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1
ADAPTIVE CONTROL STRATEGY AND
METHOD FOR OPTIMIZING HYBRID
ELECTRIC VEHICLES

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention includes an adaptive control strategy
for a hybrid electric vehicle.

2. Discussion of the Related Art

There is a general desire to improve performance, increase
fuel economy or gas mileage, and/or reduce tailpipe emis-
sions from conventional internal combustion engine vehicles.
In response to these desires, hybrid electric vehicles have
been developed that incorporate an electric drive system typi-
cally in combination with a smaller internal combustion
engine and a generator. Known hybrid electric vehicles
include a control strategy design for a specific set of driving
conditions and do not optimize for varying driving conditions
and/or driving styles.

There is a need for a control strategy of a hybrid electric
vehicle that results in improved fuel economy and reduced
emissions over varying driving conditions.

SUMMARY OF THE INVENTION

A general object of the invention is to provide an adaptive
control strategy for a hybrid electric vehicle that uses an
artificial neural network to result in improved fuel economy
and/or reduced emissions over a variety of driving conditions.

A more specific objective of the invention is to overcome
one or more of the problems described above.

The general object of the invention can be attained, at least
in part, through a hybrid electric vehicle including an electric
motor, a battery and an internal combustion engine. The
vehicle also includes a power control module having an adap-
tive control unit for interfacing with sensors and actuators of
the electric motor, the battery and/or the internal combustion
engine. The adaptive control unit includes an artificial neural
network that is adapted to changing driving conditions, styles
and/or patterns.

Hybrid electric vehicles and plug-in hybrid electric
vehicles may include control strategies that are tuned to
achieve the best fuel economy for specific driving conditions,
for example, taxi cabs and buses tuned to yield highest fuel
economy during frequent stop and go driving. The adaptive
control strategy uses an artificial neural network to develop an
optimized control strategy for any type of drive cycle. The
adaptive control algorithm can be implemented on any signal
processing device, such as, a digital signal processor, a micro-
processor a field programmable gate array and the like.

Control strategies take a series of input signals and produce
the appropriate output signals. Desirably, the control strategy
produces output signals that result in the best fuel economy
and reduced emissions. Typical control strategies are funda-
mentally consistent in the manner that they alter the input
signals to produce the output signals, such as, having good
reliability, but not adapting to parameter changes in the vehi-
cle’s drive train. Parameter changes include wear and/or
aging of the drive train sensors and/or actuators. Vehicles are
not always utilized in the way that they were designed to be
used, such as, driving a city bus on a highway. A consistent
control strategy cannot accommodate the change in driving
conditions or patterns in order to maintain a optimal high fuel
economy, resulting a non-optimized use of power.

The training feature takes input and output signal data
collected over time and calculates the vehicle efficiency asso-
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ciated with that data. The training feature then modifies the
artificial neural network. Artificial neural network modifica-
tions over the life of the vehicle are made to achieve high
efficiency operation with higher frequency, for example. The
ability to alter the artificial neural network throughout the life
of the vehicle allows adjustment and/or tuning as the vehicle
ages. Also, the training set can detect driving habits, such as,
vehicles used by multiple drivers, and can adjust the artificial
neural network accordingly. For example, aggressive driving
requires hard acceleration while conservative driving does
not. A conventional “constant” control strategy cannot pro-
duce optimal power use for different drivers. The data pre-
processing subcomponent discriminates between the input/
output signals generated from aggressive driving and
conservative driving, allowing changes quickly from one
driving style to another resulting in optimal fuel economy, for
example.

Fuzzy logic relies heavily on human input for the controller
to “learn” the methods to control a vehicle. In contrast, the
adaptive control strategy uses vehicle data collected over time
to achieve optimal vehicle operation with little and/or no
human input.

The invention further includes a method of operating a
hybrid electric vehicle including the steps of providing a
hybrid electric vehicle with an adaptive control unit having an
artificial neural network. The method includes the steps of
receiving input signals from sensors of the hybrid electric
vehicle and calculating output signals in the adaptive control
unit based on maximizing fuel economy, minimizing emis-
sions, meeting peak power demands and/or providing accept-
able transient response during changing driving conditions.
The method includes sending output signals to an internal
combustion engine or an electric motor of the hybrid electric
vehicle.

According to another embodiment, the invention includes
a control scheme for a hybrid electric vehicle with an electric
motor and an internal combustion engine. The control scheme
includes an adaptive control strategy executing in an artificial
neural network to receive input signals, optimize the hybrid
electric vehicle and produce output signals to the electric
motor and/or the internal combustion engine.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other objects and features of this invention will
be better understood from the following detailed description
taken in conjunction with the drawings, wherein:

FIG. 1a shows a biological neuron;

FIG. 156 shows a mathematical model of an artificial neu-
ron, according to an embodiment of this invention;

FIG. 2 shows a gate and truth table, according to an
embodiment of this invention;

FIG. 3 shows an artificial neural network, according to an
embodiment of this invention;

FIG. 4a shows a graphical representation of the control
strategy, according to an embodiment of this invention;

FIG. 45 shows a graphical representation of the control
strategy, according to an embodiment of this invention;

FIG. 5 shows a plot of operating points for the internal
combustion engine, according to an embodiment of this
invention;

FIG. 6 shows a plot of operating points based on fuel
consumption, according to an embodiment of this invention;

FIG. 7 shows a schematic of a hybrid electric vehicle,
according to an embodiment of this invention;

FIG. 8 shows a block diagram of a hybrid electric vehicle,
according to an embodiment of this invention;



