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(57) ABSTRACT

A method and apparatus for prefetching data from memory
for a multicore data processor. A prefetcher issues a plurality
of requests to prefetch data from a memory device to a
memory cache. Consecutive cache misses are recorded in
response to at least two of the plurality of requests. A time
between the cache misses is determined and a timing of a
further request to prefetch data from the memory device to the
memory cache is altered as a function of the determined time
between the two cache misses.
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1
TIMING-AWARE DATA PREFETCHING FOR
MICROPROCESSORS

FIELD OF THE INVENTION

This invention relates generally to data prefetching and,
more particularly, to a data prefetching technique that inte-
grates an awareness of time in prefetching.

BACKGROUND OF THE INVENTION

The rapid advance in semiconductor technology allows the
processor speed or the aggregate processor speed on chips
with multicore/manycore architectures to grow fast and
steadily. The memory speed, or the data load/store perfor-
mance, on the other hand, has been increasing at a snail’s pace
for over decades. This trend is predicted to continue in the
next decade. This unbalanced performance improvement
leads to one of the significant performance bottlenecks in
computer architectures, known as the “memory wall” prob-
lem. Memory hierarchies have been the primary solution to
bridging the processor-memory performance gap. However,
dueto the limited cache capacity and highly associative struc-
ture, large amount of off-chip accesses and long memory
access latency still largely limit the performance. Data
prefetching has been widely recognized as a companion tech-
nique of memory hierarchy solution to overcoming the
memory-wall issue.

Data prefetching is a technique to fetch data for micropro-
cessors in advance from memory systems. A data prefetcher
is an on-chip hardware component that carries out data
prefetching. Data prefetchers are widely adopted in micro-
processor architectures to hide memory fetch latency and to
overlap memory access with computation. Data prefetching
techniques are widely used to bridge the growing perfor-
mance gap between processor and memory. Numerous
prefetching techniques have been proposed to exploit data
patterns and correlations in the miss address stream. In gen-
eral, the miss addresses are grouped by some common char-
acteristics, such as program counter or memory region they
belong to, into localized streams to improve prefetch accu-
racy and coverage. However, the existing stream localization
technique lacks the timing information of misses. This draw-
back canlead to a large fraction of untimely prefetches, which
in turn limits the effectiveness of prefetching, wastes precious
bandwidth and leads to high cache pollution potentially.

Large amounts of untimely prefetches not arriving within a
proper time window can result in cache pollution, bandwidth
waste, and a negative impact on overall performance. In gen-
eral, untimely prefetches can be categorized into two types:
early prefetches and late prefetches. A prefetch is defined to
be late if the prefetched data are still on the way back to the
cache when an instruction requests the data. In this case, the
late prefetch might not contribute much to the performance
even though it is an accurate prefetch. A prefetch is defined to
be early if the prefetched data are kicked out by other blocks
due to the limited cache capacity before such prefetched data
are accessed by the processor. Apparently, the early prefetch
is not merely useless, but also imposes negative effects by
causing cache pollution and waste of bandwidth. It is critical
to control the number of untimely prefetches within an
acceptable range to lessen the adverse impact and exploit the
benefits of data prefetching.

A principle of data prefetching is that the prefetcher is able
to fetch the data from a lower level memory hierarchy to a
higher level closer to the processor in advance and in a timely
manner. This principle requires consideration of two critical
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aspects of a data prefetching strategy, what to prefetch and
when to prefetch. Existing data prefetching technology has
been focused on the problem of what to prefetch. The other
critical issue, when to prefetch, has long been neglected. The
ignorance of the timing issue of prefetches can considerably
affect the prefetching effectiveness. There is a continuing
need for improved prefetching.

SUMMARY OF THE INVENTION

A general object of the invention is to improve data
prefetching by incorporating a time consideration. A more
specific objective of the invention is to overcome one or more
of the problems described above.

The general object of the invention can be attained, at least
in part, through a method for prefetching data from memory
for a data processor, such as a multicore processor. The
method includes issuing, such as by a prefetching module, a
plurality of requests to prefetch data from a memory device to
a memory cache; recording a first cache miss in response to
one of the plurality of requests; recording a second cache miss
in response to a second of the plurality of requests; determin-
ing a time between the first cache miss and the second cache
miss; and altering a timing of a further request to prefetch data
from the memory device to the memory cache as a function of
the determined time between the first cache miss and the
second cache miss.

The method can update the time between cache misses
upon each further cache miss, where the updated time is
determined between a most recent cache miss and a previous
miss. The method can further include a step of predicting the
timing of the further request as a function of the determined
time between the first cache miss and the second cache miss.

In one embodiment, the method records a time for each
cache miss, localizes miss address streams with an instruction
address, links each miss address of the miss address streams
to a corresponding recorded time for each cache miss, and
determines a time distance between consecutive cache
misses. The method can further include determining a plural-
ity of time strides, each of the plurality of time strides repre-
senting a different time value, and computing further prefetch
addresses based upon the miss addresses and the determined
time strides.

In one embodiment of this invention, the plurality of
requests to prefetch data are in a first prefetch stream, and the
method links, according to cache miss timing information the
first prefetch stream with a second prefetch stream including
a second plurality of requests to prefetch data. The method
can further include detecting an early data prefetch for the
first prefetch stream; delaying the early data prefetch for the
first prefetch stream; and prefetching data from the second
prefetch stream during the delay for the first prefetch stream.

The prefetching module can comprise a stride prefetcher
including a reference prediction table, and cache misses can
be stored in the reference prediction table.

The invention further contemplates an article comprising a
machine readable medium storing executable instructions for
a data processor. The instructions are executable by the data
processor to: issue a plurality of requests to prefetch data from
amemory device to amemory cache; record a first cache miss
in response to one of the plurality of requests; record a second
cache miss in response to a second of the plurality of requests;
determine a time between the first cache miss and the second
cache miss; and alter a timing of a further request to prefetch
data from the memory device to the memory cache as a
function of the determined time between the first cache miss
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and the second cache miss. The article can include instruc-
tions for any of the method steps discussed above and further
below.

