US007865570B2

a2 United States Patent 10) Patent No.: US 7,865,570 B2
Sun 45) Date of Patent: Jan. 4, 2011
(54) MEMORY SERVER 6,327,608 B1* 12/2001 Dillingham 709/203
6,604,136 Bl 8/2003 Chang et al.
(75) Inventor: Xian-He Sun, Darien, IL (US) 6,754,803 Bl 6/2004 Kawaguchi
6,766,360 Bl 7/2004 Conway et al.
(73) Assignee: Illinois Institute of Technology, 6,826,660 B2 11/2004 Hagersten et al.
Chicago, IL (US) 6,829,637 B2 12/2004 Kokku et al.
£0> 6,862,609 B2 3/2005 Merkey
" 6,871,219 B2 3/2005 Noordergraaf et al.
(%) Notice: Subject to any disclaimer, the term of this 7,747,749 BL* 6/2010 Erikson etal. 709/226
patent is extended or adjusted under 35 5004/0215746 A1* 102004 McCanne etal. 700/219
U.S.C. 154(b) by 1166 days. 2007/0124622 AL* 52007 Johnsetal. ..o 713/501
2008/0229025 Al* 9/2008 Plamondon 711/126
(21) Appl. No.: 11/215,321 2008/0301316 Al* 12/2008 Alpern et al. . 709/231
2009/0287842 Al* 11/2009 Plamondon 709/233
(22) Filed: Aug. 30, 2005 2010/0088369 Al* 4/2010 Sebastian etal. 709/203
(65) Prior Publication Data OTHER PUBLICATIONS
US 2007/0067382 A1l Mar. 22, 2007 Using predictive prefetching to improve world wide web latepcy
Venkata N. Padmanabhan; Jeffrey C. Mogul Computer Communica-
(51) Int.Cl tion Review 1996.*
Pt Lirs: An efficient low inter-reference recency set replacement policy
(52) IGJ0S6FCf5/16 (20(‘)760'8/12)17 700/203: 709/231 to improve buffer cache performance Song Jiang; Xiaodong Zhang
. o eeeeeeereneeienena, 5 5 5 Marina Del Rey 2002.*
709/233; 709/226; 711/126; 382/305 S. Byna et al., Predicting Memory-Access Cost Based on Data-
(58) Field of Classification Search 709/217, Access Patterns, Proceedings of IEEE International Conference on

(56)

5,305,389
5,659,777
5,829,041
5,873,117
5,898,883
5,923,847
5,960,461
6,092,157
6,108,694
6,134,710
6,247,041

709/203, 226, 231, 233; 711/126; 382/305
See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

Cluster Computing, San Diego, Sep. 2004.
* cited by examiner

Primary Examiner—Thu Ha Nguyen
(74) Attorney, Agent, or Firm—Pauley Petersen & Erickson

A ¥ 4/1994 Palmerc.ccceeevennne 382/305 1)) ABSTRACT
A 8/1997 Iwasaki et al.
A 10/1998 Okamoto et al. A memory server provides data access as a service to clients
A 2/1999 Hagersten et al. and has a memory service architecture and components for
A 41999 Fujii et al. removing data management burdens from the client proces-
A 7/1999 Hagersten et al. C g o .
sor and providing increased speed and utility for the client
A 9/1999 Frank et al. hroush . dicti feli .
A 7/2000 Suzuki throug aggressive pre iction of client memory requirements
A 8/2000 Yashiro et al. and fast provision of data.
A * 10/2000 Levineetal. 717/158
Bl 6/2001 Krueger et al. 20 Claims, 1 Drawing Sheet
Client 0 Client 1 Client 2 Client 3
L
13 ® Prefetch
&] Lewhe 17| % 9
Disk l \. 15 L2 Cache: zl L2 Cache DRAM k‘
27E l £
L. 31 Mel;10rx‘jSewer
Daa] 3 g2 o
access Vs - 4
Table | Prefetch Engine 22 *I Cache
N N, H sz | o
Handler = Server Memory
C | v J | 45
24 —t Data Propeller T
Policy Adopter t
49/ Memory Management Engine|
3y . L— 47
/ Disk
14 B
Memory Server