US 7,954,579 B2

3

FIG. 9 shows a plot of simulation results, according to an
embodiment of this invention;

FIG. 10 shows a diagram of steps to implement the artificial
neural network, according to an embodiment of this inven-
tion;

FIG. 11 shows a plot of driving patterns, according to an
embodiment of this invention;

FIG. 12 shows a plot of the state of charge, according to an
embodiment of this invention;

FIG. 13 shows a schematic of the pre-processing algo-
rithm, according to an embodiment of this invention;

FIG. 14 shows a diagram of parameters for the control
scheme, according to an embodiment of this invention;

FIG. 15 shows a plot of the sum squared error, according to
an embodiment of this invention;

FIG. 16 shows a table of hybrid electric vehicle parameters,
according to an embodiment of this invention;

FIG. 17 shows table of hybrid electric vehicle parameters,
according to an embodiment of this invention;

FIG. 18 shows a table of simulation results, according to an
embodiment of this invention;

FIG. 19 shoes a table of raw data, according to an embodi-
ment of this invention;

FIG. 20 shows a table of simulation results, according to an
embodiment of this invention; and

FIG. 21 shows a plot of the driving pattern, according to an
embodiment of this invention.

DETAILED DESCRIPTION

In a hybrid electric vehicle 10 (“HEV”) the power pro-
duced by the internal combustion engine (“ICE”) 12 is aug-
mented with power produced by the electric motor (“EM™) 14
to maximize the fuel economy of the vehicle 10. A battery 16
provides storage of electrical potential and/or power. The fuel
economy improvement is typically achieved by utilizing a
smaller internal combustion engine 12, such as, sized for
average rather than peak load, operating the engine 12 in its
most efficient region, capturing braking energy with the elec-
tric motor 14, such as, with regenerative breaking and switch-
ing the ICE 12 off when its performance is inefficient while
using the EM 14 to propel and/or advance the vehicle 10.

HEV’s 10 include broadly any suitable vehicle, such as,
passenger cars, trucks, sport utility vehicles, buses, heavy-
duty transit buses, semi-trucks, maintenance vehicles, rail
engines and/or any other vehicle for transporting persons
and/or goods. HEV’s 10 can be used in any application, such
as, but not limited to, personal, passenger, family, public
transportation, mass transit, business, commercial, fleet
industrial, agricultural, military, rural, urban, suburban, wil-
derness, oft-road, paved and/or any other suitable location
and/or setting.

Any suitable HEV 10 configuration or arrangement is pos-
sible, such as, for example, parallel hybrids, series hybrids
and/or parallel/series hybrids. HEV’s can be used on any
surface or medium, such as, on land, on sea, in air, underwater
and/or any other suitable usage. According to a preferred
embodiment of this invention, the HEV 10 is a land vehicle,
such as, a car, a bus, a truck, a sport utility vehicle and/or any
other suitable transportation device or mechanism.

Desirably, but not necessarily, HEV’s 10 may include a
plug 18 and the associated circuitry, such as, to connect to an
alternating current (“AC”) power source and/or supply for
plug-in hybrid (“PHEV”") functionality or capability.

Those skilled in the art and guided by the teachings herein
appreciate that the adaptive control strategy may be applied to
other uses, such as, optimizing between two or more power
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sources, including electricity generation from wind turbines,
solar energy, hydroelectric generators, tidal power genera-
tors, gas turbines, coal power plants, nuclear power plants
and/or any other suitable supply. The adaptive control strat-
egy can be used to find the most efficient method of sharing
the electric loads.

The battery 16 may include any suitable device and/or
apparatus for storing, containing, collecting and or distribut-
ing electrical power and/or potential, such as, for example,
capacitors, ultra-capacitors, lead acid cells, lithium metal ion
cells, metal hydride packs and/or any other design buffering
and/or storing electrical energy and/or electrons. Suitable
batteries 16 may use electrical, chemical and/or electro-
chemical mechanisms for storage, for example.

ICE’s 12 include broadly piston engines, positive displace-
ment engines, inline engines, V-shaped engines, radial
engines, rotary engines, combustion turbines, fuel cells and/
or any other suitable motive device. Suitable fuels for ICE’s
12 include, without limitation, hydrogen, natural gas, steam,
gasoline, diesel, fuel oil, wood, coal, and/or any other suitable
energy containing substance.

Those skilled in the art and guided by the teachings herein
readily appreciate that references to EM 14, electric genera-
tor, electric machine and the like, refer to suitable devices for
converting between at least one of electrical energy and/or
mechanical energy. Desirably, the EM 14 receives electrical
power to provide mechanical power and receives mechanical
power to provide electrical power. Typically, but not neces-
sarily, the EM 14 includes a motor electronic control unit
(“ECU”) controlling at least a portion of the electrical man-
agement functionality. The EM 14 may include more than one
phase, such as, three phases.

One of the components in an HEV 10 is a device which
controls how the power demand of the vehicle is met. In a
typical hybrid with a parallel setup, the power required to
propel the vehicle can be met by the EM 14, the ICE 12, or the
combination of the two power sources. In a typical hybrid
with a series setup, the power required to propel the vehicle is
supplied by the EM 14 while the ICE 12 is used to recharge
the battery 16. The vehicle power control unit (“PCU”) 38
uses a control strategy (“CS”) to govern the power production
of'the vehicle’s subsystems including the EM 14 and the ICE
12.