The invention still further includes an apparatus for com-
puting. The apparatus includes a client device including a
processor or processing core that is capable of processing an
application, and a memory system. A prefetch engine
observes a data access pattern of the application processed by
the client device to predict future data requests of the client
device. The apparatus also includes a miss counter to measure
a time of each cache miss of the prefetch engine. The inven-
tion can further include a future access predictor process for
predicting the future data requests of the client device based
on information from the miss counter. In particular embodi-
ments of this invention, the apparatus includes a reference
prediction table including a time distance and an address
distance of cache misses.

This invention provides a mechanism referred to as a
stream timing technique that can reduce untimely prefetches
and in turn increase the overall processor performance. The
stream timing technique of this invention is based on a stream
localization technique, a widely-used technique to classify
miss addresses into various streams according to a specific
criteria such as from the same instruction (program counter),
within the same memory region, etc., to improve the predic-
tion accuracy and prefetch coverage. The basic idea of the
stream timing technique is to keep the timing information for
each stream and chain them according to the time. The time
distances among accesses within a stream or across different
streams are taken into account to direct prefetching. This
approach can improve the timeliness of prefetches and gen-
erate prefetch candidates with a high confidence. Problems
such as cache pollution and bandwidth waste caused by
untimely prefetches can be effectively mitigated.

The invention also includes the incorporation of the stream
timing technique with a well-known conventional stride
prefetcher. The stream timing technique of this invention
extends the conventional stride prefetcher into a new stride
prefetcher that adds a time consideration, referred to herein as
atime-aware stride (TAS) data prefetcher. Simulation experi-
ments verified the design of the stream timing technique and
the TAS prefetcher. The simulation results show that the
inventive stream timing technique is promising in reducing
untimely prefetches and the IPC improvement of TAS
prefetcher outperforms the existing stride prefetcher by 11%.

Other objects and advantages will be apparent to those
skilled in the art from the following detailed description taken
in conjunction with the appended claims and drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a stream timing technique according to
one embodiment of this invention.

FIG. 2 illustrates a methodology of timing-aware data
prefetching according to one embodiment of this invention.

FIG. 3 illustrates a prefetcher according to one embodi-
ment of this invention with an extended RPT table.

FIG. 4 illustrates an exemplary timing-aware stride
prefetcher operation with the classification of the time inter-
vals.

FIG. 5 illustrates a classification of prefetches.

FIG. 6 summarizes a time intervals distribution of selected
benchmarks.

FIG. 7 illustrates the accuracy of a time prediction accord-
ing to one embodiment of this invention.

FIGS. 8(a)-(c) show the distribution of good, late, and early
prefetches of three prefetchers tested in the examples below.
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FIG. 9 reports the percentage of misses reduced by three
prefetchers tested in the examples below.

FIG. 10 shows the Instructions per Cycle improvements
with respect to the base case (without prefetching) of three
prefetchers tested in the examples below.

FIG. 11 shows a cache size sensitivity of benchmarks ofthe
example below.

FIG. 12 shows the prefetching coverage for three prefetch-
ers tested in the examples below.

FIG. 13 demonstrates the comparison of the performance
improvement of a TAS prefetcher for different cache sizes.

FIG. 14 shows prefetching accuracy of three prefetchers
tested in the examples below.

FIG. 15 includes Table 2 of the examples.

DETAILED DESCRIPTION OF THE INVENTION

The present invention increases prefetching timeliness by
introducing a stream timing technique. Based on the stream
timing technique, this invention introduces a timing-aware
data prefetching methodology. The invention also provides a
timing-aware prefetcher, including a timing aware stride
(TAS) prefetcher, which adds the time consideration of the
stream timing technique to improve upon stride prefetchers
used in recent microprocessor architectures. The TAS
prefetcher outperforms currently existing prefetchers. This
invention is useful for all major microprocessor architectures,
including x86, MIPS, PowerPC, and embedded architectures
such as ARM.

In one embodiment of the invention, the stream timing
technique keeps the timing information for each localized
data access stream and chains them according to the time. The
time distances among accesses within a stream or across
different streams are taken into consideration to direct
prefetching. The timing-aware prefetching methodology of
this invention improves the timeliness of prefetches and gen-
erates prefetch candidates in an accurate and timely manner
based on stream timing. The techniques of this invention do
not change any existing microprocessor architecture compo-
nents beyond the prefetcher component. The timing-aware
prefetching and the TAS prefetcher are self-contained and do
not need any change to other components. The techniques of
this invention do not affect the existing data paths, thus they
does not introduce extra latency for load/store instructions.
The techniques of this invention are also completely trans-
parent to programmers and users, and require relatively little
effort and/or overhead to implement. This invention can ben-
efit users’ applications automatically if implemented on chip.

The method and apparatus of this invention provide data
access acceleration function for microprocessors, with a par-
ticular benefit for multicore processors. The invention sup-
ports dynamic optimization, enables timely optimization,
supports application-specific customized optimization. The
invention also can be used to improve data access locality,
reduce cache pollution of data prefetching in microproces-
sors, and improve the usage of the precious memory band-
width. The invention may also have particular benefit when
used in combination with a graphic processing unit (GPU).
GPU success has been generally due to the ability to solve
data prefetching problems for graphic applications. By incor-
porating prefetchers according to this invention, current
GPUs can be more effective and the success of GPU can be
extended to other applications.

In one embodiment of this invention, the stream timing
technique allows the prefetcher to maintain timing informa-
tion together with addresses so that the times of a particular
miss occurrences are also predictable. This method is based



US 8,856,452 B2

5

on an important observation that the timing information of
data accesses in a local stream exhibits perceivable patterns,
i.e., the time intervals between accesses can be also discov-
ered with patterns. For example, in a PC-localized constant-
stride prefetcher, the time intervals between adjacent accesses
in a certain local stream are most likely to have the same
value. This observation has been verified in simulation
experiments and the result shows that the time prediction in
the timing-aware prefetcher can reach an average accuracy
around 90%.

FIG. 1 illustrates a stream timing technique according to
one embodiment of this invention. In FIG. 1, a plurality of
requests is issued to prefetch data from a memory device to a
memory cache. FIG. 1(a) demonstrates the local streams after
localizing the plurality of requests of the global miss stream
based on the program counter (PC). According to one
embodiment of this invention, in addition to recording the
cache misses of the plurality of requests, a time between
consecutive cache misses is determined for the purpose of
altering a timing of a further request to prefetch data from the
memory device. FIG. 1(b) illustrates this stream timing tech-
nique of the invention, where t, represents the determined
time period between a first cache miss miss,, and a second
cache miss miss,,,; within a local stream. The t, chains the
miss addresses in a local stream. T, shows the time intervals
among different streams, which is used to link or chain dif-
ferent local streams. The stream timing has the ability of
reconstructing the chronological order of accesses, which is
critical in guiding timely prefetches.