U.S. Patent Jan. 4, 2011 US 7,865,570 B2

Client 0 ~ Client | Client 2 Client 3
Application T L
kP Application Application Application
Cache
> L1 Cache L2 Cache
133 | & Prefetch
:{ Cache 17 g 19
) L15 L2 Cache~] A L2 Cache DRAM 7

Disk \‘ M

217 C
' : 2 Y y
' —C’ Memory Server ;
i Data] — 31 3 12 A Provider !
5 Access Y / 25 :
! Pattern i
i Table / Prefetch Engine }2 :
H rd
11 \‘ < Future] Request v t :

: —> Miss — P‘:‘:lc::f\r Generator :
i Handler ' i —F Server Memory 45 :
' F ’ - i
: / I Data Propeller > /l
!5 25 ™16 >
i Policy Adopter t ;
§ 49 Memory Management Engine !
;) . | — 47 i
; / Disk !
: 14 i

Memorv Server

US 7,865,570 B2

1
MEMORY SERVER

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention provides improvements to the
memory structure and utilization of computer systems.
“Computer memory” as used herein holds data temporarily
during information processing for fast data access. The term
“memory” generally identifies data on ICs or memory chips.
The word “storage” is generally used for data that exists
non-dynamically on tapes or disks.

2. Discussion of the Related Art

Most modern computer memories are hierarchical and
comprise multiple levels of caches of fast but more expensive
memory and a slower main memory (DRAM). The computer
will then use a storage disk for long term, secondary storage.
Roughly speaking, disk access is 100 times slower than main
memory access, and main memory access is 10 to 50 times
slower than cache access with current technology.

Processor and network technologies are evolving rapidly.
The growth in the number of transistors in each processor is
rapidly increasing processor capabilities. Innovations in uti-
lizing theoretically unlimited bandwidth of fiber optics can be
helpful in reducing the network latency.

However, the incompatibilities among processor and
memory performance are fueling an increasing performance
gap between peak performance and sustained performance of
computers. Moreover, power consumption increases faster
than processor and memory performance. Increased power
consumption has become a major obstacle for modern com-
puting, from high-end supercomputers to small electronic
devices.

In recent years, memory bandwidth has become a major
bottleneck to full utilization of the capacity of processors and
network capabilities. Following the so-called Moore’s law,
processor speed continues to double roughly every 18
months. Network interconnect speeds are also increasing to
hundreds of Gbps and the latency is being reduced to a few
nanoseconds. In contrast, main memory (DRAM) speed and
its bandwidth have not increased enough to catch up with the
processor speeds. This performance gap has been increasing
for the last 20 years and is becoming a bottleneck for perfor-
mance.

Advanced hierarchical memories that include cache
memories at various levels have been developed to bridge this
gap. A cache memory works on the principle of spatial and
temporal locality. However, there are many applications that
lack locality in accessing the memory. These applications
spend a major fraction of execution time waiting for data
accesses.

Power requirements of computing devices are also increas-
ing with the computing power and functionality. The current
improvement of chip performance depends on the rising num-
ber of transistors. On the positive side, this enables the
increase in the cache size and more levels of cache and trans-
lation look-aside buffer. But this also rapidly increases the
power demands caused by numerous chips in a computing
device. The increasing power requirements can be understood
by comparing the consumption of Intel PENTIUM 4 (75
watts) to Intel ITANIUM (130 watts) processors.

There are writings known in the art which use the term
“memory server” in various contexts. All writings known to
the applicant merely try to exploit improving data access time
by substituting remote memory for local disk access without
removing data management burdens from the main CPU. The

20

25

30

35

40

45

50

55

60

65

2

focus of these so-called “servers™ is to provide space for data,
and not to fetch data to other processing elements.

SUMMARY OF THE INVENTION

What is needed in the art is a fundamental difference of
approach whereby data access, sometimes referred to herein
as computer memory, is provided as a service, instead of
simply using some available remote memory as a substitute
temporary disk storage. In some embodiments the memory
server of the present invention can remove the data fetching
and prefetching burdens from the main computational pro-
cessor of an application and provide a memory and data
access service adaptively based on application requirements.