The goal of the control strategy is to maximize the fuel
economy and minimize emissions of the vehicle 10, but also
consistently meet peak power demands and have acceptable
transient response, such as, acceleration. Desirably, but not
necessarily, the control strategy ensures smooth driveability.
The consistency is ensured by a stable state of charge (“SoC”)
in the battery 16. Desirably, charge neutrality of the battery 16
is maintained over a longer driving profile with a suitable CS,
for example.

According to certain embodiments of this invention, a
number of methodologies have been developed as HEV CS’s.
For example, a CS utilizes the battery SoC as a Boolean
switch to move back and forth between two operating states.
In each of the two operating states, a set of rules ensure a fuel
economy improvement and a charge stability is applied to the
vehicle. Alternately fuzzy logic is applied to designing an
HEV CS. Fuzzy logic offers strengths over a two state solu-
tion, since it allows for a continuum of states to be considered.

According to one embodiment of this invention, one fuzzy
logic approach improves the efficiency of the ICE 12 by
shifting ICE 12 operating points to a higher efficient region.
The fuzzy logic control also may consider the SoC of the
battery 16, so as to ensure a charge sustaining operation, for
example, resulting in a CS with improved performance when
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the average power demand of the driving pattern is close to the
peak efficiency of the ICE 12. Alternately, another approach
tries to minimize the amount of fuel the ICE 12 uses in any
time iteration while considering the SoC of the battery 16.
These above mentioned CS’s may not provide optimal opera-
tion of all driving conditions, such as, for example, an HEV
10 with a CS for urban stop and go traffic may not operate as
efficiently when used for longer highway driving.

CS’s can be developed using condition based control for
various driving conditions, for example, during acceleration
it is desired for the EM 14 to provide the power to avoid fast
transients of the ICE 12 that inefficiently consume fuel.
Therefore, this notion is coded into a Digital Signal Processor
(“DSP”) and/or any other suitable device 40 in the following
manner: “IF the acceleration pedal is depressed x degrees,
such as, at least about 5 degrees, ANDIF the battery SoC is of
adequate charge, THEN the electric motor should supplement
the ICE.” This is true even for the fuzzy approaches, since
here the same IF-THEN statement methodology is used.

According to an embodiment of this invention, the CS may
be separated into two groups: causal and non-causal. The
causal approaches are usually rule based. The rules are
designed based on experience, expertise and/or trial and error.
Not all the driving conditions which the vehicles will expe-
rience are known, so rules have to be based on approxima-
tions of what the vehicle is likely to encounter, for example.
The rules can be implemented using a deterministic approach
and/or a fuzzy approach.

A non-causal CS may optimize the operation of the power
sources over a predefined driving cycle, such as, where the
optimal reference torques for power converters and optimal
gear ratios are calculated by minimization of a cost function,
generally representing the fuel consumption or emissions. If
this optimization is performed over a fixed driving cycle, a
global optimum solution can be found, for example.

According to an embodiment of this invention, the non-
causal approach is not used directly for real-time energy
management. Simulated annealing, genetic algorithms, linear
programming, game theory, optimal control theory and/or
any other suitable technique are utilized to solve the CS
problem, usually while constraining the change in the battery
state of charge, for example.

Mathematical intelligence, such as, genetic algorithms
(“GA”), particle swarm optimization (“PSO”), ant colony
optimization (“ACO”) and fuzzy logic methods are possible
bases for CS algorithms. According to certain embodiments
of this invention, due to the highly nonlinear and/or time
varying nature of the vehicle application, as well as the com-
plexity of the objective function, the HEV CS is a suitable
application for mathematical intelligence approaches.

According to certain embodiments of this invention, the CS
includes application of an artificial neural network (“ANN”)
20 to the CS problem. The ANN 20 approach is very useful for
applications, where pattern recognition is not possible with-
out a human operator, for example. The driving conditions of
the HEV 10 may vary a great amount, so it is difficult to
optimize for every scenario through condition based control.
ANN 20 is used to learn the desired control strategy charac-
teristics from various existing control strategies to provide an
optimized and/or better performing control strategy with the
ANN 20 learning from the “experience” rendered by different
control strategies.

According to an embodiment of this invention, ANN’s 20
are used to find a high performance CS for an HEV 10 given
a training set 26. The relationship between the inputs and
outputs of any training set 26 can be found through math-
ematical derivations originating from fundamental physics
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equations that describe its components, for example. Opti-
mized data points from different control strategies can be
used to attain an adequate training set 26. When dealing with
complex input/output relations, it is possible to reduce rela-
tion complexity by making approximations, such as, includ-
ing engineering experience. Therefore, exact input/output
relationships are usually not attained. On the other hand, the
ANN 20 of this invention has the ability to learn exact input/
output relationships without knowledge of any physics of the
relationship. According to an embodiment of this invention,
the optimized data points from a number of different CS’s, are
used to train a ANN CS to achieve improved fuel economy
and reduced emissions.

Desirably, artificial neurons mimic the behavior of biologi-
cal neurons 42. The composition of a biological neuron 42
typically includes a cell body 44, dendrites 46, a synapse 48,
and an axon 50, as shown in FIG. 1a. Dendrites 46 are ten-
tacle-like receptacles that receive signals from other neurons
across synapses 48 and/or junctions. Extending from each
neuron cell body 44, the axon 50 or single output fiber trans-
mits and/or sends signals to the dendrites 46 of one or more
other neurons 42. In the human brain billions of neurons 42
work in conjunction to allow for the distinction of countless
sensations.

