Search results
(1 - 1 of 1)
- Title
- DUST MITIGATION OF MICRO-STRUCTURED (GECKO-LIKE) ADHESIVES
- Creator
- Alizadehyazdi, Vahid
- Date
- 2019
- Description
-
Controllable adhesives (i.e. those capable of being turned on and off) are used in a wide range of applications including robotic grippers and...
Show moreControllable adhesives (i.e. those capable of being turned on and off) are used in a wide range of applications including robotic grippers and climbing robots. Electromagnets, suction, and microspines have been used to meet this demand, but are typically limited to a specific substrate roughness or material. Microstructured (gecko-like) adhesives on the other hand, offer the potential to be the most universal among controllable adhesives since they can work on a wide variety of surfaces. The development of microstructured (gecko-like) adhesives has focused almost solely on their adhesive strength. However, for practical applications, especially in real-world environments, the adhesive's long-term performance is arguably equally important. One impediment to long-term viability is the adhesive's susceptibility to contamination, which decreases adhesion significantly. To have practical microstructure adhesives in real-world environments, the detrimental effect of dust and other contaminants should be dealt with. The first general approach involves removing adhered dust particles. The second approach is to create adhesives that minimize dust adsorption such that extensive cleaning is not necessary or they can be removed easily. Regarding the first approach, this research describes the use of electrostatic forces and ultrasonic vibration to repel dust particles. Results are non-destructive, non-contact cleaning methods that can be used in conjunction with other cleaning techniques, many of which rely on physical contact between the fibrillar adhesive and substrate. Electrostatic cleaning results show that a two-phase square wave with the lowest practically feasible frequency has the best cleaning results. Combining electrostatic and ultrasonic cleaning results in far higher efficiency than when using electrostatic repulsion or ultrasonic alone. Moreover, I showed that the piezoelectric element in the ultrasonic cleaning method can also be used as a releasing mechanism to turn the adhesive off and as a force/contact sensor. Regarding the second approach, I experimentally explored the effect of the modulus of elasticity, work of separation, and work of adhesion (adhesion energy) on the shear stress and particle detachment capabilities of microstructured adhesives. Particle removal is evaluated using both non-contact cleaning methods (centripetal force and electrostatic particle repulsion) and a dry contact cleaning method (load-drag-unload test). Results show that for a material with a high work of separation, high elastic modulus, and low work of adhesion, it is possible to create a microstructured adhesive with both high shear stress strength and low adhesion to dust particles. Results also show that, for dry contact cleaning, shear stress recovery mostly stems from particle rolling and not particle sliding. Moreover, shear test results show that augmenting the microstructured adhesive with electrostatic adhesion can reduce the negative effects on adhesion of a high elastic modulus materials' conformability to a substrate by providing a preload to the microstructured elements. Finally, I applied mentioned dust mitigation methods on two different gecko-like adhesives grippers. The first design was used to pick up flat objects, while the second one is designed to grip curved objects of different shapes and sizes. Since the second gripper is flexible and piezoelectric is stiff (it can only be applied to rigid backings), only electrostatic dust mitigation is applicable.
Show less