The present invention introduces an architecture where a
memory server provides computer memory as a service. The
memory server can support client computer memory in order
to save energy as well as bridge the current performance gap
between processor and memory functions. The memory
server includes a processing element which is dedicated to
provide data to other processing elements, e.g., the processor
running the computations of an application. The memory
server can take advantage of the rapid advances of multi-core
chip technology and network technology and could, for
example, include one core of a multi-core chip, a processor in
a shared memory parallel computer, a built-in server of a
computer cluster, a remote network server, or the like. The
present discussion will use the terms memory server and
client, it being appreciated that the server and client may be
arranged in a number of ways.

The architecture of the present invention can reduce the
data access time of a computer system by inserting a new
memory server that provides additional fast memory space
and pushes the desired data into the higher levels of the client
memory hierarchy before and/or when it is needed. For
instance, in a multi-core system or a shared memory system,
acore or a processor can be used as the memory serverto push
data into a client prefetch cache. In a distributed or networked
system, a node or a computer can be used as the memory
server to push data into other client nodes’ or client comput-
ers’ memories or caches. The benefits of doing so are evident
when one considers that a dedicated server will provide better
data prediction and prefetching.

Also, having two less powerful processing elements, one
for computing and one for memory service, is typically more
cost effective than having one more powerful processing ele-
ment, in the aspects of manufacturing cost, power consump-
tion, and operation efficiency. Operational efficiency is a driv-
ing factor of the recent popularity of multicore chips and the
continued development of parallel processing. In addition to
making decisions and managing data movement, the memory
server can use its memory as an extended memory or provide
storage for the client application. Most applications only
occasionally need large memory or other memory services.
Therefore, the memory server can serve multiple client pro-
cessors or computers.

A memory server can also reduce cache misses and page
faults and thus increase performance. A memory server
according to the present invention can be specially designed
for memory service and may choose from a plurality of dif-
ferent replacement and searching algorithms for use with
different applications to achieve the best performance.

Performance improvement is possible due to faster
accesses to the data, since a memory server according to the
present invention can provide a better prediction of future
accesses based on access patterns and push the needed data
through the memory hierarchy ahead of time. As a dedicated

US 7,865,570 B2

3

memory server executes its data access prediction algorithms,
aggressive prediction methods can be used with more history
information of data accesses because computational proces-
sor time is not being sacrificed for memory management.
That is, the computing elements are relieved of the burden of
pre-fetching and can concentrate on computing while cache
operations can become more sophisticated.

Reduced energy consumption can be had at the client side
due to the reduced memory and disk requirements. Further
energy savings may be had by utilizing one memory server to
support the memory needs of multiple clients Also, a memory
server according to the present invention may be the only way
to enable smaller mobile devices to run large applications
when the small mobile devices contain little memory and
small, or no, cache to save battery power.

Further, networking advances make the memory service
design of the present invention feasible in a network environ-
ment. Network speed is increasing rapidly. The increased use
of fiber optics has fueled the rapid growth of network speeds
in the last decade. Theoretically, fiber optic bandwidth is
unlimited because the attenuation of signal over the short
distances is flat. Many system interconnects can now operate
at 1 to 10 Gbps. The current fastest network launched to
connect TeraGrid sites is operating at 40 Gbps. Plans were
announced in 2004 to develop 100 Gbps network intercon-
nects.

The speed growth of wireless networks is occurring at the
same pace as wired networks. Current Wireless LAN speci-
fication 0f 802.11 is at 54 Mbps, which was just 2 Mbps with
802.11a few years ago. Current 2.5 or 3G cell phones oper-
ating at 144 Kbps or more are offering a wide variety of
applications. The speed of these cell phone networks may
grow rapidly to Gigabit speeds with the current demand.

Network speed growth enables use of network hardware
and network data provision services with low latency (~1 ns
for a byte of data transfer with a 10 Gbps network). Thus,
remote memory services can be realistically provided. The
current memory access time for the fastest processors is now
at 60 to 100 ns. For a typical cache block size of 32 bytes; a
network transfer of 32 bytes would cost less than 32 ns of
processor time with a 10 Gbps network (without considering
the startup cost and assuming that there is a special link
between the cache and network card). With future 100 Gbps
interconnects, this cost further can be reduced multiple times.
In mobile processors with smaller cache and memory the
memory access time cost is even more. Thus, the present
invention can benefit networked computing by providing net-
work-based memory services to push necessary data nearer to
the client CPU faster than traditional memory.