FIG. 15 shows the mathematical model of an artificial
neuron 52. The input weighting (w,, w,, . . . w,)) 54 replicates
the function of the dendrites 46. The cell body 44 is formed by
a summing junction 56 followed by a predefined function £58
which acts on the summing junction 56 output n to form the
neuron output a 60.

Any suitable number of artificial neurons 52 can be linked
in series and/or parallel to form an ANN 20. These ANN’s 20
may provide the function of biological networks, such as, ata
much smaller scale. According to an embodiment of this
invention, the main function ofthe ANN 20 is to differentiate
between various inputs classes.

A simple example of subclass distinctions lies in the ANN
20 implementation of an AND logic gate 62. In that case, the
ANN 20 must implement the AND gate 62 truth table as
shown in FIG. 2, for example. The variables x and y are the
input set while the output z is the target. Together x, y, and z
are called the training set 26. An iterative process is employed
which uses the training set 26 to assign appropriate weights
and biases to the ANN 20 in order to achieve the appropriate
target given one of the subclass inputs.

According to an embodiment of this invention, there are
various learning algorithms that can appropriately assign
weights and biases to an ANN 20. While training the ANN 20,
a measure of accuracy is provided by the sum squared error
(“SSE”) as described in the following equation.

0 s
(g) - a(@),
-1

SSE = Z

g=1i=1

where, Q = number of subclasses and .S = number of neurons

Training algorithms include, without limitation, Leven-
berg-Marquardt, [evenberg-Marquardt optimization, back-
propagation, Gradient descent backpropagation, Gradient
descent with momentum backpropagation, Gradient descent
with adaptive learning rate backpropagation, Gradient
descent with momentum & adaptive learning rate backpropa-
gation and/or any other suitable method of teaching the rela-
tionships of input and/or outputs. These different techniques
are characterized by their rate of convergence and stability.
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Learning Algorithms include, without limitation, Gradient
descent with momentum weight/bias learning function, Gra-
dient descent weight/bias learning function and/or any other
suitable method of improving the ANN.

Size and architecture of an ANN 20 directly affects the
ability of the ANN 20 to minimize the SSE to a reasonable
quantity after a finite number of iterations or epochs 36, for
example. When many input classes are to be distinguished
with an ANN 20, a multilayer array of neurons 64 is needed.
Any suitable number of layers for the ANN 20 is possible.
According to an embodiment of this invention, a three-layer
ANN 64 is used, as shown in FIG. 3. At the left hand side, the
input layer 66 accepts the input classes 68 and prorogates its
output 70 to the hidden layer 72. A larger number of hidden
layer neurons 72 will allow for more subclass distinction
capabilities; however, having too many neurons in the hidden
layer 72 can result in undesired effects and/or inefficiencies.
After the hidden layer 72, the output layer 74 further manipu-
lates the signals from the hidden layer 72 to produce the
output 76 which completes the function of the ANN 20.

According to an embodiment of this invention, to be able to
provide the best training set for the ANN, numerous CS’s
which are optimized to give maximum fuel economy for the
widest range of driving conditions need to be considered.

As discussed above, one control method fluctuates
between two operating states depending on the battery 16
SoC. This CS may also be referred to as a “two-mode” HEV
control. This ensures operation of the vehicle will be charge
sustaining over a long period of time and SoC will converge
to the threshold value when alternating states. If the battery 16
SoC is above the threshold value, the engine 12 will be
switched off and the electric motor 14 will provide the
required power. If the battery 16 SoC falls below the thresh-
old, the engine 12 is kept on and an additional torque load is
put on the engine 12 to recharge the battery 16 to the ICE 12
from operating at inefficient low torque ranges. The operation
of'the CS is shown diagrammatically in FIGS. 4a and 4b, for
example.

Due to the highly nonlinear and/or time varying nature of
the power plant, fuzzy logic is used extensively as the back-
bone of many CS’s, for example. According to an embodi-
ment of this invention, one CS defines the torque that the ICE
12 provides at any one speed based on the torque that gives the
maximum efficiency of the ICE 12. This CS may also be
referred to as a “maximize ICE efficiency” HEV control. The
speed of the ICE 12 is fixed since the vehicle speed is a
constant at any one time and the transmission is in a defined
gear set by the vehicle speed. The remainder of the torque is
either provided or absorbed by the batteries 16 with the EM
14. Since the most efficient operation of the motor 14 is at
high torque operation, the ICE 12 will be working “hard”
most of the time. The torque demand on the ICE 12 is deter-
mined by the vehicle power demand and the SoC of the
vehicle. After defuzification, a discrete value is given as the
torque demand.

The CS of this embodiment of the invention is good for
vehicles 10 with engines 12 whose maximum output power is
close to the average of the driving cycle, for example. There-
fore, this CS will give good performance for driving patterns
where the average power demand is high, such as highway
driving. A plot of typical operating points of the ICE 12 is
shown in FIG. 5, for example. The peak efficiency line shown
in the figure depicts the most efficient operating torque over
all engine speeds. Desirably, all and/or most of the operating
points will fall on the peak efficiency line. The driving pattern
with the most points on the peak efficiency line is an optimal
CS for that driving pattern, for example.
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According to another embodiment of this invention,
another fuzzy logic approach tries to minimize the amount of
fuel that is consumed in any one time step. Alternately, maxi-
mum fuel consumption per second can also be defined. This
CS may also be referred to as a “minimize fuel consumption”
HEYV control. This is shown in FIG. 6 to be 1 gram/second, for
example. This strategy is straight forward because if the
amount of fuel consumed per second is minimized, the fuel
economy will be maximized. Again, the fuzzy logic approach
also considers the SoC as one of the membership functions,
which ensures the charge sustainability property of the CS.
Since this CS looks at the current fuel consumption, large
SoC swings may occur because the CS will use more of the
motor power to minimize the fuel consumption until the
battery state of charge falls.

