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METHOD FOR ENHANCING DIAGNOSTIC
IMAGES USING VESSEL RECONSTRUCTION

BACKGROUND OF THE INVENTION

This invention is directed to a method for improving a
diagnostic image, such as obtained by, for example, magnetic
resonance imaging (MRI) or computed tomography (CT).

Research in computer-aided diagnosis (CAD) has been
facilitated by the rapid evolution in computer and medical
imaging technologies in recent years. Three-dimensional
diagnostic imaging tools, such as magnetic resonance imag-
ing (MRI) and computed tomography (CT), are widely used
for a vast range of applications. The result is a large increase
in the amount of medical imaging data that must be analyzed.
Manual analysis is often labor intensive and error prone.

Automated detection of lung nodules in thoracic CT scans
is, for example, an important clinical challenge. Manual
analysis by a radiologist is generally time consuming, and
may result in missed nodules. Furthermore, the amount of
image data that has to be analyzed continues to increase.
Blood vessel segmentation in volumetric image data of lungs
is a necessary prerequisite in various medical imaging appli-
cations. In the context of automated lung nodule detection in
thoracic CT scans, segmented blood vessels can be used to
resolve local ambiguities based on global considerations, and
so improve the performance of existing detection algorithms.
Thus, while blood vessels and nodules may share similar
characteristics locally, global constraints inherent in the data
such as the continuity of blood vessels may be used to dis-
criminate between them. Preliminary results have shown that
by using extracted blood vessels it is possible to eliminate
approximately 38% of the false positives generated by an
existing automated nodule detection system.

Due to its clinical importance, the problem of automated
Iung nodule detection in thoracic CT scans has attracted mul-
tiple research efforts in recent years. Automated nodule
detection requires three main processing steps: segmentation
and nodule candidate selection, nodule feature extraction,
and classification. So far, relatively little effort has been
devoted to the incorporation of the structure of blood vessels
into the detection of nodules. Blood vessels in the lungs have
a tree structure branching from the center toward the periph-
ery of the lung. In addition to branching, blood vessels
become smaller toward the periphery of the lung and may
become disconnected in the image data produced by the CT
scanner. Consequently, such small and disconnected seg-
ments of blood vessels are often classified erroneously as
nodules. The global structure of a reconstructed tree of blood
vessels can impose constraints of continuity and collinearity
to reduce the number of nodule candidates, thus improving
the classification results of existing systems.

Segmenting the image data correctly to distinguish
between the tissue, nodules, and vessels is generally a diffi-
cult problem that has direct consequences for subsequent
processing steps. Incorrect segmentation can divide struc-
tures that should be connected or connect structures that
should be separated, thus leading to incorrect interpretation of
the data. Due to a generally low contrast between lung tissue
and small blood vessels, a common operation that is applied
prior to segmentation is the enhancement of blood vessels.
Enhancement filters are based on the assumption that blood
vessels conform to a tubular model whereas nodules conform
to a spherical model. The bifurcation of blood vessels results
in junction structures which are indicated by clusters of bright
pixels. While vessels, vessel junctions, and nodules, all have
arelatively high intensity compared with their neighborhood,
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the structural assumptions of the models can be used to dis-
tinguish among these structures to enhance the contrast of
blood vessels and junctions while suppressing nodules and
other noise.

Available vessel enhancement filters are typically based on
the observation that the ratio between the minimum principal
curvature and the maximum principal curvature should be
low for vessels (cylinders) and high for nodules (spheres).
The principal curvatures are normally obtained as the eigen-
values of the Hessian matrix of the intensity function. The
estimation of the Hessian of the intensity function involves
second-order partial derivatives and so is highly sensitive to
noise. Consequently, smoothing of the data at multiple scales
is required. Due to noise and smoothing, junctions are char-
acterized by a high ratio of eigenvalues and so tend to be
suppressed by vessel enhancement filters; this, in turn, leads
to discontinuity of blood vessels.

There is a need for improved automated analysis of diag-
nostic images. There is a need for improved enhancing filters
to allow improved detection of nodules or other diseased
tissue in diagnostic images.

SUMMARY OF THE INVENTION

A general object of the invention is to enhance diagnostic
images.

A more specific objective of the invention is to overcome
one or more of the problems described above.

The general object of the invention can be attained, at least
in part, through a method for improving a diagnostic image
including obtaining a diagnostic image, removing non-rel-
evant regions in the image, and enhancing vessels in the
image as a function of a first-order partial derivative of each of
a plurality of voxels of the image.

The invention further comprehends a method for improv-
ing a diagnostic image including obtaining a diagnostic
image, removing non-relevant regions in the image, enhanc-
ing vessels in the image as a function of a first-order partial
derivative of each of a plurality of voxels of the image, and
constructing a vessel tree representation from the enhanced
vessel.

The invention still further comprehends a method for
improving a diagnostic image including obtaining a thoracic
diagnostic image, removing non-lung regions in the image to
provide a lung image, enhancing vessels of a lung in the lung
image according to a first-order partial derivative of each of a
plurality of voxels of the lung image, constructing a vessel
tree representation from the enhanced vessels, and subtract-
ing the vessel tree representation from the lung image to
enhance the visibility of nodules.

The method of this invention includes a novel approach to
vessel tree representation construction, and its application to,
for examples, nodule detection in thoracic CT scans. The
method includes the enhancement of vessels, including vessel
junctions, and nodules, by using enhancement filters, and the
use of fuzzy shape analysis for vessel tree construction.

The vessel and nodule enhancement filters according to
one embodiment of this invention are based on the eigenval-
ues of a correlation matrix of regularized gradient vectors,
and so involve first-order partial derivatives instead of sec-
ond-order partial derivatives that are used by currently avail-
able filters. By using first-order partial derivatives, the filters
of'this invention are less sensitive to noise. The enhancement
filters employ three sets of eigenvalues of the correlation
matrix, and so are capable of distinguishing between vessel
junctions and nodules. This distinction is not possible with
only one set of eigenvalues.
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The vessel tree representation construction according to
one embodiment of this invention is based on a fuzzy shape
representation of the filtered or enhanced data, which is
obtained by using regulated morphological operations. The
construction of vessel tree representations, or “vessel trees,”
begins by extracting vessel segments based on principal
directions in the correlation matrix and collinearity con-
straints. These vessel segments are then merged into vessel
trees. The algorithm may accommodate vessel bifurcation
and discontinuities due to noise. The method of this invention
reduces or eliminates false positives, such as are often gener-
ated by currently used nodule detection algorithms.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other objects and features of this invention will
be better understood from the following detailed description
taken in conjunction with the drawings, wherein:

FIG. 1 shows several graphs illustrating examples of dif-
ferent models obtained for a synthetic and actual two-dimen-
sional vessels, junctions, and nodules. FIGS. 1(a) and 1(5)
show the models obtained for a synthetic and real vessel,
respectively. FIGS. 1(¢) and 1(d) display the models obtained
for a synthetic and real junction, respectively. FIGS. 1(e)-1(f)
present the models obtained for a synthetic and real nodule,
respectively.

FIG. 2 shows enhanced vessels, junctions, and nodules,
enhancement by the proposed correlation-based filters. FIG.
2(a) is the original synthetic image. FIG. 2(4) shows
enhanced junctions. FIG. 2(c¢) shows enhanced vessels and
junctions. FIG. 2(d) shows enhanced nodules.

FIG. 3 shows vessel enhancement by Hessian-based filters
applied at a single and multiple scales. FIGS. 3(a)-(c) show
single-scale enhancement results obtained by the Frangi,
Shikata, and Li filters, respectively. FIGS. 3(d)-(f) show mul-
tiple-scale enhancement results obtained by the Frangi,
Shikata, and Li filters, respectively.

FIG. 4 shows results of the comparison of a correlation-
based filter of this invention and Hessian-based comparative
filters for vessel enhancement in an actual clinical CT section.
FIG. 4(a) shows the original section image. FIGS. 4(5)-4(d)
show single-scale enhancement results obtained by the
Frangi, Shikata, and Li filters, respectively. FIG. 4(e) shows
enhanced vessels and junctions obtained by the correlation-
based filter. FIGS. 4(f)-4(%) show multiple-scale enhance-
ment results obtained by the Frangi, Shikata, and Li filters,
respectively.

FIG. 5 shows the error distribution of a correlation-based
filter compared with single-scale Hessian-based filters (top)
and multiple-scale Hessian-based filters (bottom).

