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OPTIMAL PLACEMENT OF WAVELENGTH
CONVERTERS IN TREES AND TREES OF
RINGS

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to a method for determining the
optimal placement of wavelength converters in optical net-
works and, more particularly, to a method for placing the
minimum number of wavelength converters in a fiber optic
network, all the while optimizing the bandwidth use. The
invention maps minimal converters to support optimal band-
width utilization in hierarchically structured fiber optic
networks, including trees, trees of rings, forests, and any
combination thereof connected networks.

2. Description of Prior Art

In wavelength-routed WDM (wavelengths-division
multiplex) optical networks without any wavelength
conversion, the wavelength assignment must meet the wave-
length continuity constraint; that is, the same wavelength is
allocated on all the links in the path established for a
connection. However, this constraint can be relaxed when
wavelength converters are placed at certain nodes. If a node
of the network contains a wavelength converter, any path
that passes through this node may change its wavelength. In
a network with wavelength converters, the wavelengths are
assigned to individual links of all paths, with the restriction
that the same wavelength be allocated on all of the links in
any subpath that does not pass through a wavelength con-
verter. It is apparent that wavelength assignments in net-
works with wavelength converters can sometimes be more
efficient, that is use fewer wavelengths, than optimal wave-
length assignments for the same set of paths when no
wavelength converters are available. One extreme example
is that if each node contains a wavelength converter, the
number of wavelengths required for any routing is reduced
down to the natural congestion or load bound, defined to be
the maximum number of paths passing through any one link
in the network. Another extreme example is placement of a
converter at a single arbitrary node in a WDM ring, which
ensures that the number of wavelengths required for any
routing is equal to its load.

This, in turn, raises the question as to the placement of
wavelength converters in a WDM network so that any
routing can be satisfied using no more wavelengths than if
there were wavelength converters at every node. A set S of
nodes in a network is defined to be sufficient if, placing
converters at the nodes in S, every set of paths can be routed
with a number of wavelengths equal to its congestion bound.
The minimum sufficient set problem (MSSP) was shown to
be NP-complete in general WDM networks. In Kleinberg, J.
et al., “Wavelength Conversion in Optical Networks”, Pro-
ceedings 10th ACM-SIAM Symposium On Discrete
Algorithms, 1999, a tight connection between the minimum
sufficient set problem in bi-directed graphs and the mini-
mum verteX cover problem in undirected graphs was estab-
lished. As a consequence of this connection, a simple
two-approximation algorithm for a minimum sufficient set
problem in bi-directed graphs was obtained. In addition, it is
relatively easy to give an approximation-preserving reduc-
tion from the minimum vertex cover problem to the mini-
mum sufficient set problem in bi-directed graphs.

While the teachings of Kleinberg, J. et al. set forth
approximation solutions for general WDM networks, the
topologies of most practical WDM networks are not general.
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In particular, trees and trees of rings are of more practical
concrete relevance to the telecommunications industry. For
practical reasons, backbone telecommunication networks
need to reflect irregularity of geography, non-uniform clus-
tering of users and traffic, hierarchy of services, dynamic
growth, etc. In addition, wide-area multiwavelength tech-
nology is evolving around current signal wavelength net-
working architectures and existing fiber networks. These are
mainly SONET rings and tree-like interconnection of such
rings. (See, for example, Ballart, R. et al., “SONET: Now its
the standard optical network”, IEEE Communications
Magazine, Pages 8-15, March 1989.)

We have found that the minimum sufficient set problem in
these special topologies can be solved in polynomial time
and, therefore, is not NP-complete. Our algorithms to find
the minimum sufficient sets in these topologies are based on
the reduction of the minimum sufficient set problem to the
minimum vertex cover problem. These algorithms are very
efficient and easy to implement.

SUMMARY OF THE INVENTION

It is one object of this invention to provide a method for
determining the optimal placement of wavelength convert-
ers in a fiber optic network so as to utilize the minimum
number of wavelength converters while optimizing the
bandwidth use.

