United States Patent
Bangs et al.

(111 Patent Number; 4,877,940
451 Date of Patent: Oct. 31, 1989

{541

[73]

73
[21]
[22]

(51}
{52]

(58]

[561

USING INFRARED IMAGING TO MONITOR
AND CONTROL WELDING

Inventors: Edmund R, Bangs, Indian Head Park;
Nicholas E. Longinow, Oak Park;
James R, Blaha, Palos Heights, all of
11

Assignee: IIT Research Institute, Chicago, Il
Appl. No.: 68,620
Filed: Jun. 30, 1987

Int. CLA s B23K 9/12
US. CL v, 219/124.34; 219/130.01;
219/130.21; 364/200; 364/275.3

Field of Searchcconu.. 219/124.34, 130.01,
219/130.21, 137 PS, 125.1, 110; 364/200, 275.3

References Cited
U.S. PATENT DOCUMENTS

4,555,614 1171985 Morris et al.oceecuneee 219/130.01
4,594,497 6/1986 Takashi et al. ... 219/124.34
4,611,111 9/1986 Baheti et al.c......... 219/124.34

OTHER PUBLICATIONS

R. Brosilow, “Commentary”, Welding Design & Fabri-
cation, page 8, March, 1986.

Primary Examiner—Clifford C. Shaw
Attorney, Agent, or Firm—Fitch, Even, Tabin &
Flannery

[57] ABSTRACT

The technique and arrangement of distributed, real
time, intelligent control of welding including IR detec-
tion and measurement of process conditions, and con-
trolling process parameters in view of a knowledge base
including a predetermined rule set for interpreting the
results of IR detection. The arrangement includes a
multilevel communication scheme internally and be-
tween hardware nodes of the arrangement, and the
data-driven scheduling of inference processes under
direction of a semantic network.

105 Claims, 16 Drawing Sheets

13
s
IMAGE
L2) 16

W R
AR%%DA’/:GEME NT

ROBOT
22
7
1o 5 /zﬂ/j)m 4
FOSITION 14
CONTROLLER
16(3)

U.S. Patent 0Oct. 31, 1989 Sheet 1 of 16 4,877,940

3
FIG.I s
RADIOMETER|— ok 4 (AASEL | cONTROLLER
15 | 16(1) 16

WELDER
ARR[ANGEMENT

ROBOT
22
A
) 14(2)
127 14(1)

EXPERT
CONTROLLER

US. Patent Oct. 31, 1989 Sheet20f16 4,877,940
FlG2A

22 "

2 I

= 222/ —~--0037 (0929 M)MISALIGNMENT
00000073 (1859M) MISALIGNMENT
ees (/|0 (2788M) MISALIGNMENT

0012 (03I0M) MISA LIGNMENT

FIG.7
MIX EXPERT
CONTROLLER
115¢
" INTERFACE _(I5/
PROCESS A
CONTROLLER 16
(XADVAC()

116 ’ | RS 422,
- i ETHERNET, MAR TOREIC.
SENSOR |

117, L EXTERNAL CONTROL

NT
CONTROLLED ELEME o et
ELEMENT

3

4,877,940

Sheet 3 of 16

Oct. 31, 1989

U.S. Patent

HOLYWSIN("9G6T) ,6G10°°°

HILYWSIN (wwg60€) ,2clD°°°
HILYWSIN (ww6G8°1) , /00~ 7~

HILY WSIN (@0I1£0) , 2100 222

877.940

ONIN 3O LOOY (»“6G L) 8F1°0°° °°

' ONINIJO 1003E008), 00~~~ °_~
ONINIJO 100 ,0—— o~

=

B

-

3

=

n

&

=

=

g

S

U.S. Patent

US. Patent 0ct. 31, 1989 Sheet sof16 4,877,940

FIG. 3A
WELDER ARRANGEMENT
FROM WELD WIRE WELDING FROM
conrro-| |2 g 4y SRS el oo
LLER ’ LLER
16 16
INERT GAS
SHIELD SOURCE
GAS DEW 17°(1) R
TO POINT =
- = TEMPERATURE
CONTRO-| | DETECTOR
LLER 16 (2)
16 -
TORCH CONTROLLER |wm
_18(2)
/:SOM 20(5)
TROLL 16 (1,2)
F16.38 ONFORER 16U o i
TO WELD
WIRE
20 (1) - SQURCE
SHIELD GAS
DET EC TOR
16(2)
20 (5) 20 (2) *

SHIELD GAS

US. Patent oct. 31, 1989 Sheet 60f 16 4,877,940
FIG.5 /6)
PROCESS CONTROLLER OR EXPERT
ADVISORY ADAPTIVE CONTROLLER
(XADVAC)
MULT - INF ERENCING
EXPERT (MIX)
SYSTEM
115
i
116 117 _J{CONTROLLED
\|SENSOR HERRL
FIGSE
~133 [31/
STATUS MIX 115 KNOWLEDGE
INFORMAT [ON BASE
BASE
//97
NATI
12IN | PR G5y INFERENCE
| SCHEDULING PROCESSOR
MECHANISM
136, /29\
COMUNICATIONS LOGICAL
/2)4 MECHANISM LAYER
KNOWLEDGE PHYSICA L
LAYER 130/ aYER

US. Patent 0ct. 31,1989 Sheet 7 of 16 4,877,940

FiG8

154" 15 115"

/ N

CONTROLLER

ACTOR
1150

)
ANA LYZER
16 (1)
RADIOMETER
15

NE TWORK
[18a

US. Patent oct. 31, 1989 Sheet 8 of 16 4,877,940

FIG.S
218) 60// 2/5)
INFERENCE KNOWLEDGE BASES
SCHEDULER | |KNOWLEDGE — RULES
MECHAN! SM (= —_ ggAngCsT
"OVX /LsE/y el p — RE LAT/ONAL
SCHEDULER [~ 2!8

INFERENCE |2/9
PROCESSOR

BLACKBOARD 742
~STATUS

—OUTGOING MESSAGES
—INCOMING MESSAGES

COMMUNICATIONS NETWOPK 150
151 ~—~KNOWLED GE LAYER

152\
MixX| LOGICAL LAYER

16 | _TRANSMITTER RECEIVER MAP FOR ASSOCIATING
INFERENCE PROCESS WITH SPECIFIC
LOCAT IONS OR NODES, T HEREBY ESTABLISHING
TRAN SPARENCY

P+_-/r>/;5 /AggLLALAOYR’EI;OP COMMUNICATION
= TRA

IB3IN ETHERNET, RS422 MAP QRTOP
—DATA COMM.: EfelfAN/SM% O

{1 CUSTOM
HS5u—""|FEATURES

US. Patent 0ct. 31, 1989 Sheet 9of 16 4,877,940
FlG.10

INFERENCE SCHEDULER
218

RUNNING QUEUE 218 (™

READY QUEUE 218 (2) |we——r17

SUSPEND QUEUE 218 (3) [=—

FIG.1]

READY QUEUE 218 (2)

RULE INTERPRETER 2/8 (2,1)

FRAMES MECHANISM 218 (2,2)

SEMANTIC NETWORK MECHANISM
218 (2,3

HIGH LEVEL
MESSAGE HANDLER 218 (24)

LOW LEVEL MESSAGE HANDELER
218 (2,5)

US. Patent Oct. 31, 1989 Sheet 100f 16 4,877,940
FI1G.i2

NORMAL TERMINAT/ON
OF PROCESS

s RUNNING —
/(" 7=~ "\ _QUEUE 605
:
PROCESS
SELECTION START OF

INTER -MACHINE
1/0

ON CLOCK
TIME-QUT

[cLoCK

READY QUEUE
TIME=QUT
(PASCAL
CONTEXT
| SWITCH)
A \ ’
AN
o T T T SUSPENDED
~—eunll}-

QUEUE
609

SCHEDULER \\
PRE-EMPTION :

COMPLETION OF |
INTER-MACHINE TL/O; |
\ TRIGGERED BY /
N\ DEMON J

~ ~

B

US. Patent Oct. 31, 1989 Sheet 11 of 16 4,877,940

FI1G.13
KNOWLEDGE MECHANISM
60l
KNOWLEDGE / DATA BASES 215
215 (1) FRAMES | sLoTs 215" (1)
SOF TWARE
DEMON 215" (1)
RULES 215 (@)
OBJUECTS 25 (3)
RELATIONAL/ SEMANTIC
NETWORKS 215 (4)
SOFTWARE
DEMON 215" @)
FlG.14
KNOWLED GE KNOWLEDGE
MECHANISM BASE
60l 215

US. Patent 0ct. 31, 1989 Sheet 120f16 4,877,940

RECEIPT OF A
E A

T OF
MESSAGE AT

FIG.15 HARDWARE PORT
940~ :
STORE MESSAGES

TEMPORARILY AT LOW

LEVEL SOFTWARE
950" "queue *

TRANSMIT INEORMAT | ON
RECEIVED WITHOUT
960—"|MODIFICATION TO
PHYSICAL LAYER 53

|

Pgasg%i/s%/«c-;fe/ NTO

COMP s 12

970"\ TYPE OF MESSAGE,

SENDER, ORIG | N OF

MESSAGE, DISTRIBUTION
¥

509—1 SEND TO LOCAL
BLACKBOARD

INTENSITY ceNTER AXIS

/ OF WELD JOINT
Als V
F/G./B P ALSZ [_53/

DIRECTION
OF TRAVEL

U.S. Patent

Oct. 31, 1989 Sheet 130f16 4,877,940
FIG.16
INFERENCE
SCHEDULE R |
218!
I NFERENCING CONTEXT
Q({EUES SWITCHER = CLOCK
218 2187 719
INTERRURPT HANDLER 717
! §
OUTPUT L3¢
QUEUE PRIORITY QUEUE
736 _
l QUEUE
MESSAGE MANAGER NON=-PRIORITY
739 POR7;
{
7337 a2
WRITE READ
PORT PORT
740 741