FIG. 6 shows several vessel tree representations.

FIG. 7 shows performance evaluation results of a vessel
tree reconstruction algorithm evaluated on one case

DEFINITIONS

Within the context of this specification, each term or phrase
below will include the following meaning or meanings.

Asused herein, a “correlation-based filter” refers to a filter
based on the analysis of the principal direction(s) of a gradi-
ent-based correlation matrix.

As used herein, “principal vessel direction” refers to the
direction of a vessel as identified as a vector pointing in the
direction of the minimal principal curvature of the vessel
surface.
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As used herein, “first-order partial derivative” refers to a
derivative obtained based on first order differences. A first-
order partial derivative does not contain derivatives of other
derivatives.

DESCRIPTION OF PREFERRED
EMBODIMENTS

The present invention provides a method for improving a
diagnostic image obtained by available imaging techniques,
such as x-ray, magnetic resonance imaging (MRI), and com-
puted tomography (CT). While the method of the invention is
useful in improving various diagnostic images of any portion
of the body, the invention will be described below with ref-
erence to a thoracic diagnostic image for imaging of the lungs
by CT scanning.

In one embodiment of this invention, a diagnostic image is
obtained by an available imaging technique, such as CT scan-
ning. The diagnostic image generally is used to image a
targeted object or portion of the body, and thus non-relevant
regions, i.e., the portions of the obtained image that are not
related to the desired or targeted object(s), body portion(s), or
organ(s) are desirable removed. The non-relevant regions,
e.g., non-lung regions of a thoracic image, can be removed by
various and alternative means available to those skilled in the
art.

Voxels within a thoracic diagnostic image can be grouped
into sets of lung tissue, blood vessels, and, if present, nodules
(or other diseased portions). The method of one embodiment
of this invention enhances blood vessels, including vessel
junctions, and nodules, using a filter to enhance or provide a
distinction between junctions and nodules. The method of
one embodiment of this invention enhances vessels in the
image as a function of first-order partial derivatives of a
plurality of voxels of the image. Desirably, the plurality of
voxels comprises at least voxels having an intensity value
above a predetermined threshold.

Enhancing the vessels is performed by identifying a local
neighborhood in the image and analyzing regularized vessel
directions in the local neighborhood. The method determines
acenter of'an object in the each of the plurality of voxels of the
image as a function of derivatives of a voxel intensity value. A
window is then defined around the determined center. The
method then determines an intensity gradient vector field
within the window. A principal vessel direction is determined
along a minimal principal curvature direction of a vessel
surface, which is obtained by determining a direction that
minimizes a projection of all gradient vectors in the window.
In one embodiment of this invention, the principal vessel
direction is identified according to the eigenvector belonging
to a largest eigenvalue of the window.

The method of this invention can analyze the regularized
vessel directions in a local neighborhood according to various
filter algorithms to enhance the vessels. Two exemplary
enhancing filters for analyzing regularized vessel directions
in the local neighborhood are an iterative principal direction
estimation and a probabilistic direction analysis. The iterative
principal direction estimation determines a principal vessel
direction as a function of'an eigenvalue of a correlation matrix
of the regularized vessel directions. The algorithm then
removes vectors aligned with the principal vessel direction
and determines whether an additional principal vessel direc-
tion is present. The algorithm performs an iterative process
until no additional principal vessel direction is determined. A
single principal direction indicates a vessel, while more than
one principal direction indicates a vessel junction. No prin-
cipal direction indicates that the object being analyzed is a
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nodule. The method of this invention can construct a vessel
tree, discussed further below, as a function of the eigenvalue
associated with the one or more principal vessel directions.

According to probabilistic direction analysis of one
embodiment of this invention, the algorithm determines a
plurality of vessel vector angles in the local neighborhood.
The algorithm also determines a non-parametric estimate of
the distribution of the angles in the local neighborhood and a
plurality of parametric estimates of the distribution of the
angles as a function of an expectation maximization algo-
rithm. A distance is measured between the non-parametric
estimate and at least one of the parametric estimates. The
method of one embodiment of this invention constructs a
vessel tree representation as a function of the distance mea-
surement.

The enhancing filters discussed above for enhancing the
vessels provide output values representing enhanced vessels
that are used to construct vessel trees. The vessel tree can be
subtracted from the diagnostic image to enhance the visibility
of nodules or other diseased tissue, which are often confused
with vessels, and more particularly vessel junctions, in cur-
rent methods for analysis. In one embodiment of this inven-
tion, constructing a vessel tree representation from the
enhanced vessels includes producing a plurality of fuzzy
shape vessel representations and combining the plurality of
fuzzy shape vessel representations to form a vessel segment.
For example, a fuzzy sphere is disposed around a center of the
object detected in a voxel. The fuzzy sphere represents the
possible positions of the object, i.e., the vessel. A fuzzy
sphere is determined for each of a plurality of voxels. The
fuzzy spheres are then combined or connected to provide one
or more vessel segments. As discussed further below, the
orientation of the vessel segment is desirable adjusted to
better represent the actual vessel.

Once vessel segments are determined, they need to be
combined to form the vessel tree. Any known and available
vessel tree reconstruction algorithm can be used to merge the
vessel segments to form the vessel tree representation. The
vessel tree can be removed from the diagnostic image to
enhance any nodules or other diseased tissue within the
image. As will be appreciated by those skilled in the art
following the teachings herein provided, the vessel tree rep-
resentation can be analyzed to provide other useful proper-
ties, such as vessel blockage and vessel volume.

Currently available vessel enhancement filters are typically
applied to each voxel in the image data at multiple scales to
facilitate the enhancement of vessels with different sizes. This
local analysis, in which the size of the local neighborhood is
unknown, results in high computational cost. To facilitate
more efficient processing and avoid the need for multiple-
scale analysis, the filter response of one embodiment of this
invention is computed only at a selected set of locations at
which a window, either two-dimensional or three-dimen-
sional, is adaptively set depending on a local neighborhood.
The method of this invention analyzes the regularized vessel
directions in the window or local neighborhood of the image.

In one embodiment of this invention, vessels are enhanced
as a function of a first-order partial derivative of each of a
plurality of voxels of the image. The plurality of voxels desir-
ably include, and for more efficiency only include, voxels
having an intensity value above a predetermined threshold
(e.g., above a global threshold t). Since small blood vessels
have low contrast, they are less likely to be detected by a
global threshold and so the initial set of candidates is aug-
mented by voxels exhibiting vessel-like characteristics. Such
voxels are identified as voxels for which the largest (in abso-
lute value) eigenvalues of the Hessian matrix are both nega-
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tive. Thus, when A, (X), A, (X), A;(X) are the eigenvalues of the
Hessian matrix at location x such that [A; (X)IZIA,(X)I= A,
(x)!, the augmented set of candidate locations is given by:

S={FUIEPTAGX)<0VAy(3)<0)} M
where I(x) is the voxel intensity at location x. It should be
noted that using the eigenvalues of the Hessian matrix alone
for the purpose of identifying candidate locations is generally
insufficient due to inherent noise in the data.

For the purpose of filtering, desired window locations are
selected at the center of objects. The watershed line at the
center of vessels and other objects is characterized by the
zero-crossing of at least one of the first-order partial deriva-
tives of the intensity function I(x). Thus the initial set of
candidates S is narrowed by selecting voxels for which the
partial derivatives change sign between two respective sym-
metric neighbors:

C={seSIL(s-R)L(s+£)<OAL(s-P)L(s+)<
O0AL(s=2)(s+£)<0} 2)

where L, 1, I, are the first-order partial derivatives of I(x), and
X, ¥, Z are unit vectors in the x, y, z directions respectively.
This selection process provides the identification of central
locations within vessels as well as within junctions and nod-

ules.

Given a center location ceC, a square three-dimensional
window centered about ¢ is used in subsequent filtering
stages. The direction of the window and its size are set adap-
tively to capture sufficient information to uniquely character-
ize the content of the window. Starting with a 3x3x3 voxel
window centered about c, the size of the window is incre-
mented provided that the ratio between the number of voxels
in the window belonging to the set S and the total volume of
the window is larger than a preset threshold value. Denoting
by W_* the set of voxels belonging to the window centered
about ¢ at the k-th iteration, this ratio is given by:

ri=t{xe W FixeSW/i® 3)
The orientation of the window W * is set based on the direc-
tion of the eigenvector belonging to the smallest eigenvalue of
the correlation matrix of the gradient vectors contained
within the initial 3x3x3 voxel window.