This and other objects of this invention are addressed by
a method for determining an optimal placement of wave-
length converters in an optical network while optimizing
bandwidth use comprising the steps of generating a skeleton
undirected graph of a WDM network, constructing a con-
traction graph from the skeleton undirected graph, and
determining a minimum vertex cover of the contraction
graph. This method is applicable to WDM networks com-
prising any of a number of underlining topologies including,
but not limited to, trees, rings, trees of rings, forests and any
combinations thereof.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other objects and features of this invention will
be better understood from the following detailed description
taken in conjunction with the drawings wherein:

FIG. 1a is a diagram showing possible paths which can be
taken in a network to get from point X to point Y;

FIG. 1b is a diagram showing the use of a wavelength
converter in the network of FIG. 1a as a means for avoiding
a congested link in the network;

FIG. 24 is a diagram of an example of a network com-
prising a clockwise ring of five nodes and the communica-
tion pairs to set up where no wavelength converters are
employed;

FIG. 2b is a diagram showing the network of FIG. 2a
having a wavelength converter for setting up the communi-
cation pairs;

FIG. 2¢ is a diagram of the network of FIG. 2b,which
shows the manner in which the number of wavelengths
required is reduced by the wavelength converter from five to
three;

FIG. 3 is a diagram showing the various types of nodes or
vertices in a graph corresponding to a network;

FIG. 4 is a diagram showing a contraction graph;

FIG. § is a diagram showing a leaf root and leaf node
arrangement,
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FIGS. 6a, 6b and 6c are diagrams showing application of
the algorithm utilized in the method of this invention to a
binary tree; and

FIG. 7 is a diagram showing a tree of rings network.

DESCRIPTION OF PREFERRED
EMBODIMENTS

Definitions

As used herein, the term “graph” refers to a set of vertices
or nodes connected by edges or lines. Graphs are usually
represented by G=(V, E), where V is the set of vertices and
E is the set of edges.

As used herein, the term “undirected graph” refers to a
graph whose edges are unordered pairs of vertices. That is,
each edge connects two vertices.

As used herein, the term “directed graph” refers to a graph
whose edges are ordered pairs of vertices, that is, each edge
can be followed from one vertex to the next.

As used herein, the term “connected graph” refers to an
undirected graph which has a path between every pair of
vertices.

As used herein, the term “NP” refers to a class of
problems for which answers can be checked for correctness
by an algorithm whose run time is polynomial in the size of
the input. This does not require or imply that an answer can
be found quickly, only that any claimed answer can be
verified or refuted quickly. NP is the class which a nonde-
terministic machine accepts in polynomial time.

As used herein, the term “NP-complete™ refers to a class
of problems for which answers can be checked for correct-
ness by an algorithm whose run time is polynomial in the
size of the input (it is NP) and no other NP problem is more
than a polynomial factor harder. Informally, a problem is
NP-complete if answers can be verified quickly and the
quick algorithm to solve this problem can be used to solve
all other NP problems quickly. A trivial example of NP, but
not NP-complete, is finding the AND of two boolean bits.
The problem is NP, because one can quickly verify that the
answer is correct, but knowing how to AND two bits doesn’t
help one quickly find, say, a tour of a graph. So AND is not
NP-complete.

As used herein, the term “vertex cover” refers to a set of
vertices in an undirected graph where every edge connects
at least one vertex. The vertex cover problem is to find a
minimum size set and is NP-complete.

As used herein, the term “polynomial time” refers to the
case when the execution time of a computation, p(n), is no
more than a polynomial function of the problem size, n.
More formally, p(n) equals O(n®) where k is a constant.

As used herein, the term “tree” refers to a data structure
accessed beginning at the root node. Each node is either a
leaf or an interior node. An interior node refers to or has
links to one or more child nodes and is called the parent of
its child nodes. Contrary to a physical tree, the root is usually
depicted at the top of the structure and the leaves are
depicted at the bottom.

As used herein, the term “forest” refers to a collection of
one or more trees.