For all three cases studied above, the CS’s may not be
optimal for all and/or varying driving conditions. According
to an embodiment of this invention, an ANN combines the
optimized operation points of numerous control strategies
into one control strategy to provide an optimum over the
entire operating range of the HEV. Driving profiles may
include city driving, highway driving, combinations thereof
and/or any other suitable scenario. Driving styles may include
aggressive, passive, speeder and/or slowpoke, for example.

In order to evaluate the feasibility and benefit of the CS of
this invention, a vehicle 10 on which the simulations were
performed was characterized. The layout or schematic of the
vehicle 10 is shown in FIG. 7, for example. This is a typical
parallel HEV 10 where the ICE 12 and the EM 14 torques are
coupled by a torque coupling device 78. This device 78 has
the ability to sum the torques of the two power sources and
output the torque onto the gear box 80. The speeds of the two
machines are determined by the vehicle speed and the gear
ratio of the transmission. This means that the speed of the
engine 12 and the motor 14 is defined by the speed of the
vehicle 10 and the gear that the gearbox 80 is in.

The PCU 38 sends signals to the EM 14 as to how much
power it needs to provide and also it signals the engine control
unit 38 about the state of the ICE 12 as well as the amount of
torque that is expected from the ICE 12. The other parameters
of'the HEV 10 are given in FIGS. 16 and 17, respectively as
Tables I and II. The choice of the vehicle components may be
similar to a stock hybrid Toyota Prius, for example. A hybrid
Toyota Prius typically includes a planetary gear set to allow
the engine and the motor to spin at any speed and provide the
CS another degree of freedom.

HEV’s consist of many complex subsystems that work
together to propel the vehicle. According to an embodiment
of this invention, to be able to investigate the suitability of a
CS there needs to be a way to simulate the operation of each
of'these subsystems, such as, for example, using the advanced
vehicle simulator (“ADVISOR™”) software. This software
uses the mathematical software and a simulation environment
to emulate vehicle subsystems based on a combination of a
subsystem model and empirical data gathered from compo-
nent testing. Each of the vehicle’s subsystem is simulated
using a separate block 84, with a set of inputs and outputs.
These blocks are then put together to build a vehicle 82, as
shown in FIG. 8, for example.

The vehicle 82 may then be simulated over a driving regi-
men which defines the speed versus the time trace that the
vehicle needs to follow. Some sample simulation results are
shown in FIG. 9, for example. A forward calculation path is
used to determine how much energy each subsystem 84 needs
to provide to be able to meet the required power demand.
Then the system limits are imposed through a backward loop.
These two loops are executed at every time step as the simu-
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lation progresses through the driving pattern. The block dia-
gram of the subsystems and their interconnections in a paral-
lel hybrid according to an embodiment of this invention is
shown in FIG. 8. According to an embodiment of this inven-
tion, the control block is replaced by an ANN 20 which uses
the same inputs and optimized outputs based on a combina-
tion of other CS’s.

According to an embodiment of this invention, an HEV 10
including an EM 14, a battery 16, an ICE 12 and a power
control module 38 having an adaptive control unit (“ACU”)
40 for interfacing with sensors 86 and actuators 88 of the EM
14, the battery 16 and/or the ICE 12. The adaptive control unit
38 includes an ANN 20 adapted to changing driving condi-
tions or patterns.

The power control module 38 includes wiring, electrical
components, processors, microchips, circuits, processors,
computers, logic devices, comparators and/or any other suit-
able apparatus for executing and/or calculating at least a
portion of the HEV control strategy or scheme, such as, in a
digital and/or an analog mode.

Desirably, the ACU 40 includes capabilities and/or func-
tionality to change and/or adapt, such as, to changing driving
conditions and/or patterns. In other words the ACU 40
includes the capabilities to execute a different algorithm or
process depending upon inputs. The CS in the ACU 40 may
periodically update and/or learn, such as, at any desired inter-
val, for example, once a quarter, once a month, once a week,
once a day, once an hour, once a minute, once a second and/or
any other suitable frequency. According to other embodi-
ments of this invention, the ACU 40 includes a static process-
ing mode that is not updated.

According to an embodiment of this invention the ACU 40
includes a DSP, a micro-processor, a field programmable gate
array and/or any other suitable device or apparatus.

According to an embodiment of this invention, the ACU 40
unit seeks and/or optimizes to maximize fuel economy, mini-
mize emissions, meet peak power demands and/or provide
acceptable transient response during changing driving condi-
tions. Changing driving conditions include urban profiles,
highway profiles and/or any other suitable traveling scenario
and/or experience.

Sensors 86 broadly may include a speedometer, a tachom-
eter, a fuel flow meter, a strain gauge, an emissions monitor
and/or any other suitable instrument or device associated with
a least a portion of the HEV 10 to monitor, measure, read
and/or generate a signal corresponding or related to a param-
eter, a variable and/or any other suitable characteristic of the
HEV 10 and/or the driving conditions of the HEV 10.

Actuators 88 or drivers may broadly include an EM control
unit, an ICE control unit, a brake system, a linkage and/or any
other suitable device to receive a signal from the ACU, such
as, for example, to increase the output of the EM.