US. Patent 0Oct. 31, 1989 Sheet 140f 16 4,877,940

FIGIT '
215 (4) 218,
SEMANTIC INFERENCE |
NETWORK [+ T1PROCESSING |
INFERENCE KNOWLEDGE
P SCHEDULER BASE
)
2187 215~
73s>
INFERENCE Py
NTERRUPT CONTEXT | __ M A
’HA,\fDLE,Q 1 SWITCHER BUFEER
< =
7/7 2/8”
Ll MESSAGE
BLACK BOARD |wa = PROCESS ING
218" (1)
742)
COMMUNICATION

ROUTINES 150

U.S. Patent

Oct. 31, 1989

FlG.I9

PHYSICAL

ENVIRONMENT

Sheet 15 of 16

4,877,940

|R__I7
DETECTOR

A ND
RADIOMETER

-

IMAGE

ANALYSER

("C" PLUS PASCAL)
16 (1)

(Y]
(6)}
~

IMAGE PROCESSING ADVISOR
\TNEERENCING QUEUES ™ 218~

115+
L

218(1)

1]

218(2)

I RUNNING | READY) [SUSPENDED] |
218(3) |
Jd

— — — ——— —

LOGICAL
LAYER

—

SEMANTIC

CLOCK]
719

—

739,740
4

SERIAL
PORT
AND

-t}—

BUFFER

NET 2154)

BLACKBOARD

PHYSICAL

(LISP)
152

Fe

742

INFER -
ENCER

Oo>OW<mx || <>~V -0| ~

OR 218

P ROCESS-I*

PRIORITY 734

!

368

' NON PRIORITY 742

OUTPUT 736

LAYER
(PASCAL)

153

INT.63H

7174

—

INFERRENCE
INTERRUPT IBH (CONTROL BREAK)

SEMAP HORE

INT. 64H
717’

¢ |

739,740
74!

SERIAL
PORT
AND

BUFFER

EXPERT

CONTROLLLR

[15e

(LISP

CONTROLLER AC

TOR

PASCAL AND'C) l15a,

]
WE LDER 20

U.S. Patent 0ct. 31, 1989

FIG.20

[15

150 ACTOR

NODE

Sheet 16 of 16 4,877,940

5a,4,

ADVISOR
15—\ NODE

15

115 ;
[15ad.
ADVISOR ADVISOR
NODE NODE
[150.0-

4,877,940

1

USING INFRARED IMAGING TO MONITOR AND
CONTROL WELDING

TECHNICAL FIELD

This invention relates to a method and apparatus for
welding and/or control of welding in real time by anal-
ysis of the weld being made.

BACKGROUND

The present invention is directed to welding various
materials and will be described hereinafter in conjunc-
tion with the welding of metals. It is directed to welding
systems such as gas tungsten arc welding (GTAW), gas
metal arc welding (GMAW), fluxed cored arc welding
(FCAW), plasma arc welding (PAW), and resistance or
spot welding.

The analysis, in real time, of the weld puddle has been
attempted with closed circuit television, but the light
emitted at the weld is extremely bright, and for various
metals there may be insufficient contrast to obtain good
definition of the weld puddle. Further, the video scan-
ner must work in a hostile environment where there are
sparks and spattering metal. Dirt, dust, and foreign
materials may-also be present, as well as stray light.
Although a video system may be useful in viewing the
weld puddle geometry, it still lacks the ability to deter-
mine puddle depth and quality, and to provide tempera-
ture variation data except through an exterior color
analysis of the puddle.

A video system for weld puddle analysis is shown in
U.S. Pat. No. 4,595,820 which discloses that video data
indicative of some weld conditions can be generated by
a video camera directly observing welding operations.
According to the technique disclosed in this patent, the
width of the weld puddle is monitored by observing
local minima of light intensity associated with the edges
of the weld puddle. However, this technique or ap-
proach is not able to respond effectively to trends of
weld speed, current, or resulting puddle geometrics.
Further, this approach is not able to recognize condi-
tions below the surface of the weld puddle. This is clear
because under video observation, reflected external
light is received from the surface of the weld puddle.

Present commercially available adaptively controlled
systems that use weld puddle analysis are very limited
not only in analysis of the weld, but in their ability to
operate in real time at commercially desired speeds,
e.g., of nine to twenty-five inches per minute. Typically,
current adaptively controlled welding systems using
weld puddle analysis operate at a speed of about two to
four inches per minute. Current systems further analyze
only a few of the variables involved in influencing weld
puddle geometry including joint geometry, welding
process parameters, chemistry of the materials, and
internal defects. In arc welding, the number of process
and procedure variables involved in an adaptively con-
trolled welding system becomes particularly large and
includes such process variables as heat input, filler wire
input, current flow characteristics, shielding gas flow,
power supplied (a function of amperage and voltage),
material, part position, torch operation, torch position,
and torch travel speed. With so many variables, it is
little wonder that present day adaptively controlled
welders operating at commercial speeds are not able to
effectively make an analysis of such a multitude of vari-
ables but instead, on occasion, rely upon no more than
simple timers and electro-mechanical contro! arrange-

10

30

40

50

55

60

65

2

ments, and monitor simply such parameters as amper-
age, voltage, and shielding gas temperature. Even the
aforesaid patented system analyzes only a few of these
processes and procedure parameters or variables, and,
nonetheless, operates at a relatively slow weld speed.
While laser and video systems for seam tracking are
available, they, too, process but a limited amount of
information about the seam and the track being fol-
lowed. These prior art systems also do not, in real time,
effectively analyze and assure proper alignment of the
torch and joint, and correct effectively for deviations
therefrom where the parts are mismatched in the verti-
cal or horizontal directions, or correct for variations in
the penetration of the puddle or for the joint root open-
ing between the parts. Further, it would be desirable in
real time to be able to make weld size measurements and
to correlate them in real time with the mechanical prop-
erties of the weld such as tensile and shear strength. In
addition to controlling the welding process, it is desir-
able to have a real time weld inspection system that
could determine its physical properties and strength
properties. Also, it would be desirable to have a weld-
ing system which records and stores information re-
garding all welding events for later use in the analysis of
failed weld joints, analysis of welding consumables
used, and welding process conditions encountered
when completing a particular weld.

The achievement of a welding system having many
or most of the above described features should reduce
defects in welds and control weld inspection costs, as
well as improve productivity. Such a weld control and
weld inspection system requires considerable comput-
ing technology. But such systems traditionally require
large amounts of computing power and tend to be too
slow for real time process control. Accordingly, an
object of the present invention is to promote the practi-
cal application of artificial intelligence technology to
welding process control.

A more general object is to provide a new and im-
proved welding apparatus or method, and to promote
the development of adaptively controlled welding tech-
niques, including welding techniques effective for pro-
ducing high quality welds because of their ability to
monitor and control critical processes and procedural
variables in real time.

It is an object of the invention herein to adaptively
conduct resistance welding, and particularly adaptive
resistance spot welding. Adaptive welding techniques
generally ensure the creation of better welds. While this
does not eliminate the need to consider testing or in-
specting the weld after its creation, it is certainly better
to do it right the first time. In the case of resistance spot
welds, as are particularly useful in the manufacture of
automobiles, air frames, aircraft engines, and other
sheet metal items, there is frequently no cost effective
way to inspect the welds after the fact. Thus, they need
to be made correctly the first time. Thus, adaptive con-
trol of the weld variables during welding is essential.
More automatic production, without in-process inspec-
tion and responsive modification of the variables is
inadequate.

It is a further object of the invention to more than
merely perform seam tracking, but to conduct weld
process control and real time weld inspection in the
same arrangement for a plurality of weld variables and
parameters. Further, it is an object to reduce defects
and inspection costs in welding, to improve productiv-

4,877,940

3

ity, to monitor critical process and procedure variables,
and to inspect weld defects in real time.

SUMMARY OF THE INVENTION

According to the invention, four independent proces-
sors are interconnected for serial communication to
form a control system for an automated welding ar-
rangement. Infrared images of the weld are captured by
scanning with an infrared camera, by digitizing the
information scanned, and by feeding the information
into a first image processor and thereafter transferring
the processed, compressed output of the first image
processor into a second image processing expert system
processor. The first processor locates the center of the
weld puddle by determining the average center of
brightness of the image.

Next, it determines a brightness level that corre-
sponds to the puddle boundary, establishes the puddle
boundary in view of said brightness level, and then
measures the width of the puddle (perpendicular to the
direction of travel) through the image center. Next, it
measures, within predetermined peripheral zones of
interest, including for example left, right, and front or
tip zones of the puddle, the area of the weld puddle
within each zone, the length of puddle perimeter within
each zone, and the number of “zero crossings” or major
reversals of the perimeter within the front or tip zone.
The zones defined in the weld puddle for analysis in-
clude side zones straddling the center of the weld pud-
dle, and showing the width of the weld puddle.

The tip zone of the weld puddle assists in the determi-
nation of weld puddle speed and position in real time,
and the side zones permit effective puddle tracking and
ascertainment of weld quality during operation. Fur-
ther, the side zones provide information regarding the
cooling gradient at the edge of the weld puddle, which
is indicated by the sharpness of the gray scale change at
the puddle edges, thereby establishing the rate of
change in puddle brightness at the puddle boundary
within the left and right side zones.

The information thus acquired is analyzed by the
second image processing expert system processor,
which then determines features relevant to the tracking
of the weld puddle, and interprets selected geometric
and metallurgical data characteristics of the weld pud-
dle such as the speed and direction of the welding pro-
cess, temperature, and whether the welding is proceed-
ing normally or is in need of correction.

A third controller expert system processor further
analyzes this information to produce information defin-
ing control strategies relating to power, speed, and
direction. In particular, weld speed and weld current
are controlled in response to the size of the weld pud-
dle. For example, if the size of the puddle is too small,
weld speed can be decreased or weld current increased.
This information is fed into a fourth machine control
expert system processor, which may contain special
machine control programs possibly written in “C”, and
which actually controls the welding apparatus.