A WDM network is a bi-directed graph G=(V, E), that is
one for which (u, v) is an element of E if and only if (v, u)
is an element of E. The undirected graph obtained from G by
replacing each bi-directed pair of edges with a single undi-
rected edge is the skeleton of the network G, that is, G,=(V,
E". Aset is sufficient in G, if and only if it is sufficient in G.
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Avertex v is referred to as a branching node if its degree in
G, is greater than 2, a relay node if its degree in G, is equal
to 2, or a leaf node if its degree in G, is equal to 1. A graph
10 has leaf nodes 11, relay nodes 12, and branch node 13 as
shown in FIG. 3. A node of a path P is an internal node in
the path if it is not one of the two endpoints.

FIG. 1a shows a network with three paths ABC, DE, and
FG. For a signal to travel from X to Y, the signal can travel
any of these three paths. However, if the link BC is
congested, it would be desirable to avoid this congested link.
By placing a wavelength converter at point A, the signal X
at A may be converted enabling the path X—+A—=D—E—Y
as shown in FIG. 1b.

FIG. 2a shows a network comprising a clockwise ring
having five vertices or nodes. To avoid possible congestion
in going from Point 1 to Point 4 by way of Points 2 and 3,
it is desirable to enable a communication between Point 1
and Point 4. In the example shown in FIG. 24, there are five
communication pairs to set up—{(1, 4), (2, 5), (3, 1), (4, 2),
(5, 3)]. Because each of these communication pairs shares
some link of the ring, they cannot use the same wavelength.
That is, each pair needs its own wavelength and, without the
use of a wavelength converter, five wavelengths will be
required. However, by adding a wavelength converter 20 as
shown in FIG. 2b, the number of wavelengths needed to set
up the communication pairs is only three, represented by
W1, W2 and W3. Thus the frequency for communication
pair (1, 4) is represented by W1, the frequency for commu-
nication pair (2, 5) is represented by W2; and the frequency
for communication pair (3, 1) is represented by W3. Without
the presence of wavelength converter 20, the frequency of
the signal going to communication pair (4, 2) is the same as
the frequency for communication pair (4, 1), represented by
W1. However, with wavelength converter 20 in place, as the
signal passes through wavelength converter 20, the fre-
quency is switched for communication pair (1, 2) to a
different frequency represented by W2. A similar situation
exists for the communication pair (5, 3). This, instead of five
wavelengths, only three wavelengths are required. FIG. 4 is
a diagram showing a method for constructing another undi-
rected graph G, =(V,, E) from the graph G, referred to as
the contraction of the graph G,. The vertex set V_ consists
of all branching nodes 13 in graph G,. For any two branch-
ing nodes u and v, (u, v) is an edge in E_ if and only if there
exists a path in G, between u and v such that all internal
nodes in this path are relay nodes. By deleting leaf nodes 11
and relay nodes 12 and merging the relay paths, one arrives
at the contraction graph G, shown in FIG. 4.

As previously stated, any minimum vertex cover of the
contracted graph G, is also a minimum sufficient set of graph
G,. To find a minimum sufficient set in graph G, it is only
necessary to find a minimum vertex cover of its contraction,
a potentially simpler undirected graph. In general, the mini-
mum vertex cover problem is NP-complete and it has a
two-approximation algorithm. It is a fixed-parameter trac-
table problem whether a graph has a vertex cover of size at
most k can be decided with time O(f(k)p(n)) where p(n) is
a polynomial function of n, the number of vertices in G, and
f(k) is a fixed-parameter function. If the graphs are planar,
the polynomial-time approximation scheme exists.
However, when the graph is a tree or a tree of rings, as
discussed hereinbelow, a minimum vertex cover can be
found in polynomial time.

For WDM networks whose underlying topologies are
trees, because any minimum vertex cover of the contraction
tree 1s also a minimum sufficient set of the original network,
and because the contraction of any tree is also a tree with the
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additional property that all internal nodes have degrees of at
least three, it is only necessary to identify a minimum vertex
cover of the contraction tree.