According to an embodiment of this invention, the HEV
includes a torque coupler 78, such as, for example a planetary
gear, a transfer case, a through-differential and/or any other
suitable device for summing and/or distributing forces.

The ANN 20 may include any suitable number oflayers 66,
72,74 and any suitable number of neurons 52. Generally too
few layers 66, 72, 74 or neurons 52 will lack the desired
capabilities and too many may result in an unstable CS, for
example. According to an embodiment of this invention, the
ANN 20 includes an input layer 66 having about 5 to about 50
neurons 52 and more specifically about 20 neurons 52, a
hidden layer 72 having about 5 to about 50 neurons 52 and
more specifically about 20 neurons 52 and an output layer 74
having about 1 to about 10 neurons 52 and more specifically
about 1 neuron 52.

20

25

30

35

40

45

50

55

60

65

10

Desirably, the ANN 20 improves fuel economy by at least
between about 1 percent and about 7 percent above a constant
causal based control scheme and move specifically by at least
about 6 percent.

The CS of this invention may include a training set 26
having any suitable number of points based on and/or a func-
tion of various or different driving scenarios and/or condi-
tions along with any suitable number and/or combination of
CS’s and/or algorithms. According to one embodiment of this
invention, the training set 26 is based on changing driving
conditions or profiles for training the ANN 20. According to
another embodiment of this invention, the training set 26
includes input and output values based on highest fuel econo-
mies for various driving conditions and control schemes.

According to an embodiment of this invention, the training
set 26 is acquired as follows. One specific vehicle is chosen
and programmed to operate under different control strategies.
For each control strategy, the vehicle is operated over city,
highway and other city-highway combined drive cycles. For
each of' these drive cycles, the particular control strategy that
resulted in the highest fuel economy is chosen and its oper-
ating points are taken as part of the training set 26. Operating
points can be taken at any desired interval throughout the
drive cycle, such as, every one second to monitor the state of
charge ofthe battery, the speed of the vehicle, the commanded
torque of the driver and/or the torque produced by the engine,
for example.

Desirably, but not necessarily, a pre-processing algorithm
operates on the training set 26, such as, to reduce repetitive
row vectors.

This invention also comprehends a method of operating an
HEV 10. According to one embodiment, the method includes
providing a hybrid electric vehicle 10 having an ACU 40,
wherein the ACU 40 includes an ANN 20. The method
includes receiving and/or getting input signals and/or com-
munications from sensors 86 and/or instruments of the HEV
10. The method includes calculating and/or obtaining output
signals in the ACU 40 based on or including maximizing fuel
economy, minimizing emissions, meeting peak power
demands and/or providing acceptable transient response dur-
ing changing driving conditions. The method includes send-
ing and/or transmitting output signals or instructions to an
ICE 12 or an EM 14 of the HEV 10, for example.

Desirably, but not necessarily, the method includes the
ANN 20 seeking to maximize fuel economy, minimize emis-
sions, meet peak power demands and/or provide acceptable
transient response during changing driving conditions or pro-
files including urban use, highway use and/or combinations
thereof.

According to another embodiment the method includes
training the ANN 20 with a training set 26 having various
driving conditions or profiles for a sufficient number of
epochs 36 and/or intervals. Any suitable training algorithm 32
and/or learning algorithm 34 is possible, such as, a Leven-
berg-Marquardt training algorithm and a gradient descent
learning algorithm with momentum weight/bias.

According to an embodiment of this invention, the method
includes periodically updating the step of calculating based
ontime, age, wear of drivertrain components and/or any other
suitable factor or variable.

This invention further comprehends a control scheme for
an HEV 10 including an EM 14 and an ICE 12, the control
scheme wherein the control scheme includes an adaptive
control strategy executing in an ANN 20 to receive input
signals, optimize the HEV 10 and produce output signals to at
least one of the EM 14, the transmission 78, 80 and/or the ICE
12.
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EXAMPLE

According to an embodiment of this invention, several
steps were taken to implement an HEV 10 CS with an ANN
20. Those steps range from defining an adequate training set
26 to determining the ANN 20 size and architecture. FIG. 10
shows the major design aspects carried out for an embodi-
ment of this invention. The first step was to attain and pre-
process a raw data set 22 so as to attain a training set 26 for the
ANN 20. The number of layers 66, 72, 74 and the number of
neurons 52 was specified in the network size 28 along with the
training algorithm 32 and the learning algorithm 34. Once
those parameters were specified the ANN 20 was trained with
network training 30 and integrated into ADVISOR™, as dis-
cussed above.

The goal was to extract the optimized operating points for
a given control. The approach taken was to simulate the
operation of a single vehicle, as defined in FIGS. 16 and 17 as
Tables I and I1, over a number of driving cycles, using various
CS’s. The driving patterns considered represent those used by
the Environmental Protection Agency (“EPA”) and as shown
in FIG. 11, for example. Driving patterns also included some
very urban driving patterns, namely New York City Cycle
(“NYCC”)and a MANHATTAN driving pattern. As shown in
FIG. 18 as Table III, the efficiency mode control strategy
shows the best results for city-like driving which was opti-
mized for city driving. On highway profiles, parallel assist
control is superior, so the parallel assist data points on the
HWFET driving cycle will be included in the training set 26.
The optimal control method depends on factors, such as, for
example, the driving pattern.

According to an embodiment of this invention, one con-
straint that was placed on the simulations was that the differ-
ence between the initial and final SoC cannot be more than
2% for the data to be included in the training set. This ensures
that no “free” energy was boosting the fuel economy numbers
and that the data points that were considered will not cause
system instability, by allowing the battery to be over dis-
charged or overcharged. Typical SoC pattern over a driving
cycle for data that was included in the training set is shown in
FIG. 12, for example.