A memory service hardware and architecture according to
the present invention may have three or more components
including the main memory server components of a prefetch
engine, a memory management engine, and a data propeller.
It will be understood that the memory server will include its
own processor for the performance of the functional modules
or processes described herein. In some embodiments a
memory service provider process running on the memory
server and waiting for service requests from client nodes will
initiate server operations. Based on the request type from the
client, this process can initiate data transfers between the
client and the server. A miss handler daemon process can take
the on-demand misses from a client node’s local DRAM, its
cache, or its prefetch cache. The missed reference and access
pattern information may be stored in a data access pattern
table to help predict the future data accesses required by the
client.

20

30

35

40

45

50

55

60

65

4

The prefetch engine can run a future access predictor dae-
mon process to predict future accesses required by the client
based on the information of data access patterns. This future
access predictor daemon can dynamically choose the most
effective reference prediction algorithm and pass the pre-
dicted data references to a request generator, which in turn
sends its request to the data propeller module to push the
required data to the client prefetch cache or other memory,
depending on the model of the memory service is used. The
data propeller module handles the data transfers between the
client and the memory server and responds to any cache miss
at the client. The miss handler sends information to both the
memory management engine and the data propeller. In some
embodiments it will be understood that the data propeller is
only for data prefetching. The immediate data fetching will be
handled by the memory management engine. The miss infor-
mation will thus be sent to the memory management engine
for fetching and to the data propeller for future prefetching.

The data propeller thus pushes data from the server
memory to the client DRAM or cache before the client needs
it. If a properly designed link exists between the server’s
cache and the client cache a cache designed for the purpose of
memory service can be utilized within the server so that the
data propeller can push data from the memory server’s cache
to the client’s cache directly.

The data propeller module obtains the cache miss informa-
tion and data reference information from the miss handler
daemon, and also pushes the data of predicted accesses. In
addition, the data propeller or the memory management
engine can use the data access pattern information to prefetch
or fetch, respectively, data from the disk of the memory server
into its server memory to speedup the memory service.

Discussion of the modules or applications will be given
herein with respect to specific functional tasks or task group-
ings that are in some cases arbitrarily assigned to the specific
modules or applications for explanatory purposes. It will be
appreciated by the person having ordinary skill in the art that
aspects of the present invention may be arranged in a variety
of ways, utilize hardware, software, or firmware, and that
functional tasks may be grouped according to other nomen-
clature or architecture than is used herein without doing vio-
lence to the spirit of the present invention.

BRIEF DESCRIPTION OF THE DRAWING

These and other objects and features of this invention will
be better understood from the following detailed description
taken in conjunction with the drawing wherein:

The FIG. shows a block diagram of different kinds of
clients connected to a detailed block diagram of the memory
server.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

While traditionally, memory is an integrated part of a com-
puting device, the present invention provides memory sup-
port as a service. A memory server according to the present
invention may be tightly connected to the processing
element(s) or connected via communication networks. The
service could be static or dynamic, and could be the sole
memory or could be an addition to the traditional integrated
memory system of a client. The memory server can handle
cache misses as well as avoid cache misses and page faults.
The memory server is enabled to apply aggressive prefetch
prediction algorithms and dynamic replacement policies to
reduce the cache misses and hide memory access latency

US 7,865,570 B2

5

without cost to the computational processor. Client comput-
ers can access the memory server for advanced and deep
memory hierarchy needs. This is a cost effective solution
since the memory service avoids having to install deeper and
advanced memory hierarchy at each client.

In traditional memory hierarchy the memory populates
cache memories with lines of data if a cache miss occurs. The
disk storage provides the data to the main memory as pages
when a page fault occurs. Average memory access time cost
depends both on memory hierarchy parameters (such as
capacity, line size, page size, memory and cache bandwidth,
and associativity) and the data access patterns of the applica-
tion. This average memory access cost can severely affect the
application performance when the size of the working set of
all pages is more than the capacity of the traditional system’s
memory or the data accesses are non-contiguous. Memory
performance of known systems might be improved by
increasing the memory capacity and by applying aggressive
data prefetching and replacement policies. However, in
known systems the memory hierarchy architecture is fixed
and it is not possible to adapt to an application’s require-
ments. Merely increasing the size of each level of memory
hierarchy may not be cost effective. Also, if aggressive
prefetching algorithms are used in known systems, the CPU’s
available computing time is reduced, thereby reducing the
application performance. To solve these burdens on the pro-
cessor and memory architecture of known systems, the
present invention can provide a memory server for memory
service. The memory service can be based on the application
requirements as learned by predictor daemons.

