Electrical faults are a leading cause of residential fire, and flexible power cords are particularly susceptible to metal or insulation... Show moreElectrical faults are a leading cause of residential fire, and flexible power cords are particularly susceptible to metal or insulation degradation that may lead to a variety of electrical faults. Smart Plugs are a type of plug-in device controlling electrical loads via wireless communication for consumer market. However, there is lack of circuit protection features in existing Smart Plug products. Moreover, there is no previous product or research on Smart Plug with circuit protection features. This thesis introduces a new Smart Plug 2.0 concept which offers all-in-one protection against over-current, arc, and ground faults in addition to the smart features in Smart Plug products. It aims at preventing fire and shock hazards caused by degraded or damaged power cords and electrical connections in homes and offices. It offers microsecond-scale time resolution to detect and respond to a fault condition, and significantly reduces the electrothermal stress on household electrical wires and loads. A new arc fault detection method is developed using machine learning models based on load current di/dt events. The Smart Plug 2.0 concept has been validated experimentally. A 120V/10A solid-state Smart Plug 2.0 prototype using power MOSEFTs is designed and tested. It has experimentally demonstrated the comprehensive protection features against all types of electrical faults. Show less