A general polynomial-time algorithm to find minimum
vertex covers in forests, a broader set of topologies than
trees, is as follows. An internal node of a forest is referred
to as a leaf-root if its nodal degree is more than one and one
of its neighbors is a leaf node. See FIG. 5§ which shows a
portion of a network having a leaf node 25 and a leaf root
26. If a forest has no leaf-roots, then all edges are isolated
and its minimum vertex cover consists of one node from
each edge. If a forest contains some leaf-roots, then there is
a minimum vertex cover which contains all the leaf-roots.
This is shown as follows. Let C be a minimum vertex cover
of graph G which contains the most number of leaf-roots of
graph G, and let u be any leaf-root of graph G that is not in
C. Let v be any leaf node that is a neighbor of u. Clearly, v
must be in C, for otherwise the edge (u, v) would not be
covered by C.

Consider C'=(C-{v})U{u}. Then C' is also a minimum
vertex cover of graph G and contains one more leaf-roots of
G than C. If it is assumed that it is not true that there exists
a minimum vertex cover of graph G which contains all
leaf-roots of G, the selection of C is contradicted. Thus, it
must be true that a minimum vertex cover of G exists which
contains all leaf-roots of G.

FIGS. 6a, 6b and 6c are diagrams showing application of
the algorithm used in the method of this invention to a binary
tree. Contraction of binary tree 30 (FIG. 6a) produces the
contraction graph (FIG. 6b) having four leaf roots 4, 5, 6,
and 7. By combining this set of leaf nodes with node 2 or 3,
one arrives at a minimum sufficient set comprising {4, 5, 6,
7,2} or {4,5,6,7,3} (FIG. 6¢). In either case, all edges are
covered. So, for the binary tree graph in FIG. 6a, the
minimum sufficient set is C={4, 5, 6, 7, 2} or C ={4, 5, 6,
7, 3}; and wave converters are placed at these nodes.

Let G be any forest and C be any minimum vertex cover
of G which contains all leaf-roots of G. Let G' be the graph
obtained from G by removing all leaf-roots of G and their
incident edges. G' is referred to as the residue of G. Let C'
be the vertex set obtained from C by removing all leaf-roots
of G. Then G' is also a forest and C' is a minimum vertex
cover of G'. Applying the proposition that a minimum vertex
cover of G exists which contains all leaf-roots of G to G'
results in another minimum vertex cover C" which contains
all leaf-roots of G'. From this, an example algorithm to find
the minimum vertex cover of a forest shown in Table 1 is
derived.

TABLE 1

Algorithm to find a minimum vertex cover of a forest.

Algorithm: MVC__Forest

Input: a forest G;
Output: A minimum vertex cover of G
begin

if G has no leaf root
Return the set consisting of one node from
each edge;
else
add all leaf-roots of G to the vertex cover of
G;
form the residue graph G' of G;
find the minimum vertex cover of G'
recursively;
add them to the vertex cover of G;
end

10

20

25

30

35

40

45

50

55

60

65

6

In the algorithm MVC__ Forest, all leaf-roots are selected
in a single recursive step. One variation is to select only one
leaf-root in a step. Such leaf-root can be chosen such that its
removal and the removal of its incident edges from a tree G
results in another tree. Such selection could potentially
simplify the implementation. For both approaches, suitable
data structures should be carefully designed to achieve a
faster running time.

A tree of rings, as shown in FIG. 7, is a widely used
interconnection topology in the telecommunications indus-
try. In this topology, each node is within a ring and these
rings are interconnected by means of a tree-like topology. It
will be apparent to those skilled in the art that the contraction
of any tree of rings is also a tree of rings. As the minimum
vertex cover of the contraction graph provides an optimal
sufficient set of the original graph, a polynomial-time algo-
rithm that finds the minimum vertex cover in an arbitrary
tree of rings can be provided.