In one embodiment of this invention, the stream timing
technique is applied to provide a technique referred to herein
as timing-aware data prefetching. The timing-aware data
prefetching technique dynamically generates prefetch candi-
dates across streams following the chains (with timing),
instead of generating candidates only from a single stream
(without timing). This intelligent technique is possible
because localized streams are chained according to the timing
information.

FIG. 2 illustrates a methodology of timing-aware data
prefetching according to one embodiment of this invention.
The timing-aware data prefetching technique stores the time
when a miss occurs, which is used to calculate the time
interval between the last miss from the same stream and the
current one. The time is also used to establish the stream chain
as described in the stream timing technique. Similar to
address prediction, the time interval is highly predictable with
the historical time information. The timing-aware data
prefetching is able to provide the prediction of both what to
prefetch (the data) and when to prefetch (the time). The gen-
eration of prefetch candidates within a local stream can be
thought of and referred to as depth-first generation, and the
generation of candidates across chained streams as width-first
generation. The timing-aware data prefetching, in essence,
transforms the existing one-dimensional data prefetching
(only considering the history of addresses) to a two-dimen-
sional prefetching considering the history of both addresses
and times.

In one embodiment, the methodology of timing-aware data
prefetching operates as follows. If the predicted access will
happen too soon, a preset prefetch distance is applied to avoid
late prefetch, and the prefetcher follows the depth-first
method to generate prefetch candidates. If the time interval
between the current access and the predicted access is longer
than a preset threshold, which indicates a case of an early
prefetch, the prefetcher follows the width-first method in
order to find timely prefetch candidates from other streams.
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The timing-aware prefetching technique of this invention
can be applied to most, if not all, of the most common
prefetching algorithms currently available. A prefetcher with
algorithm A is denoted as P, and a timing-aware data
prefetcher with algorithm A as P, . In one embodiment of
this invention, the general process of P, ,-can be divided into
four steps. First, P, ~runs algorithm A to identify data access
pattern. Second, the global miss stream is localized according
to the instruction address, i.e., the program counter. Third, the
localized streams are chained with stream timing technique to
regain the chronicle order. Fourth, P, ;- uses stream timing
and chaining to generate and issue prefetches in a timely
manner.

The timing-aware data prefetching desirably uses a miss
counter that ticks upon cache misses to measure the time, i.e.,
the miss number. The choice of time measures is critical to
timing-aware data prefetching. The usage of miss counter as
the time measure has advantages over other choices such as a
CPU cycle counter, instruction counter, or load/store instruc-
tion counter. First, the miss number is more accurate to rep-
resent the time. This is because that a large number of misses
can indicate an early prefetch due to frequent cache replace-
ment, whereas a long absolute time cannot if few misses
appear in the future. Second, the miss number between
accesses is more stable than the actual time due to the pro-
gram logic. Third, the miss counter does not need frequent
updates and considerable hardware storage.

One exemplary embodiment of this invention incorporates
the timing-aware data prefetching technique with a stride
prefetching algorithm, resulting in a timing-aware stride
(TAS) prefetcher. The TAS prefetcher is an instance of
P, 0.7 the class of P, ;. The stride prefetcher and its Ref-
erence Prediction Table (RPT) based implementation (and its
variations) is notably adopted in all major shipped processors
including Intel Itanlium®, Xeon™ and Core™ 2 processors,
AMD Athlon and Opteron processors, IBM Power6 and
Power7 processors, etc. The TAS prefetcher enhances the
RPT table so that the timing information of local streams can
be stored. The traditional RPT entry includes at least four
fields: PC, prev addr, stride, and state. The PC field represents
the address of load/store instructions and is also the index of
a local stream. The prev_addr field stores the last address
referenced by the instruction specified in PC field. The stride
field records the difference between the last two addresses in
the local stream and is used to predict the future address
together with prey addr. In addition, a two-bit saturating
counter, increasing upon a stride match and decreasing upon
a mismatch, is used in each entry for making a prefetching
decision. In one embodiment, the TAS prefetcher extends the
RPT table with three new fields for each entry as shown in
FIG. 3: 1) prev_time field: the global time when the address in
the stream is last referenced; 2) next_PC field: a pointer
linking to a local stream which is closest in time after the
current one; and 3) interval_state field: a two-bit state indica-
tor denoting the time interval length between addresses in the
local stream with four possible states: short, medium, long,
and very long. The time interval is derived by subtracting
prev_time from current global time, and it is used to deter-
mine the interval state. These new fields in each entry are used
to make local streams chained and time-stamped. Compared
to the conventional stride prefetcher, the new entries in the
TAS prefetcher build relations between different local
streams by connecting and timing them. The new TAS
prefetcher generates timely and optimal prefetch candidates
than existing stride prefetchers.

In one embodiment of this invention, the TAS prefetcher
classifies the time intervals between misses into four catego-



US 8,856,452 B2

7

ries: “short time” ranges from 1 to 2 misses; “medium time”
ranges from 3 to 9 misses; “long time” ranges from 10 to 19
misses and “very long time” is over 19 misses. These thresh-
olds have been chosen based on experiments and empirical
experience. FIG. 4 illustrates an exemplary TAS operation
with the classification of the time intervals. First, the TAS
prefetcher finds the corresponding stream matching the PC of
current miss. Second, the TAS prefetcher checks the current
interval state and takes a corresponding action. If the time
interval is short for current stream and it is the first time
accessing the stream during this prefetching iteration, the
prefetcher skips two blocks (prefetch distance) following the
current miss to avoid late prefetches and issues all prefetches
according to the prefetch degree. If the time interval is
medium, it is not necessary to apply prefetch distance because
the longer interval between misses can tolerate the fetch
latency well. Instead, the prefetcher only issues half of the
prefetches in order to prevent potential early prefetches. Dif-
ferent from the medium time interval case, for the long or very
long time interval cases, the prefetcher issues one quarter of
the prefetches or one prefetch, respectively, for the current
stream. Third, when there are still prefetches left after
prefetching on the first stream, the TAS prefetcher attempts
going width following the next PC pointer to find local
streams that are within a 20 time period and ready to prefetch,
and then prefetches on these streams. The prefetching rules
for these streams are same with the first one. Fourth, if the
TAS prefetcher has traversed all the streams during the time
period along the stream chain while the prefetches are not
completely issued, the prefetcher will go back to the first
stream and repeat the operation until all of them are done.