Referring to the FIG., an exemplary memory service 11
supplies clients 13 by pushing data into higher memory levels
of the client, such as a client prefetch cache 15, thereby
eliminating reliance on slower client memory and data stor-
age processes and apparatus. Client 0 illustrates a regular
computer with a specially designed prefetch cache 15. Client
1 does not have memory and can only support a pure server
model, as further discussed below. Client 2 has memory but
decides to use pure server model. Client 3 adopts a hybrid
server model.

Generally described, the main components of a memory
server 11 that are common to all the designs are: a prefetch
engine 12, a memory management engine 14, and a data
propeller 16. A microprocessor (not shown) which is separate
from the client processor will be understood to perform and
control the functions of the memory server 11. The functions
of a prefetch engine 12 are to observe the data access pattern
of the application, and to predict the future data references.
The prefetch engine 12 contains a future access predictor 33
and a request generator 22. The future access predictor 33 can
use adaptive sequential prefetching, Markov chain, or any
existing or future strategies to predict the future references.
The request generator 22 adaptively chooses the order of
prefetch requests and the prefetch distance and sends these
requests to the data propeller 16. The request generator 22
desirably decides the prefetch distance in such a way that data
is pushed to the destination “just in time,” so that there is no
pollution at the destination or the data does not arrive at the
destination too late. Based on the type of data references,
there may be two types of prefetch engines; a cache prefetch
engine and a memory prefetch engine. A cache prefetch
engine would monitor the patterns of past cache line refer-
ences and predict the future cache line references. A memory
prefetch engine would predict the memory page references by
monitoring the page access pattern of the application.

The data propeller 16 contains the information of the loca-
tion of the data, e.g., memory of the server, remote memory,

20

25

30

35

40

45

50

55

60

65

6

or local memory, and sends the prefetch signal to the appro-
priate location. The memory management engine 14 selects
the effective way of transferring the data from the data loca-
tion to the destination. The memory management engine 14 is
also responsible to fetch the data to the client’s local memory
when there is a cache miss or page fault, i.e., initial misses,
based on the function of the memory server. These initial
misses occur before the prefetch engine 12 starts monitoring
the data access pattern of the application. The memory man-
agement engine 14 may also contain a search/replacement
policy adopter module 49 which can adaptively choose the
most effective replacement policy, from among a pool of
replacement policies, which is appropriate for the current data
access pattern of the client’s application. This increases the
adaptivity of the memory server 11 to tune the workload of
each application.

In the present invention a memory server 11 can push data
into the client computing engine’s cache or memory. The
memory server 11 prefetches data and pushes it into the
client’s memory hierarchy, e.g. 15, 17, 19, whenever appro-
priate and possible. If cache misses or page faults occur at the
client 13, the memory server 11 sends the requested but
missed data to the client’s cache 15, 17, or the client memory
19, accordingly. A client prefetch cache 15 can be specially
designed for the present invention to support dynamic, push-
based prefetching. Some advanced computer systems in fact
may already have built-in prefetch caches for their local
DRAM.

In one embodiment of the present invention, the memory
service 11 may comprise any or all of various hardware,
software, or firmware components, such as understood in the
art and which will be left to the choice of the designer, to
provide a memory service provider 23 process which runs on
the memory server 11 and waits for service requests from
clients. Based on the request type, a pure service request or a
hybrid service request, as further explained below, or if data
needs to be copied from the client’s memory 15,17, 19 to the
memory server 11, the memory service provider 23 initiates
data transfers between the client 13 and the server 11.