It is well known that there are at least two leaf-nodes in
any tree. Similarly, it can be shown that in any tree of rings,
there exists at least two rings in which all nodes have a
degree of 2 except one whose degree is 3. Such rings are
referred to as leaf-rings. The only node in a leaf-ring whose
degree is 3 is called a bridging-node. If it is supposed that
a leaf-ring contains m nodes, then any minimum vertex
cover contains at least

5]

nodes in this leaf-ring, where the ceiling of x is the smallest
integer greater than or equal to x. As shown hereinbelow,
there is always a minimum vertex cover which contains the
bridging-node of any leaf-ring.

Consider the proposition that, where G is a tree of rings,
there exists a minimum vertex cover of G which contains all
bridging-nodes of all leaf-rings in G. To show that this
proposition is true, assume that it is false and let C be a
minimum vertex cover of G which contains the most number
of bridging-nodes of G, and let u be any bridging-node of G
that is not in C. Let R be the leaf-ring containing the
bridging-node u. Then R cannot be a self-loop, for otherwise
u must be in any vertex cover of G and, thus, in C too. So,
R contains mZ2 nodes, for example, v,,v,, ..., V,,, where
v,=u in a clockwise order. Clearly C must contain at least

m
B
nodes in R, that is,

m
ICORl = [7]
where [s| is the cardinality of the set s.
If
C=(C-R)U{v;:1=i<m,i is odd}
C'is also a vertex cover of G, and
"= |C - m
Ic1=1C-RI+[5]

=lc-1cNRI+[F]
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-continued
=|C)

Thus, C' is also a minimum vertex cover of G. On the other
hand, C' contains one more bridging-node of G than C. This
contradicts the selection of C as a result of which the
proposition must be true.

The proof of this proposition suggests a minimum vertex
covering of a leaf-ring. Suppose that a leaf-ring R contains
m nodes, for example, v;, v, . .., V,, in the clockwise order
in which v, is its bridging node. The set of vertices

{v;1Zi=m, i is odd}
is called a canonical vertex cover of the leaf-ring R. For any
leaf-ring R, there is a minimum vertex C of G which
contains its canonical vertex cover. Let G-R denote the
graph obtained from G by removing all nodes in R and their
incident edges. Let C-R denote the vertex set obtained from
C by removing the canonical vertex cover of R. Then G-R
is also a tree of rings and C-R is a minimum vertex cover
of G'. On the other hand, the union of the canonical vertex
cover of R and any minimum vertex cover of G-R is also a
minimum vertex cover of G. Based on this observation, the
algorithm shown in Table 2 can be used to find the minimum
vertex cover of a tree of rings.

TABLE 2

Algorithm to find a minimum vertex cover of a tree of rings.

Algorithm: MVC__Tree__Rings

Input: A tree of rings G;
Output: A minimum vertex cover of G
begin

C=d

while G is not empty
find a leaf-ring R in G;
add the canonical vertex cover of R to C;
G=G-R;
output C;
end

The algorithm MVC_ Tree_ Rings removes one leaf-ring
at each step and adds its canonical vertex cover. With
carefully selected data structures and implementation, its
run-time can be linear in the size of the network.

From the algorithm MVC__Tree_ Rings, the cardinality
of any minimum vertex cover of a tree of rings can be
explicitly counted.

If we let G=(V, E) be a tree of rings, and k be the number
of odd-sized rings in G, then the cardinality of any minimum
vertex cover of G is.

V] +k
2

This can be shown as follows. Let R;, R, . . ., R, be the
component rings in G. According to the above algorithm,
each ring will evidentially become a leaf-ring and its canoni-
cal vertex cover will be added to the minimum vertex cover
of G. It should be noted that the canonical vertex covers of
different component rings are disjoint. Thereby, the cardi-
nality of any minimum vertex cover of G is:

IR IR;| [Ri| +1
15 1= * T+

i
i=1 i:|R;lis even i:|R;lis odd
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-continued

In addition, the cardinality of any minimum sufficient set
is at least half of the number of branching-nodes. To reduce
the number of converters needed, the topology should be
carefully designed. For example, the topology can be chosen
such that the number of branching nodes in each component
ring is even.