This invention can include additional hardware or software
support compared to existing prefetch architectures. A timer
is generally needed that ticks every time the Lowest Level
Cache (LLC) miss occurs. This timer can be implemented
with a register that self increments each time a LL.C miss
event happens. The miss address streams need to be localized
with the instruction address, i.e., the program counter (PC).
The global miss address stream is localized to many local
streams according to the PC value. Local miss address
streams need to be chained by the time (the value of the timer
register) of the occurrence of the miss stream. Miss addresses
within each local miss address stream need to be chained by
the time (the value of the timer register) of the occurrence of
each miss address. A decoder can be used to determine
whether the time distance between miss addresses is “short”,
“medium”, “long”, or “very long.” An additional computation
unit can be used to compute the prefetch addresses based on
the current miss address and the predicted strides.

The present invention is described in further detail in con-
nection with the following examples which illustrate or simu-
late various aspects involved in the practice of the invention.
It is to be understood that all changes that come within the
spirit of the invention are desired to be protected and thus the
invention is not to be construed as limited by these examples.

Three commonly used metrics for evaluating a prefetching
algorithm include accuracy, coverage and timeliness.
Prefetching accuracy is the percentage of prefetches accessed
before they are evicted from the cache out of the overall
prefetches. A high accuracy helps the prefetcher avoid poten-
tial cache pollution caused by useless prefetches. The
prefetching coverage measures the ratio of raw misses
(misses without prefetch) reduced by prefetches. The
prefetching coverage describes the ability of detecting and
correctly predicting the future misses by a prefetcher.
Prefetching timeliness represents the capability of issuing
timely prefetches by a prefetcher. In this example, both late
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prefetches and early prefetches are considered as untimely
prefetches, and the invention seeks to improve the timeliness
by reducing them or converting them into good prefetches.
FIG. 5 shows a classification of prefetches. Prefetches are
classified as useless if they are not accessed during the whole
lifetime of the application. These prefetches do not help
reduce cache misses, but instead, lower the accuracy and lead
to problems such as cache pollution and bandwidth consump-
tion. As opposed to useless prefetches, usable prefetches are
those accessed by the processor, which include good, late and
early prefetches. The good prefetches are those issued by a
prefetcher and then accessed by the processor later. For late
and early prefetches, although they are correct predictions of
future misses, they fail to hide the full memory-access latency
efficiently since they are not issued at a proper time. Prefetch-
ing performance can be improved significantly if untimely
prefetches can be converted into timely ones.

The interplay of accuracy, coverage and timeliness are
usually complicated. In most cases, a method improving one
of them is not able to juggle the other two. To provide high
prefetching accuracy, a stream localization technique is
widely used. The rationale of stream localization is that the
prefetcher separates the global access stream (full history of
memory-access addresses) according to a specific character-
istic, and then makes the prediction based on local streams
instead of the global one. The criteria for localizing streams
can be the instruction address (e.g., program counter) that
issues the access, memory region (memory location the
access belongs to), and time period (during which period the
access happens). FIG. 1(a) shows the localized streams based
on PC. Due to the high predictability of data patterns and
correlations in local streams, the prefetcher is likely to
achieve much better accuracy. However, this strategy limits
the prefetching timeliness since the chronological order of the
occurrence of accesses is missing in local streams. Thus, it is
a challenging task for a data prefetcher to generate timely
prefetches.

The stream timing mechanism of this invention addresses a
problem of poor timeliness support found in existing stream
localization based prefetchers. The traditional stream local-
ization prefetcher predicts the future address according to the
past access history kept in a table. The stream timing mecha-
nism of this invention allows the prefetcher to maintain tim-
ing information together with addresses so that the time when
a particular miss happens is also predictable. This method is
based on an important observation that the timing information
of data accesses in a local stream exhibits perceivable pat-
terns, i.e., the time intervals between accesses can be also
discovered with patterns. For example, in a PC-localized
constant-stride prefetcher, the time intervals between adja-
cent accesses in a certain local stream are most likely to have
the same value. This observation has been verified in simula-
tion experiments and the result shows that the time prediction
in the TAS prefetcher of this invention can reach an average
accuracy around 90% (discussed further below). As discussed
above, FIG. 1(b) illustrates a sample scenario of stream tim-
ing, where t,, represents the time period between miss, and
miss,,, ;. T shows the time intervals among different streams,
which is also used to chain local streams. The ability of
reconstruction of the chronological order of accesses is criti-
cal in guiding timely prefetches.

As discussed previously, when local streams are chained
according to the timing information, an alternative way of
selecting prefetch candidates is possible, which is to select
prefetch candidates across streams following the chains,
instead of selecting candidates only from a single stream.
FIG. 2 illustrates how these two different prefetch strategies
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function. The method of this invention records the time when
an access is requested, which is used to calculate the time
interval between the last access from the same stream and the
current one. Meanwhile, the time is regarded as the stream
time that indicates the latest access from this stream, and is
used to establish the stream chain.

Similar to address prediction, the time is highly predictable
with the help of the historical time information. Thus, distinct
from an uncertain speculation on when to prefetch, the pro-
posed stream timing technique is able to provide both future
access addresses and times. In one embodiment, the basic
methodology of taking advantage of timing information oper-
ates as follows. If the predicted access will happen too soon,
a preset prefetch distance will be performed to avoid late
prefetch and the depth is followed to select prefetch candi-
dates. If the time interval between the current access and the
predicted access is longer than a preset threshold, which
indicates a case of an early prefetch, the prefetcher goes
width-first in order to find timely prefetch candidates within
other streams. The general process of a prefetching scheme
with stream timing technique can be divided into four steps.
First, the prefetcher finds a suitable algorithm to identify data
patterns. Second, the global stream is localized according to a
certain criteria. Third, the local streams are chained to regain
the chronicle order. Finally, stream timing can be obtained
and prefetches are selected and issued in a timely manner.