The filters are based on an analysis of the direction(s) of the
intensity gradient vector field. Since the estimated gradient
vectors are inevitably noisy, regularization of the gradient
vector field is performed. As vessels are characterized by a
tubular model, the gradient vectors in a vessel can be used to
extract a vector in the direction of the vessel by identifying a
vector that is approximately orthogonal to the gradients in a
local neighborhood. Thus, in addition to the need for regular-
ization of the gradient vector field, the gradient vector field
should be mapped into a new vector field containing vectors
in possible directions of blood vessels.

Let W be alocal window of size pxpxp (p is set to 3 herein).
Let the set of three-dimensional gradient vectors in the local
window be G={g,},_,”, where n=p>. A direction v orthogonal
to the vectors in the set G can be obtained by finding a
direction that minimizes the squared projection onto v of all
the gradients in the set. The squared projection of the gradi-
ents onto v is given by:
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1 1 “
EW)= =3 (e’ = VT[;,Z (g;)(g;)T]v
i=1 i=1

Thus, denoting

1
W[g;,...

G= L gnl, E0) =T GGy,

where GG7is a 3x3 correlation matrix. Minimizing E(v)
with respect to vcan be obtained by solving the system
VE(v)=0. As the correlation matrix GG” is symmetric:
VE(v)=2GG%v. Thus, to minimize E(v) the homoge-
neous linear system GG”v=0 needs to be solved. The
minimum of E(v) is obtained by the eigenvector of GG”
belonging to its smallest eigenvalue.

As the correlation matrix GG is known to be positive
semidefinite, its eigenvalues are non-negative. A; =A, =M, is
the eigenvalues of the correlation matrix GG. e, is the unit
length eigenvector belonging to the eigenvalue A,. A vector
pointing in a direction orthogonal to the gradient vectors at
location i is set as:

v Rge, &
where the normalization factory/ Ao+h; isused to give a higher
weight to vectors v that were produced by larger gradients, so
as to reflect higher confidence in the result. The vectors v,
obtained in this manner form a regularized vessel direction
vector field in which the vectors point in the potential direc-
tion of blood vessels.

As discussed above, in one embodiment, to distinguish
between vessels and nodules, a process of iterative principal
direction estimation is used to produce secondary and tertiary
sets of eigenvalues of the correlation matrix. While a distinc-
tion between junctions and nodules does not exist based on
the ratio of the principal eigenvalues, such a distinction does
exist when considering the ratios of the secondary and tertiary
eigenvalues. To facilitate more efficient processing, and avoid
the need for multiple scale analysis, the filter response is
desirably computed only at selected locations at which a
window size is selected adaptively.

In one embodiment of this invention the iterative principal
direction estimation analyzes the directions of blood vessels
in the regularized vector field. Since vectors in opposite direc-
tions indicate the same direction of a blood vessel, given a set
of'vectors in an adaptive window selected as described above,
it is possible to invert some of the vectors so that the majority
of the vectors of the same blood vessel have consistent ori-
entation. This can be achieved, for example, in a simple way
by selecting an arbitrary vector v with magnitude above the
average vector magnitude v in the window, and inverting all
vectors with an angle difference in the range

©

Vi otherwise

20

25

30

35

40

50

55

60

65

8

This process can be applied iteratively where, in each itera-
tion, the vector v and the vectors {v,} in its neighborhood
which were obtained in the previous iteration are removed
from the set of vectors that have to be processed for orienta-
tion consistency.

In one embodiment of this invention, multiple principal
directions are identified in a set of vectors. A single principal
direction can be obtained based on the eigenvalues and eigen-
vectors of the correlation matrix as defined in Equation (4) by
using the eigenvector belonging to the largest eigenvalue of
the correlation matrix (provided that the ratio between each of
the two smallest eigenvalues and the largest eigenvalue is
small, thus indicating that a distinct direction exists). Once
one principal direction is obtained, the vectors conforming to
it can be subtracted or removed from the set of vectors in the
window and the correlation matrix can be updated. Additional
principal directions can be found by repeating this process
iteratively. Repeating this process three times produces three
sets of eigenvalues which are then used by the proposed
filters.

For example, in one embodiment of the invention AV
{Vi}izl"( )represents the vectors of the regularized vector field
obtained by using Equation (5) in a local window W, at the
k-th iteration. Q™ is the correlation matrix of the vectors in
V® as defined in Equation (4). A, ®=r,® =), ® represents
the eigenvalues of Q™ and e, e,, e, represents the
corresponding eigenvectors. If the ratio A,%/A,® is small
(forexample, about 10%), there is exactly one principal direc-
tion in the direction of e,®. If the ratio A,®/A,%® is not small
(for example, greater than about 50%), either no principal
directions in the data exists or multiple principal directions
exist. In such a case we need to obtain an estimated principal
direction &, and an estimated average squared projection
2,® in this direction.

Given an estimated principal direction of the data &,%, and
the estimated average squared projection in this direction
%,®, a refined principal direction is based on the set of vec-
tors with projection onto &% which is greater than or equal to
the square root of ,%.

FO={0), 0= B 20T, )
R® is the correlation matrix of the vectors f;%. §, ¥=§,P=
3,™ are the eigenvalues of R™® and €, @, £, £.® are the
corresponding eigenvectors. The eigenvector belonging to
the largest eigenvalue represents the refined estimate of the
extracted direction. If the ratio 8,%/8,® is small enough (for
example, about 10%), the obtained vectors belong to a unique
direction and are set at A,%=3,% and e,P=E,®. Otherwise,
the conclusion can be that no unique directions exist in the set
of vectors. If a principal direction is obtained, additional
directions may be obtained by repeating the previous steps
and updating the set of vectors V® and its correlation matrix
Q™ as follows:

VD ) _ g (8)

QD = (0 Q) _ 7yl i) ©

76 —

If the ratio A,®/A,%® is not too close to 1 (for example,
about 50% or higher), e, and A,% can be used as the esti-
mates &% and A,%. Otherwise, a simple estimate may be
obtained by splitting the vector set into two subsets and com-
puting the eigenvalues and eigenvectors of the correlation
matrix of each subset. The eigenvector and eigenvalue



US 7,783,092 B2

9

belonging to the set with the smaller ratio A,“/A,*® can then
be used as the estimates &, and X, . Splitting the vector set
into two subsets may be achieved by projecting all the vectors
onto a vector orthogonal to the average vector in the set and
assigning all the vectors with non-negative projection to one
subset and all the vectors with negative projection to the
second subset.

The enhancement filters of one embodiment of the method
of this invention are based on analyzing regularized vessel
directions in a local neighborhood of the image. Blood ves-
sels are modeled by tubular segments where each tubular
segment is approximately a cylinder with a Gaussian intensity
profile at the section plane. Nodules are modeled by spheres
with a Gaussian intensity profile in each section plane
through their centers. Based on these models, each blood
vessel has a central axis in a direction which is orthogonal to
all the gradient vectors inside the vessel. Similarly, vessel
junctions are composed of either two cylinders (“T” or “X”
junctions) or three cylinders (“Y” junctions) and so have two
or three distinct central axis directions. The gradient vectors
of'nodules do not define any distinct direction in three dimen-
sions. Based on these model assumptions, when analyzing
principal directions in the regularized vessel direction vector
field, vessels should have one principal direction, junctions
should have more than one principal direction, and nodules
should not have any principal direction.

{10,P, 1,0, 1" represents three sets of eigenval-
ues of the correlation matrix obtained above, where it is
assumed that A, ©=\,®=),®=1 if a principal direction was
not found in the k-th iteration. Following the above model
assumptions, three ratios of eigenvalues are defined, denoted
by Py, Pa, P3, Where p; has a value close to 1 for vessels and
close to 0 otherwise, p, has a value close to 1 for junctions and
close to 0 otherwise, and p; has a value close to 1 for nodules
and close to 0 otherwise. The ratios p |, p,, p5 are defined by:

PV (10)

p,m1vOV®

an

PREVENCVES 12)
where v®=), @), @, The vessel, nodule, and junction filters
are then obtained by using the ratios p,, p,, P53, respectively,
in an exponential filter function given by:

~a(l-p? (13)

fxeC

0 otherwise

i) = { Ywe

where o is a constant normalization factor, y(x) is a variable
attenuation factor, and C is the set defined in Equation (2).
The variable attenuation factor y(x) is selected locally to
reduce the response at filter locations in which the average
projection in the primary principal direction is low. That is:

Y(x)=1- PP (14)
where [ is a constant normalization factor. The filter response
¢,(x) is determined based on the adaptive window W, cen-
tered about x. Thus, since the response ¢,(x) is a character-
ization of the window W, the filter response for all yeW, is
set to ¢,(x). Hence, in the more general case where several
adaptive windows W, cover the same location x, the overall
filter response at X is set to:

@ (x)-max {¢,(y) e 7, } 1s)
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In another embodiment of this invention, a probabilistic
vessel model is used to enhance or filter the diagnostic image.
While the filtering results obtained using the iterative princi-
pal component selection and the probabilistic direction analy-
sis are similar, there are advantages to both approaches. One
advantage of the iterative principal component selection
approach is its generally improved computational perfor-
mance. One advantage of the probabilistic direction analysis
is generally the automatic determination of model parameters
without relying on preset thresholds.