A miss handler daemon 25 process is responsible to take
the client’s 13 on-demand cache misses from a client’s local
DRAM 17 as well as client prefetch cache 15. It will be
appreciated that the lines or arrows of the FIG. will represent
any operable signal or data transfer means. Missed data ref-
erence and data access pattern information for the client
operations can be stored in a data access pattern table 31. The
data access pattern table 31 thus stores the historical data
accesses to help to predict future data references of the client
operation.

The future access predictor daemon 33 process predicts the
future data accesses based on the information of the data
access pattern table 31. This future access predictor daemon
33 dynamically chooses the most effective reference predic-
tion algorithm and passes the predicted references to the data
propeller module 16. Many prefetching algorithms exist in
the art, including algorithms based on sequential processing,
adaptive sequential processing, stride, Markov, push, etc., as
known in the art. However, most of the aggressive prefetching
algorithms have been considered too costly and non-practical
for use by the main application processor before the present
invention.

The data propeller module 16 can then push the predicted
reference data to e.g., the prefetch cache 15 of Client 0. The
data propeller module 16 thus handles the data transfers
between the prefetch cache 15 and the memory server 11 and
responds to any cache miss from the client 13. The client 13
can have a specially designed prefetch cache or use existing

US 7,865,570 B2

7

cache such as the L2 cache 17 as the prefetch cache, or in
some cases may use the local DRAM 19 as in Client 3. The
data propeller module 37 obtains the cache miss information
and information of data references from the miss handler
daemon 25. The data propeller module 16 also pushes the data
ofpredicted future accesses, such as may be retrieved from its
local server DRAM memory 45 or memory storage disk 47, to
the client prefetch cache 15. The push and prefetching may be
multiple steps, including push data from the server disk 47 to
the server memory 45, and from the server memory, or from
the server cache 44 if the server cache 44 has a direct connec-
tion to the client, to client cache 15, 17 or client memory 19.
The server cache 44 may be a specially designed or adapted
cache memory.

Some embodiments of the memory server 11 may include
the search/replacement policy adopter daemon 49 which
selects replacement policies in its memory management
engine 14, based on the client application’s data access pat-
tern, for the server’s local DRAM 45 to utilize the fetched
data to its full extent before the data is replaced. This policy
information can also be taken into consideration by the future
access predictor daemon 33.

In operation, the client device 13 can initialize the execu-
tion of a memory server thread by sending a request to the
memory service provider 23 agent to handle its memory
requirement. This request includes initial data reference
information. The memory server 11 starts a thread with the
components of the architecture as discussed above. The data
propeller module 16 sends a few lines of data from the
requested address space to the client prefetch cache 15 and the
client processor 53 resumes its application execution. The
data propeller module 16 desirably sends more than one line
of data initially, assuming that spatial locality exists among
the data accesses. The miss handler daemon 25 collects the
cache misses, i.e., missed data references from the prefetch
cache 15 and local memory 19. This client access information
can be stored in the data access pattern table 31. Alternatively,
a pattern table need not be used if prediction is supported by
pattern recognition without the need for holding the data.

Based on the client access information, e.g., such as stored
in the data access pattern table 31, the future access predictor
daemon 33 predicts the next data reference and the data
propeller module 16 pushes the corresponding data into the
prefetch cache 15. A prefetch cache miss occurs when there is
a false prediction. To reduce prefetch cache misses, the data
propeller module 16 sends more than one predicted line of
data in the starting stages and the future access predictor 33
daemon dynamically fine-tunes its predictions based on an
increasing amount of access pattern information. To handle a
prefetch cache miss, the miss handler daemon 25 alerts the
memory management engine 14 when a cache miss occurs
and the memory management engine 14 fetches and sends the
needed/missed data immediately without waiting for the
future access predictor daemon 33.

The client device 13 has the option to completely depend
on the memory server 11 to handle its data requests or to use
the memory server 11 as an extended service. To provide this
flexibility to the client 13, the memory server 11 may offer
two models of operation, a pure server model and a hybrid
server model.

With the pure server model, while the client 13 may have
caches, all the data resides at the memory server 11. The client
13 sends a request to the memory server 11 and the memory
server 11 deals with populating the client prefetch cache 15
and handles any cache misses. This provides better perfor-
mance because of aggressive prefetching for long runs. The
pure server model may be appropriate to multicore chips or

20

25

30

35

40

45

50

55

60

65

8

shared memory systems where the memory server 11 is
physically close to the client 13. The pure server model may
also save energy for the client 13. When a client 13 starts, the
client 13 can move its memory 19 and disk 21 into low power
modes and let the memory server 11 serve as the client’s
memory and disk for a given application. In other cases, some
clients may not be required to have main memory or a disk
and can be designed to work with a memory server.