The choice of time measures is critical to stream timing
technique. CPU cycle would seem an appropriate choice
since the global cycle counter has been provided on most
recent microprocessors. However, using CPU cycles to rep-
resent the time costs too much storage since the time interval
between accesses can be extremely large. Other solutions like
using an instruction counter, or load/store instruction counter
will also waste significant hardware storage. In this example
amiss counter that ticks upon cache misses is used to measure
the time, i.e., the miss number. The miss counter has several
merits compared with other choices. First, the miss number is
more accurate to represent the time. This is because that a
large number of misses can indicate an early prefetch due to
frequent cache replacement, whereas a long absolute time
cannot if few misses appear in the future. For instance, in a
local stream, miss block A triggers prefetch for block B and
the history shows the time interval between A and B is 200
misses. In this scenario, the time interval (200) is too long,
thus prefetch B will be identified as an early prefetch. It does
make sense since the frequent replacement caused by 200
misses is likely to evict B from cache, which suggests that B
is prefetched early. The second benefit of using miss counter
is that the miss number between accesses is more stable than
the actual time due to the program logic. Additionally, the
miss counter does not need frequent updates and considerable
hardware expense.

This example examines the use of a time-aware stride
(TAS) prefetcher that incorporates stream timing technique
with the widely-used stride prefetcher. The Reference Predic-
tion Table (RPT) is widely used in stride prefetchers to keep
track of previous reference addresses and associated strides.
Inthe TAS prefetcher, the RPT table was enhanced so that the
time information of local streams could be stored. The tradi-
tional RPT entry includes four fields: PC, prev_addr, stride,
and state. For the TAS prefetcher, the RPT table was extended
with new fields prev_time, next_PC, and interval_state, as
discussed above with reference to FIG. 3. These new fields in
each entry are used to make local streams chained and time-
stamped. The stride prefetching works based on the identifi-
cation of constant strides. It was observed that once the stride
pattern is found, which means the prefetcher is trained, the
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time intervals between addresses with stride patterns tend to
be in the same range, i.e., either short, medium, long, or very
long. Thus, the time interval between the last two addresses in
a local stream can be used to represent the one between any
two consecutive addresses. FIG. 3 shows that the time interval
is derived by subtracting prev_time from current global_time,
and it is used to determine the interval_state. Compared to the
conventional stride prefetcher, the new entries in the table
build relations between different local streams by connecting
and timing them. Thus, this new TAS stride prefetcher has
higher confidence in finding timely and optimal prefetch can-
didates than existing stride prefetchers.

As mentioned previously, the time intervals between
misses can be classified into four categories: “short time”
ranges from 1 to 2 misses; “medium time” ranges from 3 to 9
misses; “long time” ranges from 10 to 19 misses and “very
long time” is over 19 misses. With the classification of the
time intervals, the TAS operated as follows. First, the
prefetcher finds the corresponding stream matching the PC of
current miss, which is exactly the same with the conventional
stride prefetcher. Second, the prefetcher checks the current
interval_state and takes a corresponding action. If the time
interval is short for current stream and it is the first time
accessing the stream during this prefetching round, the
prefetcher skips two blocks (prefetch distance) following the
current miss to avoid late prefetches and issues all prefetches
according to the prefetch degree. If the time interval is
medium, it is not necessary to apply prefetch distance by
skipping blocks because the longer interval between misses
can tolerate the fetch latency well. Instead, the prefetcher only
issues half as many prefetches in order to prevent potential
early prefetches. Different from medium time interval case,
for the long or very long time interval cases, one quarter of
prefetches or one prefetch, respectively, is/are issued for the
current stream. Third, when there are still prefetches left after
prefetching on the first stream, the prefetcher attempts going
width-first following the next PC pointer to find local
streams that are within 20 time period and ready to prefetch,
and then prefetches on these streams. The prefetching rules
for these streams are the same with the first one. If the
prefetcher has traversed all the streams during the time period
along the stream chain while prefetches are not completely
issued, the prefetcher will go back to the first stream and
repeat the operation until all of them are done. FIG. 4 shows
the algorithm of TAS operations.

A variant of the stride prefetcher called a multi-level stride
(MLS) prefetcher was used to assess the performance of the
stream timing mechanism. Similar to TAS, the MLS
prefetcher chains local streams according to their times being
accessed. However, the MLS prefetcher only issues one
prefetch for each stream and always attempts to traverse the
stream chain to find new streams. In other words, the conven-
tional stride prefetcher was considered a special case of the
TAS prefetcher that never goes the width direction in finding
prefetch candidates, while the MLS prefetcher is another
special case of TAS prefetcher that never goes the depth
direction in finding prefetch candidates.

Experiments were conducted with a trace-driven simulator
called CMPS$im that characterize the memory system perfor-
mance of single-threaded and multi-threaded workloads. The
first Data Prefetching Competition (DPC-1) committee
released a prefetcher kit that provides partial interface to
make it feasible to integrate with an add-on prefetching mod-
ule. The prefetcher kit contains a pin tool and a CMP$im
simulator to generate traces and conduct simulation. These
features were used to evaluate the stream time prefetching
technique and the TAS prefetcher performance. As shown in
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Table 1, the simulator was configured as an out-of-order
processor with a 15-stage, 4-wide pipeline (maximum of two
loads and maximum of one store can be issued every cycle)
and perfect branch prediction (i.e. no front-end or fetch haz-
ard). L1 cache was set as 32 KB and 8-way set associative. [.2
cache was 16-way set associative, and the capacity was varied
from 512 KB to 2 MB in the experiment. The cache follows
LRU replacement policy. The access latency is configured as
20 cycles for [.2 cache and 200 cycles for memory.

TABLE 1
Parameter Value
Window Size 128-entry
Issue Width 4
L1 Cache 32 KB, &-way
L2 Cache 512 KB/1 MB/2 MB, 16-way
Block Size 64 B
L2 Cache Latency 20 cycles
Memory Latency 200 cycles
L2 Cache 1 cycle/access
Bandwidth
Memory 10 cycles/access
Bandwidth

The simulation was conducted with 20 benchmarks from
SPEC-CPU2006 suite. Several benchmarks in the set were
omitted because of compatibility issue with the system. The
benchmarks were compiled using GCC 4.1.2 with -O3 opti-
mization. Traces for all benchmarks were collected by fast
forwarding 40 billion instructions then running 500 million
instructions. The reference input size was used for all bench-
marks.