Given the regularized gradient vectors, as described above,
itis possible to transform them into a coordinate system, such
as a spherical coordinate system, and normalize the distance
coordinate to one. Thus, each gradient vector corresponds to
an observation vector x,. X={x,},_,”¥ represents a set of iden-
tically and independently distributed observations, distrib-
uted according to a mixture density function p(x1®). Based on
the independency assumption, the incomplete-data log-like-
lihood is given by:

(16)

N Ul M
1(©1X) =log[ | ptx:10) = Z 10{2 a;p;g |0j)]
i=1

o1 =1

where @=(0t,, . . ., Oy 0, ..., 0,), =, Mo=1, M is the
number of components in the mixture, and p,(xI0,) are the
mixture components. The unknown parameter vector ® can
be obtained by maximizing 1(®1X).

In one embodiment, an expectation maximization algo-
rithm is used to simplify the maximization of the incomplete-
data log-likelihood by assuming a hidden feature describing
the unknown component in the mixture from which each
observation was drawn. y, represents the hidden feature cor-
responding to the observation x,. Taking the expectation over
the (unknown) hidden features, the expected complete-data
log-likelihood is given by:

M N . s (1n
of pi(xi 1 6)

log(a py(x; 1)) —
Do 16)

k=1

0(0, 09) =

=1 =1

where O is the best available estimate of ® at iteration s.

Assuming that the mixture components are multivariate
Gaussians, and that there is a uniform noise component in the
mixture, a parametric model is obtained for vessels, vessel
junctions, and nodules, given by:

M-1

1)
@;
fx1® = Z SEEIEE
i=1 i

1 -1
exp[— 5O ) ) W m] + o i (x)

where W(x) is a distance measure function, 1, are mean vec-
tors, 2, are covariance matrices, and P, (x) is a uniform den-
sity function. Parametric models for nodules, vessels, “T” or
“X” wvessel junctions, and “Y” vessel junctions, can be
obtained from Equation (18) when using M=1, M=2, M=3,
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and M=4, respectively. By using Equation (18) in Equation
(17) and maximizing over ®, the obtained expression is linear
in the unknowns and so an analytical expression for © may be
obtained. In an alternate embodiment of this invention, a
similar formulation using multivariate Cauchy distributions
is used and provides similar results.

FIG.1illustrates examples of different models obtained for
a synthetic and actual two-dimensional vessels, junctions,
and nodules. FIGS. 1(a) and 1() show the models obtained
for a synthetic and real vessel, respectively. FIGS. 1(¢) and
1(d) display the models obtained for a synthetic and real
junction, respectively. FIGS. 1(e)-1(f) present the models
obtained for a synthetic and real nodule, respectively.

Even though the parameters vector ® may be optimized as
described earlier for each possible model, there can still be an
ambiguity as to which model should be selected. In one
embodiment, a straightforward approach for model selection
is to compute the expected complete-data log-likelihood of
each model and select the model for which the likelihood is
maximal. As this approach can be sensitive to overfitting, an
alternative approach is to choose the model that maximizes
the posterior model probability given the data. The posterior
model probability may be approximated by the well known
Bayes information criterion (BIC) given by:

) N R (19)
Dpic(f3) = 2log[ | f3(x;16) - Plogh

=1

where fpi(xI@)) is the estimated parametric density of the i-th
model and P is the dimension of ®. The BIC measure com-
pensates for the number of parameters and so is not prefer-
ential to complex models.

As the observations x, may be noisy, an alternative
approach for model selection is to compute a non-parametric
model estimate and measure the distance between the para-
metric and non-parametric models in order to guide the model
selection. The non-parametric density estimate may be
obtained by using a kernel (Parzen) method:

20

131 x— X
N;%K( )

where K(x) is a kernel function and h is its spread. I;f(x) and
f,(x) are the parametric and non-parametric density esti-
mates. Commonly used measures for computing distance
between density functions include the Kullback-Leibler cross
entropy measure, the Kolmogorov variational distance mea-
sure, the Bhattacharyya distance measure, and the Euclidean
distance measure, as defined in Equations (21)-(24), respec-
tively.

; £ @1

Declfin f) = f oo 7 ]dx
De(fis fi) = f L0~ £l @2
. . 1 23
Da(fi, f) = —log f (F0f )2 dx @3)
04

Deg(fi, f) = f (00— fi(ndx
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The Kullback-Leibler and the Kolmogorov measures have the
advantage of giving higher weight to samples with higher
probability. The Bhattacharyya distance measure in its
essence is a correlation measure.

Based on the distance measure between the probabilistic
models it is possible to determine a likelihood for each model.
By using this likelihood it is possible to enhance nodules and
vessels in the data. In one embodiment, D, D,, D, are the
distance between the nonparametric model and the vessel,
junction, and nodules models respectively. The enhancement
filters are defined by:

Ny if min(D,, D)) <D, @5
hi _{ 0 otherwise
Ny if min(D,, D;) > D, (26)
Jn _{ 0 otherwise
The term N is used to suppress noise and is given by:
@n

Nf=1.0 ( M
= 10—-exp[- 3

where Tv[? is the average squared magnitude of the gradients
in the local window, k is the size of the local window, and 3 is
a constant. The multiplication by k* is due to the fact that the
magnitude of the gradients is inversely proportional to the
scale of structures. When a distinction between vessels and
junctions is necessary, separate filters for vessels and junc-
tions may be defined similarly by:

(1-1Dy = Dj)-N; if min(D,, D;) < D, (28)
b _{ 0 otherwise
|D, = Dj|-Ng if min(D,, D;) <D, @29

n={"

To demonstrate the performance of the enhancing filters of
this invention, a comparison with the performance of three
other comparative filters proposed by: A. Frangi, “Three-
dimensional model-based analysis of vascular and cardiac
images,” Ph.D. dissertation, Utrecht University, The Nether-
lands, 2001, (“Frangi”); H. Shikata, E. A. Hoffman, and M.
Sonka, “Automated segmentation of pulmonary vascular tree
from 3D CT images,” in Proc. SPIE International Symposium
on Medical Imaging, San Diego, Calif., 2004 (“Shikata™); and
Q. L1, S. Sone, and K. Doi, “Selective enhancement filters for
vessels and airway walls in two- and three-dimensional CT
scans,” Medical Physics, vol. 30, no. 8, pp. 2040-2051, 2003
(“Li”), all of which are herein incorporated by reference in
their entireties. The evaluation includes qualitative and quan-
titative comparison of results obtained for both synthetic and
actual clinical CT scans. It is shown that the enhancing filters
of'this invention provide improved results over the compara-
tive filters. As the data used is highly anisotropic with inter-

otherwise
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slice resolution, which is approximately seven times smaller
than the in-plane resolution, the sections are processed inde-
pendently during the filtering stage. While by doing so the
eigenvalue A, becomes identically 0, this does not impose any
changes in the filter equations.

The comparative filters are all based on the eigenvalues of
the Hessian matrix computed at selected locations and at
multiple scales. The multiple scales are obtained by smooth-
ing the data with different size Gaussian functions. The eigen-
values of the Hessian matrix are |,I=[A,I=IA4l. Assuming
that vessels conform to a tubular model with a Gaussian
profile on the section plane, the eigenvalues of the Hessian
matrix satisfy the following properties: |A,l<<IA,l and
[A,l=IA;l. The eigenvector corresponding to A, points in the
direction of the vessel whereas the two other eigenvectors
belong to the section plane. Due to the assumption that a
vessel is brighter at its center, it is expected that both A, and A5
are negative. Based on these assumptions, Frangi proposed
the following vessel enhancement filter:

#s(x) = 1Az, A3) (B0

oot o Bt 5]

where x is the location of the filter, s is the scale of the filter,
a, 8, v, are constant normalization factors, and R, R, R are
given based on the eigenvalues of the Hessian matrix:
R, =M1, R=Ih /(12512 R =002 4+h,>+052)%. The
function n(A,, A;) is set to 1 when A,<0vA;<0, and set to 0
otherwise. Given a set of several scales T, the filter output at
location x is given by:

W(x)=max{W,(x)lseT} (31
Based on similar considerations, Shikata defines a vessel
enhancement filter at a single scale as:

W (x)=1 (has Ag)s? Mo VI(X) (32)
where I(x) is the voxel intensity at location x.

