Search results
(1 - 2 of 2)
- Title
- Defense-in-Depth for Cyber-Secure Network Architectures of Industrial Control Systems
- Creator
- Arnold, David James
- Date
- 2024
- Description
-
Digitization and modernization efforts have yielded greater efficiency, safety, and cost-savings for Industrial Control Systems (ICS). To...
Show moreDigitization and modernization efforts have yielded greater efficiency, safety, and cost-savings for Industrial Control Systems (ICS). To achieve these gains, the Internet of Things (IoT) has become an integral component of network infrastructures. However, integrating embedded devices expands the network footprint and softens cyberattack resilience. Additionally, legacy devices and improper security configurations are weak points for ICS networks. As a result, ICSs are a valuable target for hackers searching for monetary gains or planning to cause destruction and chaos. Furthermore, recent attacks demonstrate a heightened understanding of ICS network configurations within hacking communities. A Defense-in-Depth strategy is the solution to these threats, applying multiple security layers to detect, interrupt, and prevent cyber threats before they cause damage. Our solution detects threats by deploying an Enhanced Data Historian for Detecting Cyberattacks. By introducing Machine Learning (ML), we enhance cyberattack detection by fusing network traffic and sensor data. Two computing models are examined: 1) a distributed computing model and 2) a localized computing model. The distributed computing model is powered by Apache Spark, introducing redundancy for detecting cyberattacks. In contrast, the localized computing model relies on a network traffic visualization methodology for efficiently detecting cyberattacks with a Convolutional Neural Network. These applications are effective in detecting cyberattacks with nearly 100% accuracy. Next, we prevent eavesdropping by applying Homomorphic Encryption for Secure Computing. HE cryptosystems are a unique family of public key algorithms that permit operations on encrypted data without revealing the underlying information. Through the Microsoft SEAL implementation of the CKKS algorithm, we explored the challenges of introducing Homomorphic Encryption to real-world applications. Despite these challenges, we implemented two ML models: 1) a Neural Network and 2) Principal Component Analysis. Finally, we hinder attackers by integrating a Cyberattack Lockdown Network with Secure Ultrasonic Communication. When a cyberattack is detected, communication for safety-critical elements is redirected through an ultrasonic communication channel, establishing physical network segmentation with compromised devices. We present proof-of-concept work in transmitting video via ultrasonic communication over an Aluminum Rectangular Bar. Within industrial environments, existing piping infrastructure presents an optimal solution for cost-effectively preventing eavesdropping. The effectiveness of these solutions is discussed within the scope of the nuclear industry.
Show less
- Title
- Defense-in-Depth for Cyber-Secure Network Architectures of Industrial Control Systems
- Creator
- Arnold, David James
- Date
- 2024
- Description
-
Digitization and modernization efforts have yielded greater efficiency, safety, and cost-savings for Industrial Control Systems (ICS). To...
Show moreDigitization and modernization efforts have yielded greater efficiency, safety, and cost-savings for Industrial Control Systems (ICS). To achieve these gains, the Internet of Things (IoT) has become an integral component of network infrastructures. However, integrating embedded devices expands the network footprint and softens cyberattack resilience. Additionally, legacy devices and improper security configurations are weak points for ICS networks. As a result, ICSs are a valuable target for hackers searching for monetary gains or planning to cause destruction and chaos. Furthermore, recent attacks demonstrate a heightened understanding of ICS network configurations within hacking communities. A Defense-in-Depth strategy is the solution to these threats, applying multiple security layers to detect, interrupt, and prevent cyber threats before they cause damage. Our solution detects threats by deploying an Enhanced Data Historian for Detecting Cyberattacks. By introducing Machine Learning (ML), we enhance cyberattack detection by fusing network traffic and sensor data. Two computing models are examined: 1) a distributed computing model and 2) a localized computing model. The distributed computing model is powered by Apache Spark, introducing redundancy for detecting cyberattacks. In contrast, the localized computing model relies on a network traffic visualization methodology for efficiently detecting cyberattacks with a Convolutional Neural Network. These applications are effective in detecting cyberattacks with nearly 100% accuracy. Next, we prevent eavesdropping by applying Homomorphic Encryption for Secure Computing. HE cryptosystems are a unique family of public key algorithms that permit operations on encrypted data without revealing the underlying information. Through the Microsoft SEAL implementation of the CKKS algorithm, we explored the challenges of introducing Homomorphic Encryption to real-world applications. Despite these challenges, we implemented two ML models: 1) a Neural Network and 2) Principal Component Analysis. Finally, we hinder attackers by integrating a Cyberattack Lockdown Network with Secure Ultrasonic Communication. When a cyberattack is detected, communication for safety-critical elements is redirected through an ultrasonic communication channel, establishing physical network segmentation with compromised devices. We present proof-of-concept work in transmitting video via ultrasonic communication over an Aluminum Rectangular Bar. Within industrial environments, existing piping infrastructure presents an optimal solution for cost-effectively preventing eavesdropping. The effectiveness of these solutions is discussed within the scope of the nuclear industry.
Show less