 airfoil. In simulation, improvement between 12% and 15% is seen for the lift control authority for all values of dCμ and Re_c tested. In experiment, the optimized profile demonstrated improvements of up to 28% in lift control authority, dCL/dCμfor values of Cμ, and decreased performance for higher values of Cμ.
Show less