Similarly, Li proposes a slightly modified computation of
the vessel enhancement filter W (x) and added a definition of
a nodule enhancement filter C (x). These filters are given by:

W (1) (hgs Aa) Aol (g = Ay 1)/125] (33)

L= (o, ) My P/ 1g] G4
The filter output at location x based on multiple scales in all
these filters is computed by using Equation (31).
Comparing the proposed correlation-based filter in Equa-
tion (13) to the Hessian-based comparative filters described
above, it is possible to observe that while all use expressions
of eigenvalues, the correlation-based eigenvalues of this
invention are based on first-order partial derivatives whereas
the Hessian-based comparative filters are based on second-
order partial derivatives, which are more sensitive to noise.
Moreover, while all the filters use the maximum value
obtained in several windows, the correlation-based filter of
this invention employs adaptively sized windows and so do
not require processing at multiple scales. This results in
increased efficiency. Finally, it is possible to observe that the
correlation-based filter of this invention is based on three sets
of eigenvalues compared with one set of eigenvalues in the
Hessian-based comparative filters. Consequently, the corre-
lation-based filter of this invention is able to distinguish

20

25

30

35

40

45

50

55

60

65

14

between nodules and junctions. This capability is not possible
when using only one set of eigenvalues as is the case in the
Hessian-based comparative filters.

A qualitative performance evaluation of the correlation-
based filters of this invention and the Hessian-based compara-
tive filters on a synthetic image is presented in FIGS. 2 and 3.
The synthetic image is presented in FIG. 2(a). This image
contains different kinds of junctions and different sizes of
vessels and nodules. The vessels and nodules were produced
with Gaussian intensity profiles along the cross sections. The
enhanced junctions, vessels and junctions, and nodules pro-
duced by the correlation-based filters are shown in FIGS.
2(b)-2(d) respectively. As can be observed, the enhancing
filters of this invention are capable of distinguishing between
junctions and nodules due to the use of multiple sets of eigen-
values of the correlation matrix. The enhanced vessels pro-
duced by the Hessian-based comparative filters applied at
single (T={1}) and multiple (T={1,V2,2,2,V2,4,4¥2}) scales
are presented in FIG. 3.

FIGS. 3(a)-3(c) show single-scale enhancement results
obtained by the Frangi, Shikata, and Li filters, respectively,
whereas FIGS. 3(d)-3(f) display the corresponding multiple-
scale enhancement results obtained by the same filters. As can
be observed the single-scale filters result in the suppression of
vessels and junctions while not completely suppressing nod-
ules. The multiple-scale filters suppress the centers of junc-
tions and nodules while not suppressing nodules completely.
The suppression of junctions can have an adverse effect on the
production of connected vessel networks. The synthetic test
image requires processing at multiple scales due to the pres-
ence of different size structures. Larger structures require
analysis at coarser scales and so require smoothing with
larger kernels. Smoothing with larger kernels in known to
generally result in enlarged structures in the filtered image.
The enlargement of wide vessels can be observed in FIGS.
3(d)-3(f). Since the only smoothing in the correlation-based
filter is typically done at a small scale prior to the gradient
vectors computation, the enlargement that occurs in the cor-
relation-based filtering results is small.

The results of the correlation-based filter of this invention
and the Hessian-based comparative filters for vessel enhance-
ment in an actual clinical CT section are presented in FIG. 4.
FIG. 4(a) shows the original section image. FIGS. 4(5)-4(d)
present single-scale enhancement results obtained by the
Frangi, Shikata, and Li filters, respectively. FIG. 4(e) shows
enhanced vessels and junctions obtained by the correlation-
based filter. FIGS. 4(f)-4(%) present multiple-scale enhance-
ment results obtained by the Frangi, Shikata, and Li filters,
respectively. The filter results in these figures were segmented
by an adaptive global threshold to better exhibit the details. As
can be observed the correlation-based filter of this invention
enhances both small and large vessels without enlarging them
or suppressing their centers while suppressing the nodule (the
large, bright, circular object in the lung on the right side ofthe
image).

To obtain a quantitative comparison of the correlation- and
Hessian-based filters it is desirable to have data for which the
ground truth is known so that the enhancement error with
respect to this truth can be measured. Since the synthesis of
data may not be sufficiently realistic, the approach is to gen-
erate ground truth test data based on actual clinical data.
Given actual CT scans, a segmentation process was used to
create a mask representing the ground truth for each slice. The
test data was generated by masking the original data with the
generated ground truth masks. The test data was processed by
each of the enhancement filters and the results were seg-
mented by using an adaptive global threshold. The mean
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square error between the known ground truth and the seg-
mented results was then measured for each slice. The mean
square error was computed based on the sum of intensity
differences of corresponding (binary) voxels which was then
normalized by the volume of the ground truth data. The initial
segmentation used for generating the test data is an adaptive
threshold scheme which is based on R. M. Haralick, S. R.
Sternberg, and X. Zhuang, “Image analysis using mathemati-
cal morphology,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 9, no. 4, pp. 532-550, 1987, and described in
C. Wu, G. Agam, A. S. Roy, and S. G. Armato III, “Regulated
morphology approach to fuzzy shape analysis with applica-
tion to blood vessel extraction in thoracic CT scans,” in Proc.
SPIE International Symposium on Medical Imaging, San
Diego, Calif., 2004, both of which are herein incorporated by
reference in their entireties. As this adaptive threshold
scheme is based on local histogram analysis without employ-
ing any differential quantities, it is not related in any obvious
way to the evaluated enhancement filters. The error distribu-
tion of the results obtained by analyzing 600 slices is pre-
sented in FIG. 5.

The top portion of FIG. 5 presents the error distribution of
the correlation-based filter of this invention compared with
single-scale Hessian-based comparative filters. The bottom
portion shows the error distribution of the correlation-based
filter compared with multiple-scale Hessian-based filters. As
can be observed the error introduced in the correlation-based
filter is smaller than that of the Hessian-based filters. The
summary of the mean and standard deviation of the error
obtained by the different filters is presented in Table 1. In this
table, ‘s’ indicates a single scale analysis whereas ‘m’ indi-
cates a multiple scale analysis. Since the error measurements
are obtained as normalized distance measurements between
two binary objects (as described earlier), each error measure-

ment corresponds to an error rate and is thus unitless.
TABLE 1

Method Li Frangi Shikata

Scale Correlation s m s m s m

Mean 0.255 0.733  0.667 0.760 0.647 0.546 0.661

Std. Dev. 0.120 0.056 0.084 0.045 0.103 0.070 0.108

The enhanced vessels provided by the enhancing filters of
this invention can be used to construct a vessel tree represen-
tation. A vessel tree structure is a high-level form of repre-
sentation that can assist in analyzing and interpreting the
image data. The method of one embodiment of this invention
forms vessel tree representations using fuzzy shape represen-
tations of the data which are obtained by using regulated
morphological operations. Given the fuzzy shape representa-
tions, vessel segments are extracted, aligned, and then com-
bined to produce vessel trees.