The detection of infrared information, according to
the invention, is particularly useful in providing infor-
mation not otherwise available because the heat gradi-
ent established during welding dissipates through the
materials being welded and also through the air adja-
cent the weld puddle. Light reflected from the surface
of the weld puddle, does not present the same wealth of
interpretable heat gradient information.

15

25

40

50

60

65

4

According to the invention, most of the processors
contain a semantic network of goals and forward and
backward chaining rules as well as rule sets and data
frames, which together permit data-driven, message-
interruptible inference processing through the interplay
of interrupting and scheduling in real time of pre-estab-
lished ready, running, and suspended goal-driven infer-
ence processes. Further, the rule bases are hierarchi-
cally, transparently distributable among processors
(hereinafter called “nodes”).

The present invention further contemplates transpar-
ently distributing the process controller artificial intelli-
gence components among a plurality of nodes, some of
which may reside on independent hardware and all of
which are able to communicate effectively with each
other in real time, thereby achieving parallel processing
with conventional hardware to whatever degree is nec-
essary to achieve acceptable real time performance.
This artificially intelligent controller arrangement can
distribute inference processes multi-nodally. The
knowledge base including, for example, frames, rules,
and a semantic network representing the goals and sub-
goals of the process controller, and containing forward
chaining rules that define processes which may be
scheduled for execution, and backward chaining rules
that drive the inferencing and communication pro-
cesses, can thereby direct all real time operations. In
particular, the semantic network permits data-driven,
message-interruptible inference processing through the
interplay of pre-established, scheduled processes orga-
nized into queues of ready, running, and suspended
goal-driven processes whose execution is governed in
real time by a time-sharing scheduler. The rule bases are
thus hierarchically, as well as transparently distributed
among the nodes for inference processing, and real time
process control is achieved in an artificial intelligence
environment.

Further, according to the invention, the process con-
troller employs multiple software communications lay-
ers including a physical layer to communicate knowi-
edge between nodes, a logical layer to identify the loca-
tion of sought information, and a knowledge layer to
communicate knowledge within a particular node. The
logical layer evaluates requests for information in terms
of local availability at a particular active node. If the
information required for a particular node or process is
missing locally, a communications sequence is initiated
with the physical layer to search other nodes for the
information of interest.. In the preferred embodiment of
the invention, the knowledge and logical layers are
implemented using Lisp, and the physical layer is imple-
mented using Pascal. The interface to the real world
sensors and controllers is implemented in “C”.

According to the invention, the queues are data struc-
tures that include pointers to Lisp stack groups which
define inference processes. The Lisp scheduler main-
tains ready, running, and suspended queues of inference
processes and controls the inference nominated by the
running queue. Further, a context switcher and an infer-
ence scheduler (implemented respectively in Pascal and
Lisp), invoke the Lisp scheduler with a command to
change inference processes periodically and also in
response to incoming messages from other nodes.

The Lisp scheduler has a semaphore flag which the
context switcher can toggle. This flag, implemented
through an interrupt, can direct the Lisp scheduler to
take the running process, put it on the ready queue, and
get the next process off the ready queue, or to take a

4,877,940

5

process signalled by an incoming message and set it
running. Thus, according to the invention, the context
scheduler can inform Lisp that it is either to switch
contexts, i.e., swap one of the ready processes with the
running process, or that it is to process an incoming
message. Accordingly, the high level Lisp scheduler
can do one of two activities. Either it can swap pro-
cesses, known as context switching, or it can acquire a
message from the Pascal system for processing. The
Pascal handles all communication with the outside
world and also processes low level messages.

According to the invention, the controller arrange-
ment further includes a consistency checker arrange-
ment for establishing and evaluating new, proposed
rules for introduction into the rule base, which ensures
that the new rules will be consistent, non-redundant,
and non-subsuming with regard to the established set of
rules already integrated into the controller arrange-
ment.

According to the invention, adaptive control of weld
process variables is undertaken for all kinds of welds
including fusion or arc welding, and resistance welding,
for example. In short, the process variables are modified
in response to thermographic measurements, which are
based upon inspection of heat patterns or the geometry
of the weld puddle and its associated heat affected zone.
By thermographic measurement of the weld geometry,
it is meant that the heat pattern actually observed is
analyzed into isotherms, which can be established to
correspond to predetermined heat levels. Further, the
isotherms follow the contour of heat along each of the
predetermined levels. Typically, the isotherms will be
rounded, circular, or oval when measuring a proper
fusion weld puddle between aligned, matched materials
without a gap or excessive root opening therebetween.

This invention recognizes and takes advantage of the
fact that the isotherms deviate from their normal
rounded pattern and are characterized by interpretable
protrusions extending from the previous, ideal rounded
" shape of the isotherms when there are errors or defects
found in the weld puddle, which may be due to any of
a number of circumstances. Such circumstances may
include impurities or material problems in the weld
itself. Further, they may indicate misalignment, mis-
match or excessive root opening defects, as discussed
herein.

The isotherms not only exhibit interpretable shape
variations, according to the invention, but their very
separation may be indicative of useful information. Both
of these sources of information, shape and separation of
isotherms, is considered interpretation of the weld pud-
dle and heat affected zone geometry.

In the case of resistance spot welding, the weld pud-
dle is frequently referred to as the weld nugget. Because
the electrodes in resistance spot welding extend directly
against the materials being spot welded, only the heat
affected zone adjacent the electrodes, in the form of a
smile, can be observed. This smile is called the weld
nugget. For purposes of this invention, the weld puddle
is considered to include its heat affected zone, and the
term “weld nugget” is generally considered to have the
same meaning as the weld puddle, as defind herein. The
pattern of isotherms, in effect, constitutes the signature
of the weld being performed. Of course, neither is di-
rectly observed, but takes on dimensional meaning and
geometric shape in terms of the isotherms or heat pat-
terns indicative thereof. These heat conditions are not
visually determined herein, but only in terms of the

—

5

20

25

40

45

50

60

65

6

information produced by an infrared detector system, as
discussed below. . ©

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic drawing of an artificial intelli-
gence welding system, according to the invention
herein;

FIGS. 2A-2C are illustrations of respective weld
puddle isotherm information zones detected, and the
contour of weld puddles under conditions of misalign-
ment, mismatch, and excessive root opening;

FIGS. 3A and 3B show schematic details of the com-
plete welder arrangement which permits actual imple-
mentation of adaptive welding in real time;

F1G. 4 shows, in schematic form, one version of the
process controller, according to the invention herein;

FIG. § is a generalized block diagram of the process
controller arrangement, according to the invention
herein, comprising in particular a minimal process con-
troller arrangement, which includes a single multi-
inferencing expert (MIX) module responsive as shown
to a sensor and effective for controlling a selected con-
trollable external device;

FIG. 6 is a generalized block diagram of the MIX
module including artificial intelligence elements, ac-
cording to the invention herein;

FIG. 7 shows the process controller, according to the
invention herein, including a MIX expert controller
module, which is effective for communication with an
external control element;

FIG. 8 is a block diagram of the process controiler
arrangement, according to the invention herein, com-
prising a network of MIX modules;

FIG. 9 is a block diagram of a generalized MIX mod-
ule architecture, according to the invention herein, with
the actor and advisor features explicitly set forth;

FIG. 10 is a block diagram of the scheduler arrange-
ment for scheduling inference processes on respective
running, ready, and suspended queues;

FIG. 11 is a block diagram of a number of inference
processes typically held in the ready process queue
when not actually running;

FIG. 12 is a flow chart of operation of the scheduler
and arrangement, according to the invention herein;

FIG. 13 is a block diagram illustrating control of the
knowledge bases, according to the invention herein, by
corresponding knowledge mechanisms;

FIG. 14 shows schematically the relationship be-
tween particular knowledge bases and the associated
knowledge mechanisms which direct their operation;

FIG. 15 illustrates the handling of messages accord-
ing to the communication technique of the invention
herein;

FIG. 16 illustrates the communications scheme of the
invention;

FIG. 17 illustrates overall operation of the controller,
according to the invention herein;

FIG. 18 shows a three-dimensional representation of
heat in the weld puddle as produced by the image analy-
zer;

FIG. 19 is a block diagram illustrating the physical
environment of the system, including the system-level
hardware software design of the preferred embodiment
of the invention; and

FIG. 20 is a schematic illustration of the control ar-
rangement which emphasizes the multi-node approach,
according to the invention herein.

4,877,940

7

DETAILED DESCRIPTION OF A BEST MODE
OR PREFERRED VERSION OF THE
INVENTION

According to one version, as shown in FIG. 1, the
welding system 13, according to the invention, inctudes
a radiometer 15, a controller 16 including an image
analyzer 16(1), and an infrared (IR) detector 17 includ-
ing, for example, a twelve-inch, close-up lens with a
10.6 micron wavelength upper range lens filter which
produces clear images of the weld puddle 19 under
observation.

The detector 17 and the welder arrangement 20 are
carried in a controllably cooperative relationship by
robot 22 to insure that the weld puddle 19 produced by
welder 20 is in the field of view of the detector 17 The
robot 22 can position and/or tilt the detector 17 in an
(%,y) plane and about several axes of rotation, as is con-
ventionally known in robotics technology.

The detector 17 can be adapted to operate for low
range detection at 3.0 microns wavelengths as well as at
10.6 microns. This enables identification of puddle de-
fects by observation of both the cooler and the hotter
portions of the weld puddle at generally the same de-
gree of resolution. Image analysis by the image analyzer
16(1) can be performed by image processing algorithms
written in the “C” language, for example as discussed
below, either-on an IBM AT computer or a similar
device. The image analyzer 16(1) can, accordingly, be
implemented as an image processing computer directly
interfaced with the infrared radiometer 15, and then, as
will be discussed (with reference to FIG. 8), to an image
processing advisor 115i

The detector 17, the radiometer 15, and the image
analyzer 16(1) preferably include features for black and
white shape data recording, multiple horizontal, and
vertical line scanning, gray scale imaging and color
imaging, shape recognition, geometric comparison,
seam tracking and defect detection to determine actual
weld process parameters and variables. The arrange-
ment includes line scan recognition features to enable
defect detection based upon metallurgical data and to
permit recording of both actual defects and the location
of defects.