In pervasive computing environments, hand-held devices
have small memories. These client devices may choose the
memory server 11 to handle their memory requirements. The
memory service can be offered as a web service in which the
client transparently discovers and connects to the nearest
memory service. It is noted that the local memory and disk do
not necessarily need to be deleted from the client computer,
but can just be turned off, partially or fully, to save energy.

With the hybrid server model, the client 13 can use its
memory 19 and disk 21, such as especially for all data access
patterns with good locality among the data accesses. The
client 13 switches to the memory server 11 when data locality
is poor among the accesses or under other conditions, such as
where a large amount of memory is required to cover the
working set of an application. The client 13 can use a predic-
tion model such as set forth in S. Byna et al., Predicting
Memory-Access Cost Based on Data-Access Patterns, Pro-
ceedings of IEEE International Conference on Cluster Com-
puting, San Diego, September 2004; which is hereby incor-
porated by reference in its entirety, to make a decision on
whether to choose a memory service, or which mode of the
memory service to choose, or both.

In a pure server model, the memory server will be notified
that its service is requested from the client. When a pure
server model is requested the memory server processor
assumes the memory management duties for the client. The
memory server monitors the client cache’s data access pattern
directly and predicts the client application future accesses in
order to retrieve the data and push it closer to the client, e.g.,
to the prefetch cache of the client. In the hybrid server model,
when the client 13 decides to utilize a memory service, the
client sends a request to the memory service provider 23. The
memory service provider 23 will initiate a daemon to transfer
the client’s current address reference tables and to transfer the
number of instructions to execute with memory service as
included in the initial request of the client 13. The memory
server 11 collects the virtual address mapping from the trans-
lation look-aside buffer and the page table memory of the
client 13. Then the memory server 11 transfers this required
data (related to the address map of the client) from the client
disk 21 to the memory server local memory 45. To maintain
data consistency, the memory server 11 can save the databack
to the client disk 21 when the client’s request is finished. The
data copying between the client 13 and the memory server 11
can be overlapped with application execution at the client
processor 53. The decision making process at the client 13 to
utilize the memory services from the memory server 11 may
consider the burden of transferring the data between the client
13 and memory server 11, i.e., in the hybrid server model the
client 13 invokes the services of the memory server 11 only
when needed for improved performance, or the conservation
of energy, or under other appropriate conditions.

While certain exemplary embodiments have been put forth
to illustrate the present invention, these embodiments are not
to be taken as limiting to the spirit or scope of the present
invention which is defined by the appended claims.

US 7,865,570 B2

9

I claim:

1. A system of memory service for computing, comprising:

a client device including a first processor or processing
core that is capable of processing an application, and a
memory system; and

the client device including a built-in memory server con-
nected to the memory system of the client device, the
memory server including:

a prefetch engine for observing a data access pattern of
the application processed by the client device and
predicting future data requests of the client device;

a memory management engine for fetching predicted
data, and including a data propeller for transferring
predicted data higher in a memory hierarchy of the
client and closer to the first processor or processing
core; and

a second processor or processing core for processing the
prefetch engine and the memory management engine.

2. The system of memory service for computing of claim 1,
wherein at least some data storage requirements of the client
device are obtainable from the memory server during execu-
tion of the application.

3. The system of memory service for computing of claim 1,
further comprising the prefetch engine having a predictor
process for monitoring the data access patterns of the client
device and predicting future data requests of the client device,
wherein the prefetch engine passes the predicted data
requests to the data propeller, and the data propeller module
passes a predicted data to a cache or memory device of the
client device.

4. The system of memory service for computing of claim 2,
further comprising a search/replacement policy adopter pro-
cess for dynamically adopting memory management polices
for the utilization of data by memory of the client device.