While in the foregoing specification this invention has
been described in relation to certain preferred embodiments
thereof, and many details have been set forth for purpose of
illustration, it will be apparent to those skilled in the art that
the invention is susceptible to additional embodiments and
that certain of the details described herein can be varied
considerably without departing from the basic principles of
the invention.

We claim:

1. A method for determining an optimal placement with a
minimal number of wavelength converters in an optical
network while optimizing bandwidth use comprising the
steps of:

generating a skeleton undirected graph of a WDM net-

work;

constructing a contraction graph from said skeleton undi-

rected graph; and

determining a minimum vertex cover of said contraction

graph; and

determining the optimal placement with a minimal num-

ber of wavelength converters in the optical network
while optimizing bandwidth use.

2. A method in accordance with claim 1, wherein said
WDM network comprises an underlying topology of trees.

3. A method in accordance with claim 1, wherein said
WDM network comprises an underlying topology of rings.

4. A method in accordance with claim 1, wherein said
WDM network comprises an underlying topology of trees of
rings.

5. A method in accordance with claim 1, wherein an
underlying topology of said WDM networks is a forest.

6. A method for determining an optimal placement with a
minimal number of wavelength converters in an optical
network having an underlying topology selected from the
group consisting of a forest, tree of rings, rings and trees
comprising the steps of:

determining a minimum vertex cover for said optical

network; and

determining the optimal placement with a minimal num-

ber of wavelength converters in the optical network.

7. A method in accordance with claim 6, wherein said
minimum vertex cover is determined using a polynomial-
time algorithm.

8. A method in accordance with claim 7, wherein said
underlying topology is a forest comprising at least one
leaf-root and said algorithm comprises the steps of adding
all of said leaf-roots of said optical network to a vertex cover
of said optical network, forming a residue network of said
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optical network, finding a residue network minimum vertex
cover of said residue network and adding said residue
network minimum vertex cover to said vertex cover of said
optical network.

9. A method in accordance with claim 7, wherein said
underlying topology is a tree of rings and said algorithm is
an algorithm comprising the steps of determining a vertex
cover for said optical network, finding a leaf-ring in optical
network, adding a canonical vertex cover of said leaf-ring to
said vertex cover and subtracting said leaf-ring from said
optical network, resulting in said minimum vertex of said
optical network.

10. The method for determining an optimal placement of
wavelength converters in an optical network according to
claim 6 wherein the underlying topology consists of a forest
and wherein in determining a minimum vertex cover for said
forest optical network an algorithm is performed to select all
leaf-roots in a single recursive step.

11. The method for determining an optimal placement of
wavelength converters in an optical network according to
claim 6 wherein the underlying topology consists of a forest
and determining a minimum vertex cover for said forest
optical network further comprises the steps of performing
the algorithm:

Algorithm: MVC_Forest
Input: a forest G;
Output: A minimum vertex cover of G
begin

if G has no leaf root

Return the set consisting of one node from each edge;
else

add all leaf-roots of G to the vertex cover of G;

form the residue graph G' of G;
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-continued

find the minimum vertex cover of G' recursively;
add them to the vertex cover of G;
end.

12. The method for determining an optimal placement of
wavelength converters in an optical network according to
claim 6 wherein the underlying topology consists of a tree of
rings and wherein in determining a minimum vertex cover
for said tree of rings optical network an algorithm is per-
formed which removes one leaf-ring at each step and adds
a canonical vertex cover of the leaf-ring.

13. The method for determining an optimal placement of
wavelength converters in an optical network according to
claim 6 wherein the underlying topology consists of a tree of
rings and determining a minimum vertex cover for said tree
of rings optical network further comprises the steps of
performing the algorithm:

Algorithm: MVC__Tree__Rings

Input: A tree of rings G;
Output: A minimum vertex cover of G;
begin

C=d

while G is not empty
find a leaf-ring R in G;
add the canonical vertex cover of R to C;
G=G-R;
output C;
end.