The detector 17 and the radiometer 15 are preferably
an Inframetrics Model 525 arrangement made by Infra-
metrics, Inc. of Bedford, Mass. This arrangement ena-
bles image production on a 30 Hz cycle basis, based
upon a mercury-cadmium-telerude sensor, which is

preferably liquid nitrogen cooled. The lens of the detec-

tor 17 is selected to accommodate the radiance of the
weld puddle being scanned. The output of the detector
17 to the radiometer 15 is indicative of the difference in
radiance “dI” between an elected reference radiation
level, and the amount of radiation from the weld puddle
under observation. The difference “dI” particularly
equals:

eN;+(1—e)Np—e,NNp-+(1—e,)Np,

where “e;” is the emittance of the weld puddle 19 sur-
face as a function of temperature, “N/” is the radiance
value of a black body at temperature “T/” at an un-
known target surface, “Np” is the radiance measured
directly from background, “e,” is the emittance of the
reference surface, and “N,” is the reference system
radiance of a black body at the selected puddle tempera-
ture “T,”.

20

25

30

35

45

55

60

65

8

The detector 17 produces individual frames of infor-
mation, which define 256 by 256 pixel matrices. The
output of the detector 17 is particularly a video signal
for transmission on a parallel bus 17’ to radiometer 15.
The video signal produced is an 8-bit 256 by 256 pixel
representation having a broad-based gray scale capabil-
ity. The radiometer 15 is setable to operate at selected
temperature ranges. The radiometer 15 is further pro-
grammably setable by an input signal in RS232 format.
The radiometer 15 further includes built-in tables and
mapping functions that convert the received detector
signal along the bus 17’ into video representations of the
image viewed by detector 17.

The output of the radiometer 15 is connected to an
image analyzer 16(1). The image analyzer 16(1) pro-
cesses the data received with selected shape recognition
algorithms preferably written in “C”. The determina-
tion of the shape of the weld puddle and finding its
outer boundary is accomplished by tracking the weld
puddle 19 along its boundary, and by determining the
maximum puddle width and the centroid of the puddle.
This is done digitally, as discussed below. In particular,
the radiometer 15 provides a video signal which is re-
ceived by an image processing board on the image ana-
lyzer 16(1). This board converts the analog video signal
into a digital representation as an array of bytes on the
image processing computer 16(1). Each byte represents
one of 256 different gray levels. The image processing
array on the computer 16(1) is able to accommodate and
store a complete imaginary of up to 512 by 512 pixels, 8
bits of information per pixel. The array is scanned 30
times per second permitting the radiometer 15 effec-
tively to employ a video display (not shown) with con-
trols that permit setting cross hairs over specific fea-
tures on the weld puddle using manual dials and knobs.
Line scanning, according to the invention, includes
shape recognition in three-dimensions using a single
camera which has an (x,y) axis, and is capable of pres-
enting (x,y) information plus the brightness associated
with particular points on the (x,y) representation plane.
The two-dimensional (x,y) image has numerical values
indicative of intensity. This produces a three-dimen-
sional, displayable effect. By examining the actual im-
ages generated, certain features, such as the slope of the
sides of this three-dimensional image, become apparent
as a qualitative measure of how fast the sides of the weld
puddle are cooling. In such a representation, defects in
the weld puddle 19 show up as dark spots.

In the preferred embodiment of the invention, the
precise technique whereby the image analyzer 16(1)
extracts information from the digital representation of
the infra-red image of the puddle 19 is as follows. First,
the center of the puddle 19 is determined by locating a
point at the center of brightness of the image. Assuming
that the upper left corner of the image has the coordi-
nates (0,0), with the x-axis increasing in value to the
right across the top of the image and the y-axis increas-
ing in value downwards along the right edge of the
image, and if P(x,y) is the brightness of the pixel at
position (x,y), the center of the weld puddle is deter-
mined as follows:

S=sum from y=0 to y="Ymax of the sums from x=0
to x=Xmax of P(x,y); R=sum from y=0 to y=Ymax
of the sum from x=0 to x=Xmax of the product y times
P(x,y); and C=sum from y=0 to y=Ymax for the sum
from x=0 to x=Xmax of the product x times P(x,y),
where P(x,y) is the pixel intensity as a function of x and

@

4,877,940

9
y, and x and y are planar position coordinates of the
puddle 19.
The coordinates of the center of brightness, i.e., XB
and YB, are then

XB=R/S
and
YB=C/S

Having found the puddle center, the image analyzer
16(1) subtracts the value 40 from the brightness magni-
tude at this center point to give rise to a pre-established
edge brightness value. The value “40” was selected by
an expert metallurgist as giving a reasonable definition
of the puddle edge brightness, according to the pre-
ferred embodiment of the invention. (The puddle edge
is fairly well defined in the image, and naturally differ-
ent hardware and software would require a different
edge brightness value or method of computing the
same.)

Next, the analyzer 16(1) scans from the puddie center
of brightness towards the puddle edge to the left, right,
and downwards, and possibly in other directions as
well, thereby defining points on the puddle’s edge. The
x-axis width of the puddle 19 is then determined as a
first puddle parameter. A rectangular box of predeter-
mined adequate dimensions, e.g., a centered square with
sides equal to the radius of the measured weld puddie 19
is then established about each of three puddle edge
points, i.e., the front tip and the sides. Within each box
the following puddle parameters are computed: the area
of the puddle 19 within the box; the length of the puddle
perimeter; and the number of times that the puddle
boundary doubles back upon itself and crosses an imagi-
nary “smooth” puddle boundary. All of this information
is presented in digital, floating-point form and is readily
retrievable by the image processing advisor 115i

The weld puddle line scanning effectively enables the
establishment of isotherms in the weld puddle image, as
shown in FIG. 18. Establishing the isotherms is particu-
larly accomplished by examining each line of the pixel
matrix, and evaluating the data on the line pixel by
pixel. At each transition across a selected reference
level, a particular isotherm value is established corre-
sponding to the selected reference level. Thus, by using
line scan data and examining each of the points in the
pixel matrix, line by line, a three-dimensional isotherm
representation, as shown in FIG. 18, can be established
from the raw line data.

Additionally, as suggested above, by examining the
pixel matrix, a mathematical operation can be per-
formed to determine the approximate center of the data
clusters in the frame, which are specifically indicative
of the image of the weld puddle. This is useful for focus-
ing effectively on the centroid of the weld puddle 19
and helps tracking the weld puddle and further process-
ing of the image in view of cognizance of its actual
center. It further improves puddle tracking according
to a selected boundary tracking algorithm. Image pro-
cessing further includes the establishment of a theoreti-
cal box around the weld puddle. By scanning along the
box edge and checking the brightness of the image
along its perimeter, one may determine whether bright
pixels are present, which would indicate the puddle has
reached the edge of the box. If no such bright pixels are
present, it is clear that the puddle has not grown outside
the established box boundary. This provides a very

10

20

25

30

35

40

45

50

55

60

65

10

simple measure of how big puddle 19 is, which is partic-
ularly useful in resistance welding shape recognition.
One image processing algorithm looks at the leading
edge portion of the weld puddle 19 and performs a
length calculation of the perimeter, which is useful as a
defect indication. The side zones are employed for de-
termining the puddle width by locating the sideward
edges of the weld puddle and doing a subtraction. The
tip zone of the weld puddle 19 produces substantial
amounts of tracking information, because the weld seam
passes directly under the tip of the progressing weld
puddle 19. The side zones are useful for establishing the
patterns and derivatives of predetermined isotherms,
the latter indicative of the cooling rates of said weld
puddle 19.

Tracking is further accomplished by measuring trans-
verse displacement of the weld puddle 19 from the seam
it is intended to follow. In particular, by viewing the
front edge or tip of the weld puddle 19, it can be deter-
mined in what direction the seam of the weldment is
proceeding. The seam of the weldment may deviate
from the general direction of the robot and the welding
torch it carries, defining an offset angle. According to
the invention, this causes welder 20 to turn transversely
back toward the interface 19" between the members 14
being welded, to ensure their effectively being joined.

Further, mismatch errors can occur, according to
which one plate 14(1) is misaligned with the other plate
14(2), establishing undesired weld puddle protrusions.
This causes the weld puddle to flow from the edge of
one of plates 14 into the space between the plates 14. In
order to effectively counter this, the welder torch 20 is
rotatably adjusted to aim directly between plates 14
from an oblique angle to ensure creation of a strong
weld.

According to the thermographic detection tech-
niques employed herein, and as suggested in the Appen-
dix, a box is defined about the center of the weld puddle
19 to determine whether or not it has obtained a mini-
mum acceptable size for data to be permitted to be taken
by the detector 15 in order to establish a pixel array
frame for use in image processing, as indicated herein. If
the weld puddle 19 crosses the perimeter of the box, the
pixel brightness will exceed a predetermined threshold;
and the puddle 19 is deemed sufficiently large for taking
data arrays for image processing. According to this
technique of determining the minimum acceptable weld
puddle size, resistance welding can be implemented
effectively.

As before, the technique includes establishing the size
of the box, and determining a pixel brightness threshold
value based upon weld process parameters. The se-
lected box is, for example, established at suitable coordi-
nates, (e.g., 100,100) in a field of 200 by 200 pixel ele-
ments, with a pixel intensity threshold value set at 150,
for example. These values are established in view of the
predetermined minimum acceptable size of the weld
puddle 19 and the camera imaging factors such as zoom
ratio and emissivity of heat from the weld puddle 19, for
example. To determine the position of the box estab-
lished around the weld puddle 19, the infrared detector
15 is calibrated with respect to the axis of the welder
torch. A looping process accomplishes this by continu-
ous scanning of consecutive pixel array frames at suc-
cessively increased pixel threshold values until the box
contains a sufficient number of pixel values. When the
weld puddle 19, accordingly seen, exceeds the bounds

4,877,940

11
of the box, a signal of that event initiates calculation of
the center or centroid of the weld puddle 19. Finally,
this information is communicated to the image process-
ing computer through a suitable communication inter-
face.