Regulated morphological operations are generally less
sensitive to noise and can be used to produce fuzzy shape
representations. In one embodiment of this invention, these
operations form the basis of a vessel tree representation con-
struction algorithm. Binary morphological erosion and dila-
tion operators are based on opposing strict approaches. The
binary dilation collects shifts for which the kernel set inter-
sects the object set without taking into account the size of the
intersection, whereas the binary erosion collects shifts for
which the kernel set is completely contained within the object
set without considering shifts for which some kernel elements
are not contained within the object set. As a result of these
strict requirements, ordinary morphological operations are
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sensitive to noise and small intrusions or protrusions on the
boundary of shapes. To solve this problem, regulated mor-
phological operations are defined by extending the fitting
interpretation of the ordinary morphological operations. The
regulated dilation and erosion of the set A by the kernel set B
with a strictness of S are defined respectively by:

s (33)
A®B= {x

#(A N (%)X] > s}; se [l n]

ASB = x| #A N B <sksell,n] (36)

where 1, =min(#A,#B), n_=#B, #A denotes the cardinality of
the set A, B denotes the reflection of the set B defined by
B={x/3beB:x=-b}, and (B), denotes a shift of B by x defined
by (B),={yldbeB:y=x+b}. The regulated dilation and erosion
may be obtained from each other by reflecting the kernel set
and complementing the strictness relative to the kernel set:

@D

where the complement of the strictness S relative to the set B
is defined by: s, =#B-s+1. From these basic regulated mor-
phological operations it is possible to define an extensive
regulated dilation and an anti-extensive regulated erosion. By
using the extensive operations it is possible to define idem-
potent regulated open and close operations which extend the
fitting interpretation of the ordinary open and close opera-
tions. The idempotency of these operations demonstrates
their abilities to capture fundamental characteristics of the
data. Regulated morphological operations have been shown
to possess many of the properties of ordinary morphological
operations. In particular, ordinary morphological operations
can be obtained as special cases of the regulated morphologi-
cal operations when using a strictness s=1.

The regulated morphological operations are used to pro-
vide a fuzzy shape representation for constructing a vessel
tree representation. Such a representation is necessary due to
noise present in the data and due to the discrete nature of the
volumetric data produced by CT scans. In one embodiment of
this invention, a fuzzy sphere representation of an object is
produced from a regulated erosion operation with a strictness
parameter greater than 1 is applied to a set of voxels in the
center of objects C obtained by Equation (2).

The erosion operation is applied at multiple scales by
increasing the size of the spherical kernel at each iteration and
recording the size of the largest sphere that fits the object at
this location while satisfying the regulated strictness con-
straint. c,eC is the center of the i-th sphere. K(r) is a spherical
kernel of radius r. The radius r, of the fuzzy sphere at location
c,is set to:

ri= max{r | ci € (Sé K(r))} 38

where S is the set of all the candidate object voxels in the data
as expressed in Equation (1), and s is the strictness parameter
of' the regulated morphological operation (for example, set to
2.25). The set O={(c,, r,)},—,” together with the strictness
parameter s used in computing r;, forms a compact fuzzy
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sphere representation of objects in the data. Given this repre-
sentation, the set of all object voxels in the data is given by:

5= ) aekm 39

(cj.r;)E0

To reduce the number of fuzzy spheres in the representation,
the fuzzy sphere set O is filtered so that spheres with centers
that are covered by larger spheres are removed:

0'={(c,)e0I¥ (c;,1,)e0 Vc’j-e(ci®K(ri)):rj<ri} (40)
Spheres of identical size with centers in the domain of each
other are resolved by considering the mean intensity I(c,, r,)
within the spheres and choosing the sphere with the higher
mean intensity:

0"={{(c;)e0"V (¢, 1,)e OV el (DK (r))T(c, )<

I(e,ry)} (41)
In order to prevent erosion of vessels due to the elimination of
spheres at terminal locations, the sphere removal process is
applied iteratively based on size, starting with the largest
spheres.

Given the fuzzy sphere representation of the vessel-en-
hanced volumetric data, obtained above, a higher level rep-
resentation may be obtained by combining several spheres
into vessel segments. Such vessel segments can then be used
in the vessel tree reconstruction. Forming vessel segments
according to one embodiment of this invention is based on
constraints of collinearity of fuzzy sphere centers, size con-
sistency, and direction consistency.

The gradient vectors at voxel locations within a sphere
0,60" can be used to define a possible vessel direction based
on the eigenvectors of the correlation matrix. The degree to
which a sphere conforms to a vessel model can be estimated
by considering the ratio A,/A; of the eigenvalues of the cor-
relation matrix (A, and A; being the smallest and largest
eigenvalues, respectively). By using the ratio A,/A, it is pos-
sible to split the set of spheres O" into two subsets O" . and
O",. The subset O" - contains spheres with eigenvalue ratio
smaller than a preset threshold (for example, about 70%) and
so are likely to belong to vessels. The subset O"; contains
spheres with eigenvalue ratios above the threshold and so are
more likely to belong to junctions and nodules.

The process of connecting neighboring spheres in the set
0" to form vessel segments is an iterative process in which at
each iteration a single sphere satistying certain conditions is
added to the vessel segment. For example, let 0,eO" ;. be the
current end of the vessel segment (0, is selected randomly in
the first iteration). A neighboring sphere 0,60",is a candidate
for addition into the vessel segment if it satisfies the following
conditions: the size r, of 0, is similar to the average size of the
spheres already in the vessel segment; the eigenvalue ratio
computed in o, is similar to the eigenvalue ratio in o,; and the
spheres o, and o, have some overlap (Ic,~¢,|<(r,+r))).

Given the possible candidate spheres o, the one with the
smallest distance from the approximated vessel center is
selected, provided that its distance from the vessel center is
smaller than the average sphere size in the vessel segment. v,
is the principal direction of the sphere o, obtained by Equation
(5). The distance of a candidate o, from the center of the vessel
is measured by:
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_ [(e; —ci)Xvi| 42)

di;
Y [vil

The addition of spheres to a vessel segment is stopped when
no additional spheres are found. Since the initial sphere is
selected randomly, it is not necessarily at the beginning of a
vessel segment. Thus, once growth in one direction is com-
plete, the process of adding spheres to the vessel segment
resumes from the initial sphere in a similar manner but in the
opposite direction. Spheres assigned to a specific vessel seg-
ment are removed from the set O" , and the process proceeds
until no new vessel segments can be found.

The vessel segments obtained above generally have well-
defined directions. Their orientation, however, is not always
uniquely determined. To reconstruct the vessel tree, consis-
tent orientation of vessel segments is desired. While the ori-
entation of vessel segments cannot be determined locally,
consistency constraints in a local neighborhood can be used
for proper orientation selection.

The vessel orientation consistency problem can be formu-
lated as follows. 1, is the i-th vessel segment. The end spheres
of'1, are o,” and 0,°. The direction of this vessel segment is
given by d,=(c,°-c;"), where ¢,” and ¢,” are the centers of the
spheres o and o,%. {1.},_,™ represents a set of m vessel seg-
ments in the neighborhood of 1, with corresponding directions
of {d;},,". The consistency with I, in a local neighborhood is
defined by summing the projections onto d, of the direction
vectors of its neighbors:

n 43)
B = Z (o;d) (o:d;)
=

where o; and o, represent the unknown signs of d; and d,.
Given n vessel segments, the total consistency in the data 1s
given by: H=X,_ "h,. As the consistency in local neighbor-
hoods is interdependent, a globally consistent orientation
requires the maximization of the total consistency H. Thus,
the orientation of vessel segments can be determined by
obtaining the sign coefficients o, that maximize the total
orientation consistency H.

The vessel segment orientation problem as formulated
above is a non-linear optimization problem that can be solved
iteratively by maximizing the local consistency h, at each
iteration. Global maximization of H is obtained through the
propagation of changes between iterations. In the k-th itera-
tion the maximization of the local consistency h,, based on its
definition in Equation (43), is immediate and is given by:

m
o = sg{z o'(f‘*l)d}-d;]
=

As can be observed, since the vectors d, are not normalized,
larger vessel segments have larger influence on the orienta-
tion of their neighbors and can force the orientation of small
vessel segments to conform to that of large ones. To improve
the convergence rate of the solution, the initial values of the
unknown sign coefficients o, are set based on a rough assump-
tion that vessel segments point away from the center of the
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lung. Convergence to a solution is determined when an itera-
tion does not produce any change. In one embodiment of this
invention, convergence occurs within approximately 10 itera-
tions.

A vessel tree reconstruction algorithm, such as is available
to those skilled in the art, is applied to merge the vessel
segments into vessel trees. In one embodiment of this inven-
tion, the reconstruction is performed in two steps. First, vessel
segments are merged through junctions to form subtrees.
Then, subtrees are merged into larger trees.