The TAS prefetcher required an additional storage budget
compared to the existing stride prefetcher. The hardware cost
mainly comes from the enhanced parts of the reference pre-
diction table. For this example, the table size was set as 512
entries, and 32-bit addresses were used. The next_PC field
consisted of 9 bits (for referencing one of 512 entries) and the
prev_time required 16 bits. The total hardware storage cost
for the RPT of the stride prefetcher was:
(32+32+432+2)*512=50176 bits (6.1 KB). After enhanced
with three additional fields, the hardware storage required for
the TAS prefetcher was: (32+32+432+2+9+2+16)*512=64000
bits (7.8 KB). The additional hardware cost for the prefetcher
was 1.7 KB, which was only 27% more of the storage needed
by the original stride prefetcher.

Aside from the additional storage demand, the TAS
prefetcher involved extra operation time. This stems from
updating new fields during table updating stage and traversal
along the stream chain during prefetching stage. The major
operation time overhead in comparison with the stride
prefetching comes from additional “hops”™ it takes to move
between different local streams upon a prefetching event.
More details about the behavior analysis of the TAS
prefetcher are given below. The results showed that, in gen-
eral, the overall operation time of our prefetcher is within an
acceptable range.

The behavior of the TAS prefetcher was guided by the past
history time intervals between consecutive misses in the local
stream. FIG. 6 shows the time intervals distribution of all
selected benchmarks. As can be clearly observed from FIG. 6,
the time distance between two adjacent misses from the same
instruction is likely to be small. In particular, 31% of the
intervals are only one miss, which means that the correspond-
ing misses are required by certain instruction continuously.
Recalling the thresholds used to classify the time interval, the
figure shows approximately 60% of the time intervals might
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be labeled as short. However, when the prefetch degree is
high, the predicted future misses might occur a long time
apart from the present time, which potentially leads to early
prefetches. The assumption behind stream timing mechanism
is that when the data access addresses exhibit patterns, the
time of the occurrence of these accesses are highly predict-
able. For the TAS prefetcher, the data patterns were constant
strides between addresses. The time interval between
addresses was classified into four categories. Therefore, on
the basis of stream timing principle, the time intervals
between consecutive addresses in a local stream were
expected to be in the same category and available to be used
to predict the time of future accesses. FIG. 7 shows the accu-
racy of the time prediction (prediction of the occurrence of the
accesses) following this assumption can achieve an average
01'90%. The high accuracy of time prediction verifies that the
assumption holds well and ensures the feasibility of the pro-
posed mechanism.

The effect of stream timing in controlling untimely
prefetches and converting them into good ones was evaluated.
Only the usable prefetches including early, late and good ones
were considered, and the useless prefetches were ignored
since it was not possible to change them into good prefetches.
Three prefetchers, stride, MLS, and TAS, in which 100K
prefetches are collected and categorized, were compared.
FIGS. 8(a)-(¢) show the distribution of the good, late, and
early prefetches of the three prefetchers respectively. From
FIG. 8, it can be seen that the timeliness varies for different
applications and for some of them, both late and early
prefetches can occur. Particularly, late prefetches are more
likely to appear in stride and MLS prefetchers. That is
because 8 was chosen as the prefetching degree, which is
moderate and helpful to avoid early prefetches. When the
degree is high, such as 32 or 64, more early prefetches will
arise in both stride and MLS prefetchers. Note that MLS
prefetcher performs worse than others in most of applica-
tions. In the MLS prefetcher, only one prefetch was issued on
each local stream, which was easy to be late when the instruc-
tion requests it soon. Another feature of the MLS prefetcher is
that it always attempted to travel along the stream chain,
which increased the chances of early prefetches if the stream
is far away from the current one in time.

Comparing the three prefetchers in FIG. 8, it is clear that
the TAS prefetcher, benefiting from stream timing, had less
untimely prefetches than the other two schemes. Although the
TAS could not guarantee reduction of both late and early
prefetches simultaneously, it was able to enlarge the fraction
of' good prefetches for most of applications, as shown in FIG.
8(d). The only exception was zeusmp, in which stride
prefetching achieved more timely prefetches. Detailed analy-
sis shows that in zeusmp the time interval between misses in
local stream was very short while the time distance between
different streams was long. That was the major reason that
TAS had more early prefetches. Fortunately, this small por-
tion of additional untimely prefetches did not hurt the overall
performance.

FIG. 9 reports the percentage of .2 cache misses reduced
by the stride, MLS, and TAS prefetchers, respectively. On
average, the TAS prefetcher of this invention reduced [.2
cache misses by 56% approximately, which is the best of all
three prefetchers, compared to 43% of the stride prefetcher,
and 34% of the MLS prefetcher. Moreover, the TAS outper-
formed the others in 18 out of 20 applications and only under-
performed the stride prefetcher in the other two. Two bench-
marks, gobmk and tonto, are the only ones on which the TAS
loses effectiveness in reducing misses. Detailed analysis
revealed that, in gobmk and tonto, data accesses tended to hit
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a certain local stream instead of jumping across different
streams, which lead to wrong predictions in the TAS even
though it is able to reduce some late prefetches. The consid-
erable miss reduction in TAS mainly comes from the timeli-
ness improved by reducing untimely misses.

FIG. 10 shows the IPC (Instructions per Cycle) improve-
ments with respect to the base case (without prefetching) of
the stride, MLS, and TAS prefetchers. The simulation result
showed that the TAS prefetcher significantly reduced the
average data access latency and improved IPC considerably.
The IPC improvement of the TAS prefetcher reached the peak
as much as 133% in libquantum, and achieved an average
speedup of 33% among all benchmarks. Compared to the
other two schemes, the TAS outperformed in 16 out of 20
benchmarks and underperformed little (less than 3%) in
merely 4 of them. One case of negative performance is shown
for gobmk. Since all three prefetchers used the same constant
stride algorithm, neither the stride nor the MLS was able to
achieve positive performance on this benchmark. Fortu-
nately, the TAS did not hurt the performance much, and the
performance slowdown was only 3%. It was also observed
that most of the benchmarks on which the TAS gains little
performance or is outperformed by other prefetchers have a
low miss rate (under 17%), which means that the efficiency of
the stream timing technique is throttled by limited quantity of
misses. Two exceptions are the xalanchmk and milc bench-
marks. Although they have high miss rates, the TAS per-
formed slightly worse than the stride prefetcher with no more
than 2% performance difference, and this was considered
acceptable. Another observation is that the MLS prefetcher
had a lower average performance improvement than others.
As mentioned in previous sections, the MLS prefetcher suf-
fered the limitations of late prefetches, which caused the
overall performance drop.