FIG. 18 shows line scan information generated from
an array of pixels representing infrared intensities of a
weld puddle plotted as a function of position on a flat
planar projection of the weld puddle. A fairly good
representation of puddle intensities can be established
with even a limited number of line scans as shown in
FIG. 18. A more precise representation might include
500 row scans and 500 column scans, or 250,000 pixels.
This would permit the development of an extremely
accurate set of predetermined isotherms along the con-
tour of the line scan information in FIG. 18. However,
this kind of accuracy is not required and the desired
isotherms can be produced with only several scans, as
suggested in FIG. 18.

Specific zones within the weld puddle, such as the tip
zone, the width zone, and the diagonal or shoulder
zones, respectively. Selected zones of interest are estab-
lished for examination by referencing the selected zone
relative to some known feature, for example, such as the
center of the area of the puddle. Once the center of the
weld puddle 19 has been determined, one can then fix
selected zones of interest relative to this established
center. Alternatively, by detecting certain features on
the edge of the puddle 19 such as the tip of the puddle
19, the position of these special interest zones can be
fixed as well. Other such edge features include, for
example, protrusions or fingers on the leading edge of
the puddle. As already discussed, the central zone is
employed for determining puddle width.

To determine the center of the weld puddle, accord-
ing to the invention, the center of mass of the puddle is
determined. According to this technique, the entire
puddle image is considered to be a single region, and the
area and the centroid of that region are calculated.
From the centroid of that area, all of the special interest
puddle zones are established on an (x,y) coordinate
system. Accordingly, the puddle side zones are fixed
between the tip or leading edge of the weld puddle 19
and the side zones. The sizes of the special interest zone
are predetermined. As noted above, the actual position-
ing of the zones in the (x,y) coordinate system is fixed,
according to the image analysis techniques indicated.
As the weld puddle image or position changes within
successive pixel frames, the images. on the indicated
zones will bear evidence to these changes.

In spot welding operation, according to the inven-
tion, an image processing window is established over
the expected position of the developing puddle or nug-
get to ascertain the current physical size of the nugget.
When a sufficient size has been attained, the weld cur-
rent is halted.

The slope, derivative, or gradient of the detected
isotherms is monitored to determine the maximum weld
puddle coding rate. The hotter the puddle or nugget
gets, and the greater the difference between the ambient
temperature and the plasma of the puddle, the greater
its cooling rate will be. This cooling rate is additionally
affected by other factors, such as the shielding gas tem-
perature, the particular materials being welded, the
massivity of the material, and whether or not the mate-
rials welded have been pre-heated, for example. To
ensure a quality weld according to the particular metal-
lurgical characteristics of the metals being welded, pre-

—_

0

20

25

30

40

45

50

60

65

12

determined maximum and minimum cooling rates must
be maintained during welding operation. In other
words, the best metallurgical properties occur within a
certain band of cooling rates. Thus, according to the
invention, to maintain the cooling rate within desired
bounds, the weld current and weld speed are modified
to keep the cooling rate within bounds. If the cooling
rate is too great, for example, the weld current is re-
duced and the weld speed is increased. According to
the invention, preference is given to decreasing the
weld current or increasing the weld speed alone, with-
out modifying both parameters. Further, according to
the invention, an increase in weld speed is preferred as
a parameter modification because this tends to increase
the throughput at a particular work station, within
bounds, of course. Further, if the cooling rate is quickly
to be modified, weld current is modified first because
weld current is more responsive to speedy modification
than weld speed.

To determine the rate of cooling, the pixels in the side
zones are examined because the maximum cooling rate
is expected in those regions. In particular, selected pixel
rows in the side zones are examined, looking particu-
larly at the peripheries of the side zones, namely, the
transition between the molted puddle and the heat af-
fected zone immediately adjacent the puddle, which is
still solid but not metal. There is a narrow band of about
10 to 20 pixels which constitute the interface zone be-
tween the molten and the solid regions. By observing
the pixel values in this portion of the pixel array, one
can establish derivative of the heat in terms of the maxi-
mum and minimum values that occur in this threshold
region. Further, the difference of maximum and mini-
mum is divided by the number of pixels over which the
change occurs. That establishes the proportional cool-
ing rate desired. In particular, that establishes the trans-
verse proportional cooling rate be along the “x’ axis,
while the robot and the welding progress along the “y”
axis.

In addition to controlling and monitoring weld speed
and weld current, the process controller tracks and
controls torch position and disposition by monitoring
the location of the weld puddle 19. The process control-
ler further monitors error conditions, such as mismatch
(when the surfaces being welded together are not copla-
nar and substantially coincident at the weld point),
misalignment between the plate seam and the path fol-
lowed by the welder and excessive root opening, for
example, and adjusts torch position, altitude, and dispo-
sition to minimize or eliminate such error conditions. In
response to detection of such mismatch, misalignment
and excessive root opening conditions, weld speed or
current is modified, or the torch is tilted or shifted to
ensure clear establishment of an adequate weld seam
between the plates to be welded. The torch angle is
typically perpendicular, or normal to the surfaces being
welded. However, the welding robot can tilt the weld-
ing torch sideways, forward or backward, as required,
and can position the torch forward, backward, and
sidewards anywhere on the (x,y) coordinate plane, as
well as shift it along the z-axis to control the arc length
of the torch.

The image analysis further includes an algorithm that
observes the shape of protrusions at the leading edge of
the weld puddle. In particular, the image analysis algo-
rithm generates an indicative notation that the puddle is
in a state of vertical mismatch between plates being
welded, if a weld puddle signature indicative of mis-

4,877,940

13
match has been noted. The rule set then determines the
torch orientation change needed to counter the effects
of mismatch. Such an orientation change, for example,
might call for the torch to be tilted sideways during
welding of the mismatched segment, and the position of
the torch might be slightly offset as well, if necessary.

The signature of mismatch, as indicated in FIG. 2B, is
a characteristic protrusion or pair of fingers at the lead-
ing edge of the weld puddle. Misalignment, as can be
seen in FIG. 2A, is also indicated by a protrusion or
finger 222, 222/, and 222" at the leading puddle edge,
depending upon the degree or amount of misalignment.
In particular, misalignment occurs when the direction
of travel of the torch is not parallel and on center with
the weld seam. Excessive root opening, as suggested in
FIG. 2C, develops as the adjacent plates being welded
separate for a period and then come together again.
This also shows up in terms of a rather large protrusion
222, 222', or 222" on the front edge of the weld puddle,
which may or may not progress, depending upon what
the actual opening does. According to the invention,
welding speed is slowed, weld current is pulsed more
heavily or is increased to ensure that both sides of the
weldment are effectively fused.

The arc length between the torch 20(5) and the weld
puddle 19 is controllable, according to the invention.
An excessive arc length will be insufficient to cause a
weld because not enough current will be transferred
between the torch and the plate being welded to actu-
ally perform welding.

The image processing, according to the invention,
includes comparing pixel images acquired against a
qualified body of information on weld puddle images,
which has previously been stored for comparison with
actual sensed weld puddle information and/or images.
The center of area or centroid of the weld puddle 19 is
determined, as well as the partial perimeter of the weld
puddle 19. The weld puddle cooling rate can, for exam-
ple, be determined from change in the puddle width
over time. According to the invention, the partial pe-
rimeter in the tip zone indicates the absence or presence
of protrusion 222, 222, or 222",

Additionally, by counting zero crossings of the fin-
gers 222, 222’ or 222" and their location, the precise
character of the defect can be determined. The number
of zero crossings are determined by applying a smooth-
ing filter to the zone of interest. A large number of
fingers 222 indicates mismatch, for example.

Further, by observing the relative sizes of the fingers
in terms of width and area, mismatch and misalignment
between seam and torch can be differentiated. Addi-
tionally, as misalignment is progressive from frame to
frame of pixel matrix information, the trends indicated
in the image processing can suggest a tracking error due
to misalignment. As one finger 222 moves farther and
farther from the center of the travel direction, misalign-
ment is indicated rather than mismatch. In misalign-
ment, one would naturally expect to see a major protru-
sion 222 grow and also go off at an angle from one
frame to the next. Other minor protrusions may be
present as well. Thus, if angular progression of a major
protrusion 222 is not seen, there is no misalignment, but
instead there is another defect.

The image processing algorithms determine the raw
features of the weld puddle, and actual error determina-
tion is performed in the image processing expert system,
which employs a predetermined rule set to establish
those determinations. All incipient weld errors look

5

20

25

30

40

45

60

65

14

very similar. Accordingly, no effort is immediately
expended to distinguish the kinds of defects. Instead, the
weld defect is permitted to grow a bit under observa-
tion. As it grows, a characteristic pattern begins to
emerge, including one or more protrusion 222,

In the case of mismatch, there is typically one protru-
sion 222 which is larger than another. It is a primary
object of the inference techniques of the invention
herein to notice such a trend. Weld root opening errors
are, for example, indicated by the growing and shrink-
ing of a single finger or protrusion 222. Misalignment
errors are generally indicated by one or more protru-
sions that diverge at an angle relative to the axis of the
weld seam. The direction of the weld in this instance
has a progressively changing angle with the weld seam.
Mismatch, on the other hand, is not a very progressive
event and it is signified by at least two protrusions, one
of which is noticeably smaller than the other. Misalign-
ment is characterized by equally-sized multiple protru-
sions.

As set forth explicitly in the Appendices hereto,
image processing computer 115/ thus calculates features
such as weld puddle perimeters, zero crossings through
a selected area of the weld puddle, the centroid of the
weld puddle 19 and various combinations of features
which produce a high level description of the type of
weld error, indicated by the protrusions.