FIG. 18 with Table III summarizes the fuel economies
attained for various drive cycles attained using three CS’s.
The task at hand was to develop an ANN to serve as a CS that
would achieve the highest fuel economy over all the drive
cycles tested based on the “correct” training. The approach
taken was to extract the input\output set from the highest fuel
economy achieved for each of the four drive cycles. The
UDDS, NYCC, and MANHATTAN had the highest effi-
ciency when managed by the efficiency mode CS.

The driving patterns considered represent those used by the
Environmental Protection Agency (“EPA”), including the
Urban Dynamometer Driving Schedule (“UDDS”), the High-
way Fuel Economy Test (“HWFET”), the New York City
Cycle (“NYCC”) and MANHATTAN driving pattern. Other
driving patterns, simulations, scenarios and/or cycles are pos-
sible.

For the HWFET drive cycle, the parallel assist CS achieved
the highest fuel economy. Those skilled in the art and guided
by the teachings herein will recognize that the above method
of'selecting an optimized data set is applicable to any number
of different CS’s.

According to an embodiment of this invention and as
shown in FIG. 10, the simulated input/output sets from the
highest fuel economy CS’s were extracted as the raw data 22
used to create a training set 26 for the ANN CS. An excerpt
from the raw data list is shown in FIG. 19 as Table IV. The raw
data consisted of over four thousand four column row vectors.
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As shown in FIG. 10 and an effort to refine and reduce the size
of the raw data 22, a data pre-processing algorithm 24 was
employed.

As shown in FIG. 13, the pre-processing algorithm reduced
the training set by roughly 25% by eliminating any repetitive
row vectors from the raw data set. This greatly reduced the
time required to train the final ANN used as the HEV CS.

As shown in FIG. 10, after finalizing the training set 26 for
the ANN 20, several parameters had to be chosen ranging
from the network size 28 and/or architecture to the training
algorithm 32 to be used. Several multilayer networks were
tested and their performance was tested with plots of the SSE,
as defined by the above equation vs. epoch. The final multi-
layer ANN 20 used was composed of twenty neurons 52 atthe
input layer 66, another twenty neurons 52 in the hidden layer
72 and a single neuron 52 at the output layer 74. The functions
utilized were tansig, tansig, and pureline for the input 66,
hidden 72 and output layers 74 respectively. This was done
since the tansig-pureline combination theoretically has the
ability to approximate any linear and/or non-linear input/
output relation. Use of other functions or mathematical rela-
tionships and/or combinations of functions is possible.

The number of epochs or max epochs 36 during network
training 30 was limited by the change in SSE vs. epoch. In
other words, once the error seemed to level towards a mini-
mum, the training was halted resulting in suitable weights and
biases. The training algorithm 32 and the learning algorithm
34 used were the Levenberg-Marquardt and the Gradient
descent with momentum weight/bias, respectively. FIG. 14
summarizes the ANN parameters used for the CS. The SSE
observed for the weights and biases from training is plotted
vs. epoch number in FIG. 15.

With the trained ANN evaluations were made if the ANN
20 will give superior performance on a driving schedule
which combines the four driving patterns on which it was
trained, as shown in FIG. 21, for example. As shown in FIG.
20 as Table V, the ANN CS does include superior perfor-
mance. The fuel economy is increased by 6.25% over the next
best performing model of the fuel mode control. Also, there is
3.66% more energy in the battery ifthe ANN CS is used rather
than the fuel mode control. The ANN 20 provides good results
in any discrete driving cycle and the highest in the combined
driving cycle which represents a more typical range of driving
of the HEV.

According to an embodiment of this invention, other driv-
ing schedules or simulations are possible. The training data
26 can include any suitable range to allow the ANN 20 to
behave optimally under all driving conditions so a more com-
prehensive data set is possible.

A reason less optimal performance of the ANN 20 may
occur when presented with new data may be the lack of the
ability of this particular network to generalize, such as, due to
overtraining. As can be seen from FIG. 15 the error levels off
at 150 epochs, but the network is trained for 450, for example.
Overtraining may be investigated by introducing a testing set
for the ANN 20 to present inputs and compare the outputs to
desired outputs. The goal is to minimize the error. If the
network 20 is being overtrained, the training set 26 error will
reduce while the testing set error will rise and may result in
instability, for example. A training set 26 may be incorporated
in the ANN 20 optimization, for example.

According to an embodiment of this invention, the “opti-
mal” data set was obtained by utilizing the data points gen-
erated by a control strategy which gives the maximum fuel
economy over a given driving cycle. Other even higher fuel
economies may be possible. A more systematic approach for
optimizing a CS over a driving pattern is possible, such as,
using computational intelligence approaches including a
genetic algorithm. Alternately, a much larger number of con-
trol approaches can be considered to further optimize the
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training set. Other vehicle layouts are possible, for example,
to provide an ANN CS for an HEV with a planetary gear set.
Finally, a generalized algorithm for the development of a CS
forany HEV is possible. Those skilled in the art and guided by
the teachings herein will appreciate that the ANN CS’s may
be used in other applications, such as, optimization of an
electrical grid with different power sources including solar,
coal and/or nuclear based sources.