5. A memory server for improving an operation of a client
memory system of a client device, comprising:

amemory server processor or processing core dedicated to
the memory server;

the memory server built in with the client device and con-
nected to a client memory system for managing data
needs for the client memory system or a client applica-
tion processor;

a prefetch engine for observing a data access pattern of an
application processed by the client device and predicting
future data requests of the client device;

amemory management engine for fetching predicted data,
and including a data propeller for transferring predicted
data higher in a memory hierarchy of the client and
closer to the first processor or processing core; and

the memory server operably connectable to the client
memory system for the client application processor or
client memory system to receive data from the memory
server, whereby the client application processor can be
relieved of a data management burden by the memory
processor to increase an application processing speed of
the client application processor.

6. The memory server of claim 5 wherein the data manage-
ment needs include data prediction, pre-fetch, storage, and
retrieval needs.

7. The memory server of claim 5 further comprising a data
access prediction algorithm.

8. The memory server of claim 5 wherein the memory
server can choose from a plurality of prediction algorithms.

9. The memory server of claim 5 further comprising a
means for monitoring data access patterns of the application
processor.

20

30

35

40

45

50

55

60

65

10

10. The memory server of claim 5 further comprising a
means for identifies data access patterns of the application
processor.

11. The memory server of claim 5 wherein the memory
server has a pure server model and a hybrid server model.

12. The memory server of claim 5 further comprising the
memory server operably connected to a client application
processor.

13. The memory server of claim 5 further comprising the
memory server operably connected to a high level client
memory storage location for the client application processor.

14. The memory server of claim 5 wherein the client
memory system includes a prefetch cache, an .1 cache, an 1.2
cache or client DRAM.

15. A memory server device for installation within a client
device, comprising:

a) means for communicating with the client device when

installed within the client device;

b) a memory server architecture, including:

i) a memory service provider process running on the
memory server and initiating data transfers to higher
in a memory hierarchy of the client device;

i1) a miss handler daemon process for taking on-demand
misses from the client’s local memory; and transfer-
ring data access requests from the client to a data
access pattern table;

iii) a data access pattern table for tracking and storing
historical data access request patterns from the client
device; to help predict future data requests of the
client device;

iv) a future access predictor daemon process for predict-
ing the future data requests of the client based on the
information from the data access pattern table and for
passing a predicted reference to a data propeller mod-
ule;

v) a data propeller module for handling the data transfers
and pushing missed data from the miss handler dae-
mon and predicted data from future access predictor
daemon process higher in the memory hierarchy of
the client device; and

¢) whereby:

1) the client device requests an initial data reference;

i1) the data propeller module obtains the requested data
reference and sends a plurality of lines of data from
the requested address space to a client device cache;

iii) the miss handler daemon collects any missed data
references from the cache and local memory and
stores the missed data references access information
in the data access pattern table; the miss handler dae-
mon alerts the data propeller module when a cache
miss occurs and the data propeller sends the missed
data immediately without waiting for the future
access predictor daemon; and

iv) the future access predictor daemon predicts the next
data reference based on previous client data accesses
and the data propeller retrieves and pushes the pre-
dicted data into the cache of the client device, while
tracking cache misses, and dynamically fine-tunes its
predictions of future data based on an increasing
amount of access pattern information for the client
application.

16. The memory server device of claim 15 further compris-
ing a search/replacement policy adopter daemon for selecting
polices for the utilization by the client device of fetched data
to a full extent before it is replaced, and sharing of client
application data access patterns with the future access predic-
tor daemon.

US 7,865,570 B2

11

17. The memory server device of claim 15 further compris-
ing a pure server model whereby all the data for the client
application is supplied by the memory server.

18. The memory server device of claim 15 further compris-
ing a hybrid server model whereby the client uses its memory
and disk for all data access patterns with a predetermined
standard of locality among its required data accesses and uses
the memory server when the data locality is less than the
predetermined standard of locality among required data
accesses.

12

19. The system of memory service for computing of claim
1 wherein the client device comprises a multi-core processor,
a first core of the multi-core processor is dedicated to the
processing an application, and a second core of the multi-core
processor is dedicated to the memory server.

20. The memory server of claim 15 wherein the memory
server comprises a processing core that is a dedicated pro-
cessing core of a multi-core processor of a client device, and
a second core of the multi-core processor is dedicated to the

10 application processing of the client device.

#* #* #* #* #*