To operate the invention, according to one version
thereof, four IBM AT microcomputers 115 are em-
ployed, as suggested in FIG. 8, with one of them 116(1)
specifically designed to do image analysis with an in-
stalled board. Connected to the auxiliary controller or
image analysis node 115x is another advisor node 115/
which has the image-processing rule set loaded up.
Referring now to FIG. 19, the physical environment of
the present invention is disclosed. The invention con-
templates using a plurality of distributed processors to
spread out the logical computations and thereby enable
multiple processes of control to proceed together in real
time. In the preferred embodiment, four AT-class IBM
personal computers are utilized, as is shown in FIG. 19.
A first computer is an image analyzer 16(1) which ac-
cepts the infrared image from the infrared detector 17
and the radiometer 15 and extracts, therefrom, the use-
ful image data, which is used by the remaining logical
systems to control the welding process. A second com-
puter is used to implement the image processing advisor
115, which accepts the image data and, by the applica-
tion of rules thereto, determines the state of the welding
process and whether there is any need for corrective
action. A third computer is then used to implement the
expert controller 115¢, which then responds to the data
generated by the image processing advisor 115/ by de-
termining the proper control strategies. These strategies
are then fed as commands into the fourth and final pro-
cessor, the controller actor 1154, which ultimately con-
trols the welder 20.

Each of these computers is set up preferably using the
industry standard MS-DOS operating system of Mi-
crosoft. Each of these computers includes an industry
standard 80286 microprocessor equipped with extended
memory so that logical computations can be carried out
in extended memory space, while normal programs run
in a 640,000 unit memory bank of each of the proces-
SOrS.

All four of the processors are set up and programmed
in a similar manner, and so FIG. 19 highlights the inter-
nal structure of the image processing advisor 115/ as

4,877,940

15

representative of the internal structures of each system.
Very broadly described, the image processing advisor
115/ contains a physical layer 153 which, in the pre-
ferred embodiment, is implemented using Borland’s
Turbo Pascal programming language. This physical
layer 153 interacts with the serial ports and buffers 739,
740 and 741 of the AT-Class computer using standard
software utilities provided by Blaise to service data
flowing into the serial ports, to buffer that data, and to
present it to the Pascal programming system. In the
preferred embodiment of the invention, each of the four
computers contains a physical layer 153 implemented in
Pascal, and, therefore, all four systems are able to com-
municate among themselves using this common pro-
gramming physical layer. When any of the systems is
initially turned on, the Blaise Computing software that
services and buffers the serial ports is first made resident
within the MS/DOS operating system. Then, in the
case of the processors 115/ 115e, and 1154, a Lisp pro-
gramming system kernel is loaded over the operating
system and given program control. The Lisp kernel
then sets up a variety of storage areas within the ex-
tended memory of the computers. The Lisp kernel im-
plements a logical layer 152 within each of the three
computers just mentioned. Because of its ability to
“shell” into other programs, the logical layer imple-
mented in Lisp may execute programs written in the
“C” language, as is indicated at 152’ in FIG. 19. In the
case of the image processing advisor 115, there are no
“C” language sub-routines. But in the case of the con-
troller/actor 115¢, a plurality of “C” programs are run
by the logical layer to control the welder 20.

Once the logical layer 152 gains program control and
allocates its memory for its own needs, it launches the
Pascal layer 153 by shelling into a Pascal program.
Through the use of shared, common memory locations
in low memory beginning at hexadecimal address 4F0,
the logical layer 152 places pointers to various ad-
dresses, which it sets up to be shared with the physical
layer 153. By accessing the locations beginning at 4F0,
the physical layer 153 gains access to these address
pointers and is thereby able to share certain memory
locations with the logical layer 152. In particular, a
blackboard region 742 is set up into which the logical
layer 152 may write the values of variables, later access
the values of those variables, and from which the physi-
cal layer 153 may access the values of those variables
without having to interrupt the operation of the logical
layer 152. In this manner, one processor may request the
values of certain variables from another processor di-
rectly from the physical layer 153 without having to
interrupt the logical processing proceeding in the logi-
cal layer 152.

A second shared memory location is the message
queues 734, 742, and 736. A first message queue is a
priority message queue 734 into which the physical
layer 153 writes high priority messages that must be
serviced immediately by the logical layer 152. When-
ever such a message is entered into the queue 734, the
physical layer 153 sets a semaphore 717', generates an
inference interrupt 717 to interrupt the observations of
the logical processor 152, and directs its attention to the
priority matter. Other matters not requiring the inter-
ruption of the logical layer are messages placed in the
non-priority queue 742. The logical layer generates
output messages by placing them into an output queue
736 from which they may be read by the physical layer
153.

45

16

While the physical layer 153 is initially running, it
attaches itself to the real time clock 719 interrupt of the
AT computer, thereby causing itself to be placed into
operation roughly every 1/18th of a second during 2
normal operation of the computer. Having thus at-
tached itself to the real time clock, the physical layer
153 returns program control to the logical layer 152
which then commences its normal operations of pro-
cessing logical functions of the image processing advi-
sor 115i

The image analyzer 16(1) includes a physical layer
similar to the layer 153 in the image processing advisor
115, but does not include a logical layer 152 imple-
mented in Lisp. Because of the need for speed in the
processing of large quantities of image information, the
image analyzer 16(1) contains programs written in “C”
that accept and process image information, and gener-
ate messages for the physical layer 153 to transmit back
to the image process advisor about the state of the
image in response to requests received from the image
processing advisor 115. Naturally, it would be possible
to have additional logical layer operations proceeding
in the image analyzer 166, if that computer were fast
enough to handle those in addition to its immediate task
of condensing the large quantity of image information
into the small amount that is needed to implement con-
trol in accordance with the teachings of the present
invention.

The controller actor 115q is essentially the same as
the image processing advisor 115/ but contains many
“C” programs analogous to 152’ that control the welder
20. It is thus labeled as containing “Lisp, Pascal and ‘C””
programs.

Returning now to the image processing advisor 115;,
the normal operation of this advisor proceeds as fol-
lows. The logical layer 152 establishes a semantic net
215(4) which contains the goals of the system, all of the
“forward-chaining” rules which define the various pro-
cesses that the system may carry out, and all of the
“packward-chaining” rules which define how various
system results are computed from external and internal
system variables. The logical layer 152 is implemented
using Golden Hill Lisp Large Memory Version 2.2,
according to a preferred version of the invention. This
is a conventional Lisp processor, and other suitable A-I
processors could be used as well.

As it comes, this Lisp processor is capable of manag-
ing multiple operating environments and processes, and
switching between them upon request. Each of these
operating environments is called a “stack group” and
contains a complete inference process together with all
of the relevant data. The logical layer 152 is capable of
maintaining a plurality of stack groups, alternatively
executing them, and suspending them under program
control. However, the logical layer 152 does not in-
clude any provision for real time scheduling of these
tasks but only for maintaining multiple tasks and switch-
ing between them. It was, therefore, necessary to
achieve the present real time process control scheduler
by integrating the logical layer 152 with a physical layer
153 that is connected to a real time clock 719.

In accordance with the teachings of the present in-
vention, the logical layer 152 maintains a plurality of
inferencing queues 218 including a running queue
218(1), a ready queue 218(2), and a suspended queue
218(3). The names of stack groups are stored within
these queues. The running queue contains the name of
the stack group that is currently active and being pro-

4,877,940

17

cessed by the logical layer 152. The ready queue 218(2)
contains a linked list of the names of inference processes
that are running on a “time-shared” basis, but that are
currently not being processed by the logical layer 152.
The suspended queue 218(3) contains the name of tasks
that have been suspended pending the result of an input-
output request for information from the logical layer
152 to some other machine, such as the image analyzer
16(1) or the expert controller 115e.

To achieve real time switching between inference
tasks, the physical layer 153 is driven by the real time
clock 719 to count the passage of time. Periodically, the
physical layer 153 decides it is time to schedule the
running of a new task. Accordingly, the physical layer
153 sets the semaphore 717’ to indicate that it is time for
4 new task to be run and generates an inference inter-
rupt 717 to interrupt the operations of the logical layer
152. The inference interrupt is actually the “control-
break” interrupt of the computer, since the control-
break interrupt is already used by the logical layer 132
as a means for responding to keyboard interrupts from
the keyboard 368, as is conventional in software pro-
grams designed to run on AT class computers. But the
logical layer 152, in response to the control-break inter-
rupt, checks the semaphore 717'.

If the semaphore 717’ is in its reset state, then the
logical layer 152 knows that a keyboard interrupt has
been received from the keyboard 368 and processes it in
a normal manner, servicing a keyboard request from the
knowledge engineer or system supervisor. But if the
semaphore 717’ is in a state indicating that it is time to
switch tasks, then the logical layer 152 moves the pro-
cess at the top of the ready queue 218(2) into the run-
ning queue 218(1) and moves the task from the running
queue to the end of the ready queue 218(2). In this
manner, the physical layer 153 and the logical layer 152
combine to form a real time process control inference
task scheduler that rotates program control systemati-
calty through the inference tasks in the ready queue
218(2), devoting a fixed amount of time during each
period to each of the tasks waiting to be completed.

When the logical layer 152 needs to communicate
with other processors, it places a message in an output
queue 736. The physical layer 153, when next awakened
by the real time clock 719, senses the presence of this
message and initiates the feeding of the message out of
the serial ports and buffers 739, 740, and 741 to one of
the other computers. In this manner, the logical layers
152 within the computers may pass data back and forth,
and may also pass requests for the performance of vari-
ous inference tasks.