Cache pollution is considered as a critical side effect of
data prefetching. FIG. 11 shows the cache size sensitivity of
each benchmark. FIG. 13 demonstrates the comparison of the
performance improvement of the TAS prefetcher for different
cache sizes. The increase of cache size lowered the effective-
ness of TAS prefetcher in 7 out of 20 benchmarks. These
benchmarks roughly matched the ones in FIG. 11 whose
performance was sensitive to cache sizes. This was because a
larger cache helped to improve the performance significantly
and left the TAS prefetcher little space for further improve-
ment.

FIG. 13 shows that the TAS prefetcher gained substantial
and stable performance improvement regardless of the cache
size in some insensitive benchmarks such as bwaves, mcf,
libquantum, and lbm. This result showed that the TAS
prefetcher was successful in controlling the cache pollution,
and therefore, the TAS was able to maintain high efficiency
even when the cache is small. Recall that the stream timing in
the TAS improved the prefetching timeliness by making most
of prefetches issued at the right time, which potentially
avoided cache pollution resulting from early cache line
replacements.

To get a better understanding of the prefetchers’ perfor-
mance, advanced prefetching characteristics were evaluated
from three aspects: prefetching coverage, prefetching accu-
racy, and prefetching behaviors. A prefetching degree of 8 and
a 512 KB L2 cache was used for each prefetcher. FIG. 12
shows the prefetching coverage for the stride, MLS, and TAS
prefetchers. Benefiting from the stream timing, the number of
timely prefetches of the TAS prefetcher largely increased;
hence, the coverage of the TAS is higher than others in every
benchmark. Moreover, the geometric mean of all 20 bench-
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marks’ coverage reached as much as 41% which can be
regarded as remarkably high for a prefetcher.

The prefetching accuracy of the stride, MLS, and TAS
prefetchers are shown in FIG. 14. The MLS prefetcher was
best likely because the “one prefetch per stream” policy
helped it effectively prevent data pattern change in the local
streams, and therefore issued much less useless prefetches
than the other two strategies. The geometric mean of accuracy
of the TAS prefetcher was 40%, which was 8% lower than
MLS prefetcher but 8% higher than the stride prefetcher. This
result showed that the stream timing technique plays a crucial
role in helping the prefetcher to maintain a relatively high
accuracy and coverage while improving the timeliness.

Further analysis was performed on how the stream timing
mechanism worked in the TAS prefetcher. As previously
mentioned, the local streams are chained according to their
time stamps so that the next stream can be successtully found.
The prediction accuracy of the next stream was useful for
finding proper prefetching candidates. The next stream pre-
diction was considered accurate when the corresponding PC
appeared within the next five PCs. Table 2 in FIG. 15 shows
the next PC prediction accuracy when the prefetching degree
was 8. The geometric mean of the accuracy of all 20 bench-
marks was 73%, which was very high and therefore was
helpful to achieve a high prefetching accuracy.

The stream timing mechanism seeks a better solution of
prefetching by either going depth or going width. For a cer-
tain prefetching event, the prefetcher likely issues prefetches
only on one local stream. In this case, the prefetching event
was considered as a single event. Otherwise the prefetcher
worked on multiple streams and fell in one of two other cases.
The first case was that the stream chain was so short that after
issuing prefetches on each stream, the number of prefetches
did not satisfy the prefetching degree yet. Since the prefetcher
should go back to the first stream and start prefetching again,
this prefetching event is referred to as a cyclic event. The last
case is that the stream chain was long enough for prefetching
and is referred to as a normal event. As previously discussed,
preset thresholds can classify the time interval between dif-
ferent misses: short, medium, long, and very long categories.
To understand how these thresholds can affect the behavior of
the prefetcher, two more configurations were added as shown
in Table 2. From the table it can be seen that the percentage of
the three prefetching events varies considerably among dif-
ferent benchmarks. For example, more than 99% of prefetch-
ing events were single ones in gcc (prefetcher acts similar to
the conventional stride pre-fetching), which indicates that the
time intervals between two adjacent misses in a stream were
very short. This result also explained why little performance
difference was shown between the stride and the TAS
prefetchers. However, in some benchmarks such as milc, mcf,
and lbm, the cyclic events became the dominant part. Another
observation was that the config 1 tended to make the
prefetcher go width (more cyclic events) while the config 3
tended to make the prefetcher go depth (more single events).
That was because the time interval classification was the
criteria of prefetching directions.

As previously discussed, the stream timing mechanism
does not only consume extra storage but also requires addi-
tional operation time, which mainly comes from the traversal
time of the stream chain. The average hops required per
prefetching event were calculated for various configurations
and degrees. In Table 2 it can be seen that the number of Hops
per Event (HpE) was related with configuration and prefetch-
ing degree. A high prefetching degree usually required more
HpE than lower ones since many issued prefetches cause
frequent movement between streams. There was also a
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notable difference of HpE between the three configurations.
Although the config 1 appears to be better than others since its
range of short, medium, and long time classification seemed
more reasonable, the HpE was much higher than other con-
figurations which in turn added more operation time. How-
ever, config 3 was also not good because its wide range
affected the performance even though the operation time was
low. Thus, in this study, config 2 was used and the geometric
mean of HpE of all 20 benchmarks was 2.07 when the
prefetching degree was 8. In this case, the extra operation
time required by using stream timing mechanism that was
caused by one more hop per prefetching event was very low.

In conclusion, the stream timing technique of this invention
can maintain the chronological order oflocalized streams and
the accesses within each stream. This timing information is
valuable to reduce untimely prefetches, potential cache pol-
Iution, and bandwidth consumption and to improve the effec-
tiveness of data pre-fetching. The conventional stride data
prefetcher can be extended with stream timing technique and
the TAS prefetcher. The simulation testing demonstrated that
the prefetching timeliness can be improved with the stream
timing scheme, and this benefit can be transferred to signifi-
cant performance improvement. The TAS prefetcher can
achieve high coverage and accuracy, and outperforms exist-
ing stride prefetchers. The detailed study of the TAS prefetch-
er’s characteristics verified that the hardware requirement for
the proposed stream timing technique is trivial.