It will be appreciated that details of the foregoing embodi-
ments, given for purposes of illustration, are not to be con-
strued as limiting the scope of this invention. Although only a
few exemplary embodiments of this invention have been
described in detail above, those skilled in the art will readily
appreciate that many modifications are possible based at least
in part on the exemplary embodiments without materially
departing from the novel teachings and advantages of this
invention. Accordingly, all such modifications are intended to
be included within the scope of this invention, which is
defined in the following claims and all equivalents thereto.
Further, it is recognized that many embodiments may be
conceived that do not achieve all of the advantages of some
embodiments, particularly of the preferred embodiments, yet
the absence of a particular advantage shall not be construed to
necessarily mean that such an embodiment is outside the
scope of the present invention.

What is claimed is:
1. A hybrid electric vehicle including an electric motor, a
battery and an internal combustion engine, the vehicle com-
prising:
apower control module having an adaptive control unit for
interfacing with sensors and actuators of the electric
motor, the battery and the internal combustion engine;

the adaptive control unit including an artificial neural net-
work that is adapted to changing driving conditions or
patterns, the artificial neural network comprising an
input layer, a hidden layer and an output layer, wherein
the input layer comprises between five and fifty neurons,
the hidden layer comprises between five and fifty neu-
rons and the output layer comprises between one and ten
neuron; and

acombined control strategy for an entire operating range of

the hybrid electric vehicle including a plurality of con-
trol strategies for a plurality of driving profiles with
optimized operation points of each of the plurality of
driving profiles, wherein the artificial neural network
combines the optimized operation points of each of the
plurality of driving profiles into the combined control
strategy.

2. The vehicle of claim 1 wherein the adaptive control unit
includes at least one of the group consisting of a digital signal
processor, a micro-processor, a field programmable gate
array and combinations thereof.

3. The vehicle of claim 1 wherein the vehicle includes at
least one of the group consisting of a car, a bus, a truck, and a
sport utility vehicle.

4. The vehicle of claim 1 wherein the adaptive control unit
signals to at least one of the actuators to maximize fuel
economy, minimize emissions, meet peak power demands
and to respond to changing driving conditions.

5. The vehicle of claim 4 wherein the changing driving
conditions include urban profiles, highway profiles and com-
binations thereof.

6. The vehicle of claim 1 wherein the fuel economy
improves by at least between about 1 percent and about 7
percent above a constant causal based control scheme.

7. The vehicle of claim 1 further comprising a training set
based on changing driving conditions or profiles for training
the artificial neural network.
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8. The vehicle of claim 7 further comprising a pre-process-
ing algorithm to operate on the training set and reduce repeti-
tive row vectors.

9. The vehicle of claim 7 wherein the training set includes
input and output values based on highest fuel economies for
various driving conditions and control schemes.

10. The vehicle of claim 1 further comprising a plug for
plug-in hybrid functionality.

11. A hybrid electric vehicle including an electric motor, a
battery and an internal combustion engine, the vehicle com-
prising:

apower control module having an adaptive control unit for

interfacing with sensors and actuators of the electric
motor, the battery and the internal combustion engine;

the adaptive control unit including an artificial neural net-
work that is adapted to changing driving conditions or
patterns, wherein the artificial neural network includes
an input layer having about 20 neurons, a hidden layer
having about 20 neurons and an output layer having
about 1 neuron; and

acombined control strategy for an entire operating range of
the hybrid electric vehicle including a plurality of con-
trol strategies for a plurality of driving profiles with
optimized operation points of each of the plurality of
driving profiles, wherein the artificial neural network
combines the optimized operation points of each of the
plurality of driving profiles into the combined control
strategy.

12. The vehicle of claim 11 wherein the adaptive control
unit includes at least one of the group consisting of a digital
signal processor, a micro-processor, a field programmable
gate array and combinations thereof.

13. The vehicle of claim 11 wherein the adaptive control
unit signals to at least one of the actuators to maximize fuel
economy, minimize emissions, meet peak power demands
and to respond to changing driving conditions.

14. The vehicle of claim 13 wherein the changing driving
conditions include urban profiles, highway profiles and com-
binations thereof.

15. The vehicle of claim 11 further comprising a training
set based on changing driving conditions or profiles for train-
ing the artificial neural network.

16. The vehicle of claim 15 further comprising a pre-
processing algorithm to operate on the training set and reduce
repetitive row vectors.

17. A method of operating a hybrid electric vehicle com-
prising:

providing a hybrid electric vehicle having an adaptive con-
trol unit, wherein the adaptive control unit includes an
artificial neural network;

receiving input signals from sensors of the hybrid electric
vehicle;

calculating output signals in the adaptive control unit based
on maximizing fuel economy, minimizing emissions,
meeting peak power demands and providing acceptable
transient response during changing driving conditions;

sending output signals to an internal combustion engine or
an electric motor of the hybrid electric vehicle; and

training the artificial neural network with a plurality of
control strategies for various driving conditions or pro-
files for a sufficient number of iterations and combining
optimized operation points of each of the various driving
conditions or profiles into a combined control strategy,
wherein training includes a Levenberg-Marquardt train-
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ing algorithm and a gradient decent learning algorithm
with momentum weight/bias.

18. The method of claim 17 further comprising applying a
pre-processing algorithm to the plurality of control strategies
for reducing repetitive vectors.

19. The method of claim 17 further comprising periodi-
cally updating the step of calculating based on age or wear of
drivertrain components.

16
20. The method of claim 17 wherein the artificial neural
network signals to at least one of the actuators to maximize
fuel economy, minimize emissions, meet peak power
demands and to respond to changing driving conditions or
profiles including urban and highway use.