In an exemplary embodiment, {1},_,” represents the set of
extracted vessel segments. O" is the set of junction spheres as
defined above and augmented by spheres not belonging to any
vessel segment. The junction spheres 0,60" , form a set of
candidates through which vessel segments can be merged.
Given a junction sphere 0,e0" , a set of potential vessel seg-
ments that can be merged through this junction is identified by
checking for intersections between the junction sphere and
the end spheres of the vessel segments. By using the orienta-
tion of the vessel segments intersecting at o, it is possible to
classify them as either incoming or outgoing vessel segments.
Based on considerations of similarity, and by using the dis-
tance between o, and the centers of the incoming vessel seg-
ments (computed by Equation (42)), a single incoming vessel
segment can be selected. The selected incoming vessel seg-
ment is set as the first child of a subtree, and the outgoing
vessel segments are set as its children. If a valid incoming
vessel segment is not identified, the outgoing vessel segments
are set as the first children of a subtree. Vessel segments not
connected through any junctions are set as single-node sub-
trees.

The merging process assumes that vessel segments should
be merged about isolated junction spheres. Since in many
cases junction spheres may be connected to vessel segments,
a second vessel merging stage tests for possible subtree merg-
ing about the ending spheres of any node in them. Given two
subtrees t, and t, the first level nodes of t; can be connected as
children of any node 1, in t,, provided that the first sphere in
any of these nodes intersects the end sphere of 1., and that the
similarity and distance conditions described earlier are met.
For the purpose of computing the distance ofthe end sphere of
the node 1, from the center line of the first level nodes of t,, it
may be necessary to estimate an average center line from
multiple nodes. Such an average center line can be computed
by a weighted average of the principal directions of the first
spheres in the first level nodes, where the weight coefficients
are proportional to the length of the corresponding vessel
segments. Finally, it should be noted that gaps between ves-
sels may be bridged by relaxing the connectivity conditions
stated earlier.

To further demonstrate the method of this invention, vessel
trees were constructed from actual clinical data. Scans from
38 diagnostic thoracic helical CT studies were collected ret-
rospectively from different patients (22 females, 16 males;
age range 31-94 years, with a mean age of 62 years). The CT
studies had been performed on GE HiSpeed scanners (GE
Medical Systems, Milwaukee, Wis.) with a standard clinical
protocol of 120kVp, 7 mm collimation, 1.4 helical pitch, and
mm reconstruction interval. For some examples, sections
near the lung bases deviated from the nominal reconstruction
interval of 5 mm. The 38 studies comprised a total of 1953
512x512-pixel section images; the number of sections per
study ranged from 37 to 61, with a mean of 51 sections per
study. The image data, initially acquired at 12-bit grayscale
resolution, were reduced to 10 bits through a simple division
of gray levels by a factor of four. Section images representing
anatomy superior to the lung apices or inferior to the lung
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bases were manually excluded from each case. The pixel
dimensions ranged from 0.547 to 0.938 mm. The exposure
rates used for image acquisition ranged from 220 to 300 mA,
with all but five of the scans having been performed at 220
mA. The presence of nodules in the selected cases was
reported during clinical interpretation and was noted in the
radiology reports. In addition, the location of individual nod-
ules was indicated by an experienced chest radiologist who
reviewed the standard database scans on softcopy by using a
computer interface. The 38 CT studies contained a total of 82
lung nodules. The mean effective nodule diameter was 14.7
mm.

Renderings from multiple viewpoints of several obtained
vessel tree construction results are presented in FIG. 6. It
should be noted that typically the reconstruction results in
about 3 to 5 major vessel trees and about 10 small vessel trees
per case. The small vessel trees are formed due to vessel
segments which appear to be separated from the main vessel
network. Extracted trees normally include vessels of approxi-
mately six generations.

The vessel tree construction results obtained were evalu-
ated quantitatively in terms of correctness and robustness.
Additionally, as a desirable purpose of vessel tree reconstruc-
tion is nodule detection, a goal-oriented evaluation of the
results was performed. The basic performance of the vessel
tree reconstruction algorithm was evaluated based on a dis-
tance measure between a known tree structure and a recon-
structed one. As the generation of synthetic data for which the
true vessel tree is known may not be sufficiently realistic, our
evaluation is based on different versions of actual clinical data
corrupted by multiplicative Gaussian noise with various stan-
dard deviations. The vessel tree extracted from the original
noiseless version serves as the known model against which
the recovery results of the noisy data are compared.

The distance between two trees is computed based on the
distance between their corresponding spheres. The distance
function that is used to measure the difference between
spheres is composed of four terms. The first term measures
Euclidean distance between their centers. The second term
measures size difference between them. The third term mea-
sures angle difference between them. The fourth term mea-
sures topological differences by considering the difference in
the number of their children. (c;, r;) and (c;, 1) are two corre-
sponding spheres for which we want to compute the distance
measure. The expression for the distance measure is given by:

e ri=rj 45
D‘-j:w1(1_e*\cﬁcj\)+W2(u]+ @3)
ri+r;

W3(1 -

where w,-w, are convex combination coefficients (selected
as 2 1n our study), n, and n, are the number of children of (c,,
r;)and (c;, 1), and (c,, r;) and (c;, 1;) are the predecessors of (c,,
r,) and (¢, r;), respectively. If there is no corresponding sphere
due to noise, the distance measure is set to its maximal pos-
sible value (one). Based on this distance measure a mean
distance measure for each noise level was computed.

FIG. 7 shows the performance evaluation results of the
vessel tree reconstruction algorithm evaluated on one case
containing 45 slices. Multiple noisy versions of the original
data are generated by incorporating multiplicative Gaussian
noise with various standard deviations. The distance between
the initial reconstruction and the reconstruction obtained in
the noisy versions is measured. FIG. 7 presents the values of
both the individual components of the measure and the com-

|(Ci—0i)'(0j—0j)|]+w (l”i_”jl]

le; = cillej —cjl n; +n;
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bined distance measure. The value of the topological differ-
ence component in this figure is multiplied by 100 to show its
details. The reconstruction error up to a noise level of
approximately 30% is small, thus demonstrating the robust-
ness and consistency of the proposed approach.

In order to verify the correctness of the automatically
extracted vessel tree in terms of its correspondence to actual
vessels in the data, an experiment was conducted in which the
automatically extracted vessels were compared to manually
selected vessels tagged by a resident. The manual selection of
vessels in this experiment was done on the section images by
selecting a point on a vessel and then interactively varying the
similarity threshold of a flood-fill algorithm while observing

22
nodules in CT scans: effect of image reconstruction algo-
rithm,” Medical Physics, vol. 30, no. 3, pp. 461-472, 2003,
hereby incorporated by reference in its entirety. Given a set of
nodule candidates produced by the nodule detection algo-
rithm, the volume overlap between the nodule candidates and
the reconstructed vessel tree was evaluated. A nodule candi-
date having an overlap with the vessel tree of more than a
preset threshold can be identified as a false positive and
removed from the final results. The results of this experiment
for the actual clinical thoracic CT scans are presented in Table
3. By using an overlap ratio greater or equal to 40% it is
possible to remove 466 out of 1219 (38%) of the false posi-
tives while removing 3 out of 61 (5%) true positives. Simi-

the selected pixels overlaid onto the section image. The resi- 13 larly, by using a threshold value greater or equal to 45% it is
dent manually tagged vessels up to a fourth or fifth generation possible to remove 29% of the false positives while removing
in five different cases each containing approximately 45 sec- only 1.6% of the true positives. The use of this overlap mea-
tion images. The manual labeling of vessels in CT images is sure necessitates the segmentation of vessels. The vessel tree
typically a tedious process, and the inevitable omission of ,, construction in this context has the advantage of involving
fourth or fifth generation vessels during manual labeling higher level knowledge regarding the nature of the data which
resulted in an incomplete standard. Accordingly, the compari- is used for segmenting the data while coping with noise and
son of automated results with the manually labeled vessels gaps. Additionally, by using features computed based on the
was only used to identify vessels that were missed by the constructed vessel tree it is expected that these results can be
automated algorithm (i.e., false-negative vessel pixels). improved further.
TABLE 3
Overlap Threshold
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 8 90 95 100
No. of 8 11 12 5 3 6 3 2 1 0 0 0 0O 0 0 0 0 0 0O O
removed TP’s
No. of 160 73 104 112 100 107 97 116 8 66 52 43 35 15 10 12 7 6 5 11
Removed FP’s
The comparison of the manual and automated results was The trade-off between false positives and false negatives is
performed by computing the intersection of the correspond- an important issue. With a threshold of 40%, nearly twice as
ing voxel data sets and evaluating the ratio between the num- 40 many false positives could be reduced relative to a 50%
‘per of voxels in the intersection set and the number of voxels threshold; the associated cost of this improvement is three
in the Iilanuaiﬂ set. T}IF i esult W?,S then corr}\ﬁ:rted to r eﬂeit the more false negatives representing a true positive loss of 5%.
PEICCIILage o VESSEL 1a 8¢ NCgAllve Crror. LAC expertment was The relative merits of different thresholds in terms of false-
repeated with and without the removal of nodules in the .. . .
. . . . 45 positive reduction and true-positive loss can be seen from the
filtering stage. The results of this experiment are presented in . . .
. complete set of data in Table 3. The main source of errors in
Table 2. As can be observed the average false negative error b d . < th . i i
rate without nodules is approximately 10% whereas with the r econstr}lcte L vesse tree 1s e suppression o parts o
nodules it is only 1%. A detailed analysis of the results reveals vessels and junctions not conforming to the ideal models.
that the majority of vessel errors that are caused by nodule The overlap-ratio-approach to the reduction of false posi-
removal occur mainly in large vessels at the center of the lung 30 tives generated by the separate automated lung nodule detec-
that do not conform to the ideal model of vessel/junction tion method was used as a straightforward mechanism for
eigenvalues distribution. combining the output from the vessel segmentation method
TABLE 2
Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7
With 8.78 6.44 15.03 9.21 1047 9.98 3.17
Removal
Without 1.06 0.72 0.98 1.41 1.23 1.08 0.26
Removal