Thus, the invention improves data prefetching by incorpo-
rating a time consideration. The invention illustratively dis-
closed herein suitably may be practiced in the absence of any
element, part, step, component, or ingredient which is not
specifically disclosed herein.

While in the foregoing detailed description this invention
has been described in relation to certain preferred embodi-
ments thereof, and many details have been set forth for pur-
poses of illustration, it will be apparent to those skilled in the
art that the invention is susceptible to additional embodiments
and that certain of the details described herein can be varied
considerably without departing from the basic principles of
the invention.

What is claimed is:

1. A method for prefetching data from memory for data
requests of a multicore data processor, comprising:

issuing a plurality of data prefetches to a memory device

within each of a plurality of concurrent prefetch streams;

altering timings of data prefetches within each prefetch

stream as a function of time between consecutive cache

misses within the prefetch stream, wherein the altering

comprises:

generating a first data prefetch within one of the data
streams when a predicted timing of a first data request
corresponding to the first data prefetch is less than a
preset threshold; and

generating a second data prefetch within another of the
data streams before the first data prefetch when a
predicted timing of the first data request is greater
than the preset threshold.

2. The method of claim 1, further comprising continually
altering timings of future data prefetches for each of the
prefetch streams as a function of each further cache miss in
the each of the prefetch streams, wherein updated timings are
determined between a most recent cache miss and a previous
miss.

3. The method of claim 1, wherein all of the plurality of
concurrent data streams are linked to avoid early prefetches
by delaying data prefetches within corresponding data
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streams for future data requests that have predicted timings
greater than the preset threshold.

4. The method of claim 1, wherein the altering further
comprises:

detecting an early data prefetch for the one of the data
streams;

delaying the early data prefetch for the one of the data
streams; and

prefetching data from at least another of the data streams
during the delay for the one of the data streams.

5. The method of claim 1, further comprising:

recording a time for each cache miss;

localizing miss address streams with an instruction
address;

linking each miss address of the miss address streams to a
corresponding recorded time for each cache miss; and

determining a time distance between consecutive cache
misses.

6. The method of claim 5, further comprising:

determining a plurality of time strides, each of the plurality
of time strides representing a different time value;

computing further prefetch addresses based upon the miss
addresses and the determined time strides.

7. The method of claim 1, wherein a prefetching module
issues the plurality the data prefetches to prefetch data to a
memory cache in combination with the processor.

8. The method of claim 1, wherein altering timings of data
prefetches within each prefetch stream comprises:

recording a cache miss in response to one of the data
prefetches in the one of the data streams; and

recording a second cache miss in response to a second of
the plurality of data prefetches in the one of the data
streams.

9. The method of claim 8, further comprising:

maintaining a reference prediction table of data prefetches;

issuing the plurality of data prefetches as a function of the
reference prediction table;

determining a time interval between the first cache miss
and the second cache miss; and

enhancing the reference prediction table with the deter-
mined time interval and an address distance of the first
and second cache misses.

10. The method of claim 9, further comprising:

classifying the time interval into one of a plurality of pre-
determined time interval classifications; and

altering a timing of a further request to prefetch data
according to the reference prediction table as a function
of the classification of the time interval between the first
cache miss and the second cache miss.

11. An article comprising a non-transitory machine read-
able medium storing executable instructions for implement-
ing the method of claim 1.

12. An apparatus for computing, comprising:

aclient device including a processor or processing core that
is capable of processing an application, and a memory
system,

a prefetch engine to observe a data request pattern of the
application processed by the client device and predicting
future data requests of the client device, the prefetch
engine executing the method of claim 1; and

a miss counter to measure a time interval of each cache
miss of the prefetch engine.

13. A method for prefetching data from memory for data

requests of a multicore data processor, comprising:

issuing a plurality of data prefetches within each of a plu-
rality of prefetch streams;
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predicting timings of future data requests within each of
the prefetch streams to prefetch data from a memory
device to a memory cache in combination with the pro-
cessor, wherein the predicting for each of the prefetch
streams is determined using time intervals between
cache misses within that each of the prefetch streams;
linking the data prefetches of the prefetch streams, wherein
upon determining that a predicted timing for a future
data request within a first stream of the prefetch streams
is greater than a predetermined threshold and is expected
to result in an early data prefetch:
delaying data prefetch for the first stream to avoid the
early data prefetch; and
prefetching data within a second stream of the prefetch
streams during the delay for the first stream; and
timely prefetching data within the first stream after
prefetching data within the second stream.

14. The method of claim 13, further comprising continu-
ally determining predicted timings of future data prefetches
for each of the prefetch streams upon each further cache miss
in the each of the prefetch streams, wherein predicted timings
are determined between a most recent cache miss and a pre-
vious miss.

15. The method of claim 13, further comprising:

recording a time for each cache miss;

localizing miss address streams with an instruction

address;

linking each miss address of the miss address streams to a

corresponding recorded time for each cache miss; and
determining a time distance between consecutive cache
misses.

16. The method of claim 13, wherein all of the plurality of
data streams are linked to avoid early prefetches by delaying
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data prefetches within corresponding data streams for data
requests that have predicted timings greater than the preset
threshold.
17. The method of claim 13, wherein a prefetching module
issues the plurality the data prefetches to prefetch data to a
memory cache in combination with the processor.
18. The method of claim 17, wherein the prefetching mod-
ule comprises a stride prefetcher including a reference pre-
diction table, and further comprising storing timing of cache
misses in the reference prediction table.
19. The method of claim 13, wherein predicting timings of
data prefetches comprises:
recording a cache miss in response to one of the data
prefetches in the one of the data streams; and

recording a second cache miss in response to a second of
the plurality of data prefetches in the one of the data
streams.

20. The method of claim 19, further comprising:

maintaining a reference prediction table of data prefetches;

issuing the plurality of data prefetches as a function of the
reference prediction table;

determining a time interval between the first cache miss

and the second cache miss;

classifying the time interval into one of a plurality of pre-

determined time interval classifications;

enhancing a reference prediction table with the determined

time interval and an address distance of the first and
second cache misses; and

delaying the data prefetch for the first stream according to

the reference prediction table as a function of the clas-
sification of the time interval between the first cache
miss and the second cache miss.
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