In response to an incoming message from another
processor at the serial ports and buffers 739, 740, and
741, the physical layer 153 places a message either into
the priority message queue 734 or into the non-priority
message queue 742. When a message is placed in the
priority message queue 734, the physical layer 153 also
adjusts the semaphore 717’ to signal that a priority mes-
sage has arrived, and then it initiates an inference inter-
rupt (actually a “control-break” interrupt) in the man-
ner that has been described. In response, the logical
layer 152 checks the semaphore, and upon finding that
it signals a message, retrieves the message from the
priority queue 734. Non-priority messages in the queue
742 are processed by the logical layer 152 without the
assistance of an interrupt or the semaphore 717'. While
the logical layer 152 is processing a priority message, it
leaves the semaphore 717’ set, and this semaphore

25

45

60

65

18
blocks the physical layer 153 from taking further action
with the message queues until the logical layer 152 has
finished and cleared semaphore 717'.

Some incoming messages simply require the return of
data from the blackboard 742 to one of the other com-
puters. In this case, the physical layer does not need to
generate a message for the message queue but simply
goes directly to the blackboard 742, retrieves the neces-
sary information, and forwards it to the other machine.
However, if a message contains data that is to be placed
in the blackboard 742, the physical layer 153 must place
the message into a message queue and allow the logical
layer 152 to transfer it into the blackboard 742.

Communications between the logical layer 152 and
the physical layer 153 to access the message queues, and
the semaphore 717’ are carried out by assembly lan-
guage programs that are tied respectively to the com-
puter interrupt 63H in the case of the message queues,
and the computer interrupt 64H in the case of the sema-
phore. These machine language programs enter data
into the message queues, remove data from the queues,
read and set the semaphore 717’, and do so with all
interrupts locked out, so that when one of the systems
152 or 153 is accessing a message queue or the sema-
phore 717', the other is prevented from simultaneously
accessing the same entity, thereby destroying some
data. These assembly language programs are loaded by
the Pascal layer 153 when layer 153 is itself initiated.

The display 367 and keyboard 368 of the Lisp pro-
cessing advisor 1152 interact primarily with the logical
layer 152 and are used by the knowledge engineer to
monitor system performance, to add new rules, and to
alter the performance of existing rules in the expert
system which is controlling the welding process.

According to a preferred version and referring now
to FIG. 8, the basic start-up activity of the system in-
cludes presentation of a top-level goal such as “to per-
form GTA welding” (GTA means “gas tungsten arc”),
for example, to the root node or expert controller 115e.
This goal is analyzed on node 115¢ by the semantic
network and its interpreter. In order to perform the
particular welding goal, a certain rule set and possibly
other knowledge bases, such as frames containing con-
stant data, are required to analyze that goal. These are
accordingly loaded dynamically from a hard disk (di-
rectly or via Ethernet) along data lines 1154", for exam-
ple, from a file transfer network 116a, when that goal is
presented. From that point, the controller 115e starts
generating subgoals and passing these goals to the other
computers or nodes. Those nodes receive the goals,
evaluate them, and determine which particular rule sets
they need to perform their particular analyses, and ac-
cordingly they dynamically load the needed knowledge
bases and frames. Parallel processing is thus initiated.

The detector 17 and the welder 20 are mounted on
the robot 22 for transportation. The detector 17 is pref-
erably positioned at a 30 degree angle from the surface
of the workpiece 19’ (FIG. 1), focusing directly at the
weld puddle 19 to enable the scanning thereof. The
detector 17 is further preferably positioned about 12
inches from the weld puddle 19. The weld puddle 19
accordingly remains in the same place relative to both
the detector 17 and the welder 20 as the robot 22 moves
to conduct welding. This effectively permits controlled,
closed-loop arc welding to be accomplished with re-
spect, for example, upon a pair of adjacent, square
grooved workpiece elements 14(1) and 14(2) of AISI
1010 carbon steel, which are about 0.250"” thick.

4,877,940

19

After analysis by the image analyzer 16(1), the results
are input to the other elements of the controller 16,
which directly governs selected weld parameters and
variables, including weld current and speed, for exam-
ple. Other parameters such as weld voltage, torch arc
oscillation, arc pulsing, arc length, and wire feed speed
are controllable as well, according to the invention.
Shield gas dew point temperature, as suggested at FIG.
3A, is additionally detected, and the results are pro-
vided to the controller 16 to shut down operation if the
shield gas quality diminished unacceptably. The shield
gas employed is inert and is typically argon, for exam-
ple. The quality of gas is established with a dew point
temperature measurement of the shielding gas by a
detector 16(2) through which shield gas line 20(4) (FIG.
3B) passes. Shield gas dew point temperature, as is well
known, is related to the moisture content of the gas. A
device for making the measurement is available from
Alnor Company in its humidity detection series. The
shield gas must be very cold, which prevents oxides
from forming. FIGS. 3A and 3B additionally show
elements of the welder arrangement 20 including a weld
wire drive 16(1,2), weld wire 16(1), the shield gas dew
point temperature detector 16(2), a source of inert
shield gas 17(1), a welding power supply and controller
18(1), and an arc controller 18(2). The electrode 20(5) is
consumable or non-consumable tungsten, depending
upon the weld process employed. If it is non-consuma-
ble, as in the GTA process, no weld wire is used, as the
electrode is not made of consumable weld wire. Each of
these elements is controlled by the controller 16. The
weld wire 16(1) is used to fill in the gap between the
welded parts 14. Accordingly, the weld wire is fed in at
a speed proportional to the torch and robot travel
speeds. The robot speed, of course, depends also upon
the gap between the parts 14 being welded. The shield
gas electrode 20 further includes a cylindrical cup 20(1)
which surrounds the central electrode 20(5). It is out of
this cup 20(2) that the shield gas flows to prevent oxida-
tion of the weld puddle during welding. Accordingly,
there is an inlet 20(4,1) in the top side of the cup 20(1)
into which the shield gas flows. Accordingly, it flows
out of weld cup 20(1) at its lower open end. FIG. 2A
shows the weld puddle 19 adjacent the electrode tip
20(5) and indicates the respective special interest zones
333 of weld puddle 19, which provide information re-
quired for image processing, as is discussed herein. Sev-
eral weld puddle contours are shown, depending upon
the degree of misalignment of the electrode tip 20(5)
from the seam between the parts 14(1) and 14(2) (FIG.
1) being welded together.

FIG. 4 shows in schematic form the general scheme
of one version of the process controller 16 designed in
accordance with the invention herein. In particular, it
illustrates that the actors 115a which control the real-
world process are data driven, while the inner nodes,
such as the expert controller 115¢ and the advisors
115ad, are goal driven (by the centrally positioned user
400, for example).

FIG. 5 shows a preferred version of the invention
herein, in which the controller 16 includes a single mul-
ti-inferencing expert (MIX) hardware node 115. The
hardware node 115, which might be implemented using
a single AT-class computer- programmed in Lisp, “C”,
and Pascal, may communicate with devices such as
sensor 116 and/or one or more controlled devices 117.
The present invention contemplates providing multiple
nodes, each of which may reside on a different hard-

15

20

25

30

40

45

60

65

20
ware processor, but some of which may share the same
processor.

As indicated in FIG. 6 according to one version of
the invention, each MIX hardware node 115 particu-
larly comprises an inference processor 119, a dynamic
priority scheduling mechanism 121, a knowledge layer
124, a logical layer 129, a knowledge base 131, a status
information base 133, a physical layer 130, and a com-
munications mechanism 136. The node 115 acts in re-
sponse to information contained in a knowledge base
131, as well as in response to real time information pro-
vided by the sensors 116 (FIG. 5), for example. The
inference processor 119 is loaded in a particular hard-
ware node 115 to conduct inference processing inter-
preting pre-established rules, which are stored in the
knowledge base 131 with other knowledge elements
(FIG. 13) such as frames 215(1), objects 215(3), and
semantic networks 215(4), as indicated in FIG. 6. The
nodes 115 conduct inference processing under direction
of a dynamic priority scheduling mechanism 121, which
operates as an inference multiplexer. The logical layer
129 thus associates each inference process with a se-
lected logical location in any one of a number of the
nodes 115. The logical layer 129 thus implements a
mapping operation which enables the operation of
scheduled inference processes by insuring the availabil-
ity of information to complete particular operating ref-
erence processes. In particular, the scheduling mecha-
nism 121 schedules inference processes in a regular,
clocked sequence from a ready queune of waiting infer-
ence processes into the running queue. Then, the infer-
ence processor 119 evaluates the selected inference
process by interpreting a corresponding rule 215(2) in
conjunction with selected knowledge base elements,
including the semantic network 215(4), objects 215(3)
and frames 215(1), for example, as will be discussed
below.

As illustrated in FIG. 8, a particular node 115 can
operate as an expert controller with one or more ele-
ments, such as sensor 116 or controlled element 117
through external control 117. A suitable interface layer,
discussed above, is, however, required to accommodate
the specialized connection thereby established. This
interface enables the use of specific data transmission
types as required. In particular, data transmission can
follow RS422, Ethernet, MAP, or TOP format. The
interface layer or mechanism could be part of physical
layer 130 in FIG. 6.

FIG. 8 further shows controller 13 to include a plu-
rality of nodes 115 distributed to form a network inter-
connected by data busses 115d" at respective ports 115p.
The hardware nodes 115 in FIG. 8 are variously config-
ured as expert controllers 115¢, advisors 115ad, or ac-
tors 115a. Expert controller 115¢ communicates with
auxiliary controller 115x as to sensor 17, controls 117,
the network 169, and input/output (1/0) element 117
The expert controller 115x is a selected configuration of
a hardware node 115 with particular features activated
to perform expert controller functions including, for
example, certain actor-directed features. In particular,
the hardware node 115 features which are actor-
directed or actor-characterizing include interface fea-
tures enabling operational and functional compatibility
with the selected sensor 117 or a control 117.

With reference to FIG. 9, the various actor-charac-
terizing features of a node 115 are the knowledge layer,
the logical layer 152, including transmitter/receiver
map features effective for establishing the location of

4,877,940

21
inference operations, and the physical layer 153, which
features a translator for data communications in Ether-
net, RS422, MAP or TOP, as well as specific data com-
munication mechanisms effective to implement the
translation operations performed by the knowledge
layer 151.