The final assessment of the vessel tree reconstruction algo-

rithm evaluated the results in terms of their effect on the g5

nodule detection algorithm according to S. Armato III, M.
Altman, and P. La Riviere, “Automated detection of lung

and the nodule detection method. The logic of such an
approach is based on the observation that most false positives
generated by the nodule detection method involve pulmonary
vessels.
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Thus the invention provides a novel approach to vessel tree
representation construction, and its application to, among
other things, nodule detection in thoracic CT scans. The
method of this invention enhances vessels, including vessel
junctions, and nodules by using enhancing filters, and uses
fuzzy shape analysis for vessel tree representation construc-
tion.

The vessel enhancing filters of this invention are less sen-
sitive to noise, due at least in part to the use of first-order
partial derivatives. The proposed filters are computed in adap-
tive windows to avoid the need for processing at multiple
scales. The filters of this invention are faster than multiple-
scale filters and do not suffer from the problem of object
enlargement due to large kernel smoothing at coarse scales.
The correlation-based filters of this invention employ three
sets of eigenvalues of the correlation matrix and so are
capable of making a distinction between junctions and nod-
ules which is not possible when using one set of eigenvalues.
The filter output is particularly useful in constructing vessel
tree representation that are, in turn, useful for, for example,
enhancing nodule or other diseased tissue detection in diag-
nostic images.

It will be appreciated that details of the foregoing embodi-
ments, given for purposes of illustration, are not to be con-
strued as limiting the scope of this invention. Although only a
few exemplary embodiments of this invention have been
described in detail above, those skilled in the art will readily
appreciate that many modifications are possible in the exem-
plary embodiments without materially departing from the
novel teachings and advantages of this invention. Accord-
ingly, all such modifications are intended to be included
within the scope of this invention, which is defined in the
following claims and all equivalents thereto. Further, it is
recognized that many embodiments may be conceived that do
not achieve all of the advantages of some embodiments, par-
ticularly of the preferred embodiments, yet the absence of a
particular advantage shall not be construed to necessarily
mean that such an embodiment is outside the scope of the
present invention.

What is claimed is:
1. A method for improving a diagnostic image, the method
comprising:
obtaining a diagnostic image from an imaging device, the
diagnostic image including vessels and surrounding tis-
sues;
removing non-relevant regions in the image using a data
processor;
identifying a plurality of voxels of the image;
determining a center of an object in the plurality of voxels
of the image as a function of derivatives of a voxel
intensity value;
establishing a local neighborhood window around the
determined center of the object;
determining an intensity gradient vector field within the
local neighborhood window; and
identifying the object as a vessel, vessel junction, or a
nodule using the intensity vector field;
wherein at least one of the steps of determining a center of
an object, establishing a local neighborhood window,
and determining an intensity gradient vector field is
performed using a first-order partial derivative calcula-
tion.
2. The method of claim 1, wherein the plurality of voxels
comprises at least voxels having an intensity value above a
predetermined threshold.
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3. The method of claim 1, further comprising analyzing a
regularized vessel direction in the local neighborhood win-
dow using the intensity gradient vector field.

4. The method of claim 1, further comprising constructing
a vessel tree representation from a plurality of identified
vessels and vessel junctions.

5. The method of claim 1, additionally comprising deter-
mining within the local neighborhood window a principal
vessel direction along a minimal principal curvature direction
of a vessel surface obtained by determining a direction that
minimizes a projection of all gradient vectors in the local
neighborhood window.

6. The method of claim 5, additionally comprising deter-
mining an eigenvector belonging to a largest eigenvalue of the
local neighborhood window.

7. The method of claim 1, further comprising determining
a principal vessel direction of the object as a function of an
eigenvalue of a correlation matrix of the regularized vessel
directions within the intensity gradient vector field.

8. The method of claim 7, further comprising removing
vectors aligned with the principal vessel direction and deter-
mining whether an additional principal vessel direction is
present, and identifying the object as a vessel junction when
the additional principal vessel direction is present.

9. The method of claim 7, additionally comprising con-
structing a vessel tree representation as a function of the
eigenvalue associated with the principal vessel direction for
each of a plurality of local neighborhood windows of the
diagnostic image.

10. The method of claim 1, further comprising:

determining a plurality of vessel vector angles in the local

neighborhood;

determining a non-parametric estimate of the distribution

of the angles in the local neighborhood;

determining a plurality of parametric estimates of the dis-

tribution of the angles as a function of an expectation
maximization algorithm;

measuring a distance between the non-parametric estimate

and at least one of the parametric estimates.

11. The method of claim 10, additionally comprising con-
structing a vessel tree representation as a function of the
distance measurement.

12. A method for improving a diagnostic image, the
method comprising:

obtaining a diagnostic image from an imaging device, the

diagnostic image including vessels and surrounding tis-
sues;

removing non-relevant regions in the image using a data

processor;
identifying and enhancing the vessels to be detectable
against the surrounding tissues of the lung in the lung
image by establishing a plurality of local neighborhood
windows each including a plurality of voxels represent-
ing an object, determining a center of an object in each of
the windows, determining an intensity gradient vector
field within each of the windows, and determining a
principal vessel direction within each of the windows as
matching a vector that is approximately orthogonal to
gradients of the intensity gradient vector field; and

constructing a three-dimensional vessel tree representation
from the enhanced vessels and vessel junctions using the
data processor.

13. The method of claim 12, additionally comprising sub-
tracting the vessel tree representation from the image to
enhance the visibility of nodules in the image.

14. The method of claim 12, wherein constructing a vessel
tree representation from the enhanced vessels comprises pro-
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ducing a plurality of fuzzy shape vessel representations and
combining the plurality of fuzzy shape vessel representations
to form a vessel segment.

15. The method of claim 12, wherein constructing a vessel
tree representation from the enhanced vessels comprises:

producing a plurality of fuzzy spheres, each of the plurality

of fuzzy spheres disposed around the center of an object
in one of the plurality of voxels; and

combining the plurality of fuzzy spheres to form a vessel

segment.

16. The method of claim 15, additionally comprising
adjusting the orientation of the vessel segment.

17. The method of claim 15, additionally comprising
applying a vessel tree reconstruction algorithm to merge the
vessel segment with a plurality of other vessel segments to
form the vessel tree representation.

18. The method of claim 12, additionally comprising ana-
lyzing properties of the vessel tree representation.

19. The method of claim 12, wherein enhancing the vessels
comprises an iterative principal direction estimation or a
probabilistic direction analysis.
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20. A method for improving a diagnostic image, the
method comprising:

obtaining a thoracic diagnostic image from an imaging
device;

removing non-lung regions in the image to provide a lung
image including vessels and surrounding tissues of a
lung;

enhancing the vessels to be detectable against the sur-
rounding tissues of the lung in the lung image by estab-
lishing a plurality of local neighborhood windows each
including a plurality of voxels representing an object,
determining a center of an object in each of the windows,
and determining a principal vessel direction within each
of the windows;

constructing a three-dimensional vessel tree representation
from the enhanced vessels; and

subtracting the vessel tree representation from the lung
image to enhance the visibility of nodules using the data
processor.



