In the field of medical imaging, a brain atlas refers to a specific model of the brain of a population where different parts of the atlas... Show moreIn the field of medical imaging, a brain atlas refers to a specific model of the brain of a population where different parts of the atlas correspond to different anatomical parts of the average brain of the population. A brain atlas is composed of MRI templates and semantic labels and is a crucial component of neuroscience for its critical role in facilitating spatial normalization, temporal characterization and automated segmentation for the purposes of voxel-wise, region of interest and network analyses. Building a brain atlas requires registering multi-dimensional brain datasets from a population into a reference space and, during the last decade, the advent of new technologies and computational modeling approaches has made it possible to build high-quality, detailed brain atlases. At the same time developments in data acquisition now allow the construction of comprehensive brain atlases containing a variety of information about the brain. The Multichannel Illinois Institute of Technology and Rush university Aging (MIITRA) atlas project is developing a high-quality comprehensive atlas of the older adult brain containing a multitude of templates and labels. These templates are constructed with state-of-the-art spatial normalization of high-quality data and as a result, they are characterized by higher image quality, are more representative of the brain of non-demented older adults and provide higher inter-subject spatial normalization accuracy of older adult data compared to other available templates. The methodology used in the development of the MIITRA templates facilitates the construction of accurate structural and connectivity labels. Functional connectivity MRI reveals sets of functionally connected brain regions, forming networks, by investigating synchronous fluctuations in MRI signal over time across these brain regions during rest. The purpose of this work was to generate functional connectivity labels for several brain networks in MIITRA space. Show less