The disclosed arrangement interfaces the detector 17
and the radiometer 15 directly to the image analyzer
16(1) which, in turn, is interfaced to image processing
advisor 115/, (No auxiliary controller 115x exists in the
currently operative arrangement; it is shown as an addi-
tional alternative or enhancement to the invention.) The
image analyzer 16(1) node contains programs which
process and condense the information received from the
radiometer 15 in preparation for rule base analysis one
node up in the image processing advisor 115i. The auxil-
iary controller 115x is preferably interfaced directly
with the expert controller 115¢ node, rather than with
an advisor node, such as image processing advisor 115:
The auxiliary controller 115x can be employed as a
work cell controller, for example, which provides an
initial goal to the expert controller 115e. The work cell
controller, for example, could conceivably be a CAD
system or a robot controller. What characterizes the
auxiliary controller 115x is that it requires special inter-
facing that takes into account the external components.
The key factor in being an actor is the inclusion of
specific control or sensor processing algorithms for
particular associated hardware devices. This additional
software, for example, might include “C” algorithms
for image processing.

Each hardware node 115 additionally includes at
least a single generic communication port 155p which is
customized to interface with other computer nodes 115
of the controller arrangement 16. Additionally, accord-
ing to the invention, each hardware node 115 is capable
of managing a plurality of inference processes, in se-
quence or in parallel, under control of a dynamic prior-
ity scheduling mechanism 121 (FIG. 6), subject to a
predetermined adaptive process control language
(APCL) (See Appendix IX), which features block scop-
ing techniques, the use of various type variables and
assignments, standard and user defined data structures,
and, additionally, literal and conditional control struc-
tures. The language itself implements such features of
artificial intelligence as frames 215(1), objects 215(3),
semantic nets 215(4), and pattern matching 217, as is
suggested at FIGS. 6 and 9.

Further, as suggested in FIGS. 6 and 9, the controller
16 architecture includes a logical layer 152, which asso-
ciates particular inference processes with specific nodes
in the network. Thus, the logical layer prevents control-
ler 16 from having to concern itself with the question of
at which node an inference process is to be carried out.
Further, by utilizing knowledge-base communications,
the controller 16 ties together the nodes into a single
intelligent controller. Simply stated, a distributed expert
system, designed according to the invention herein, is
an expert system which has its knowledge distributed
among more than one node 115 but which nonetheless
operates as a single process.

In operation, the various pre-established process vari-
ables including weld speed and current, for example, are
determined, and any defects in the weld puddle are
discovered through image processing of the sensed
information in view of the contents of the knowledge
base 151 (FIG. 9), subject to predefined rules. For ex-
ample, if the materials 14(1) and 14(2), which are being

45

55

60

65

22

square groove butt joined in a plasma arc process are
subject to joint mismatch, there will be a substantial,
definable transverse puddle shift and decreased puddle
width, or the puddle 19 may have an elliptical leading
edge. If the materials 14 are subject to excessive root
opening, there may be present two notches on the lead-
ing edge of the puddle 19. If the materials are axially
misaligned, the weld seam may be on the side of the
puddle. Unacceptable axial misalignment in a fillet joint
weld using the flux cored arc technique is indicated by
a defined transverse puddle shift.

The width of the weld puddle 19 is continuously
monitored during welding. Weld travel speed is gov-
erned by microprocessor control, as is the current sup-
plied to the welder 20. Further, the axial or longitudinal
weldline 19” or centerline of the weld joint is continu-
ously monitored for notches, which are suggestive of
failures in fusion between the plate edges. Thus, accord-
ing to the invention, controlled welding of square
groove butt joints is enabled without substantial root
openings.

The controller 16 employs primarily Lisp source
code in a typical Lisp operating environment. The hard-
ware environment for implementation preferably in-
cludes, for example, several IBM AT computers ar-
ranged in a network of nodes 115. To achieve a general
goal which has been input by the operator, backward
chaining occurs in the semantic network 215(4) (FIG.
13) so that the rules 215(2) applied produce intermediate
goals until a plurality of intermediate goals are estab-
lished and satisfied.

The controller 16 is a single expert system which is
distributed over a plurality of nodes connected as a
network, without each node being a separate and dis-
tinct expert system in its own right. In other words,
according to the invention herein, a single, overall ex-
pert system is distributed over several nodes or ma-
chines. Accordingly, the arrangement herein distributes
the inference mechanism over several processors, rather
than simply distributing the knowledge components
themselves among several processors by employing the
technique of knowledge-based communications, ac-
cording to the invention herein. Thus, a plurality of
inference mechanisms or nodes can operate concur-
rently to achieve selected goals by continually updating
sets of current knowledge until each set includes spe-
cific goal-desired information. Recursive searching to
satisfy goals is thus conducted by both forward- and
backward-chaining. Further, generalized knowledge
mechanisms 601, as suggested in FIG. 14, are provided
to operate, for example, as rule interpreter 218(2,1) and
frame mechanism 218(2,2), as indicated in FIGS. 11 and
14. These knowledge mechanisms 601 are subject to
control by the scheduler 218 (FIG. 10) to implement
inferencing, forward- and backward-chaining, inheri-
tance, and other implication schemes. Information re-
garding instances of the weld process is stored as a
database in a frame 215(1) (FIG. 13) including values
and procedures used to accomplish inferencing proce-
dures. Attached to each frame 215(1), there may be
software demons, which are procedures written in Lisp
and invoked during the searching or inference process-
ing to accomplish specified tasks, such as gathering data
from hardware sensors or initiating communication
between particular nodes 115 of the controller 16. Fur-
ther, according to the invention, the scheduler 218
(F1G. 10) and knowledge mechanisms 601 (FIG. 14)
operate upon semantic networks 215(4) (FIG. 13). The

4,877,940

23

semantic networks 215(4) contain the goals and the
forward- and backward-chaining rules, some of which
launch software demons, and which initiate Lisp infer-
ence procedures as stack frames managed by the sched-
uler and queues 218 (FIG. 10). The scheduler 218 is
clocked, according to one version of the invention, at
regular interrupt intervals to switch between inference
procedures defined by the Lisp stack frames. The
scheduler 218 implements object processes or infer-
ences on a selected basis. During inferencing, specific
instances of the particular welding process being con-
ducted and particular parameter values of these selected
instances are developed in response to the base materi-
als being used, and subject to the particular constraints
on the configuration of the equipment used and the
specifics of the welding arrangement 13 in fact em-
ployed.

The rule interpreter 218(2,1), as suggested in FIG. 11,
is one of the knowledge mechanisms 60’ indicated in
FIG. 9. This rule interpreter 218(2,1) matches the sys-
tem goals in the semantic network 215(4) to particular
sets of rules 215(2) (FIG. 8). The rules then trigger the
establishment of new goals in the semantic network
215(4). When a value is needed which does not exist at
a particular node, the communications network 150, as
indicated in FIG. 9, including the knowledge layer 151,
logical layer 152, and physical layer 153, arranges for
transfer of the needed information to the node 15 which
actually does need it. According to the invention,
knowledge mechanisms 601 are thus paired up with
corresponding knowledge bases 215, as suggested in
FIG. 14.

The purpose of a knowledge mechanism 215 as
shown in FIG. 14 attached to a particular knowledge
base 215 is to examine the contents of its corresponding
knowledge base 215 and to glean from it specific values
and information necessary to the accomplishment of
system goals and inferences, insofar as any relevant
information exists in the particular knowledge base 215.
Each knowledge mechanism 601 attached to a knowl-
edge base 215 is further responsible for the processing of
various predefined inference processes, and to return an
answer resulting from inferencing back to the semantic
network 215(4). When the originator of that system goal
or task becomes scheduled for operation, it will accord-
ingly note that its assigned work has been completed
and that its request has been fulfilled. Frames 215(1) are
used because they are particularly effective for the stor-
age of static process knowledge relating specifically, for
example, to the particulars of welding procedures. By
their nature, frames 215(1) define these particulars as
entity relationships which set forth and establish the
processes and factors that bear upon the specifics of the
welding process. Further, the frames 215(1) define a
class structure as to the particular process to be per-
formed, specifying inter alia the particular base welding
materials 14 to be used, the particular current levels to
be employed in a welding operation, the particular weld
travel speeds to be developed during welding, as well as
the history of the desired weld in terms of information
that has been accumulated from previous welds. Ac-
cording to the invention, frames 215(1) are used for the
storage of process knowledge like entities and relation-
ships. Rules and rule sets 215(2) are employed effec-
tively for control and decision making. Semantic nets or
networks 215(4) function for matching goals to the
previously determined schemes, rules, frames, and ob-
jects, and for maintaining the forward- and backward-

20

40

45

55

24

chaining rules that implement software demons which
execute Lisp processes. The semantic network, in ef-
fect, establishes a tree structured database of knowl-
edge. The frames 215(1) have slots and values, thereby
permitting the employment of tree searching mecha-
nisms which are called inheritance mechanisms. Each
frame 215(1) includes software demons which are in-
voked by the action of accessing particular slots in a
frame knowledge base. Information can be inherited
from the knowledge representations of superclasses.
For example, the class structures established in the se-
mantic network 215(4) can serve to enhance particular
feature descriptions of the welding process. Welding
operation requires, for example, that the weld current
actually be on. This information may not be present on
a particular welding frame knowledge representation
scheme, but it is, nonetheless, available through the
process of inheritance of information from a superclass.
To accomplish one version of welding operation, one
further needs to specify the particulars of the gas tung-
sten arc (GTA) process to be employed. Inheritance is
made possible because any inference process which
needs to determine certain particularities or details can
access the GTA welding process definition and can
acquire the facts needed, namely for example that, yes,
the weld current has to be on in order to perform weld-
ing operations, and also, for example, that the shield gas
must be turned on.

Rules 215(2), accordingly, become paired up with
tasks to be performed and are effective to control these
tasks during performance. The semantic networks
215(4) established in the knowledge base 215 are further
effective for matching goals and tasks to other knowl-
edge representation schemes present in the system. The
semantic networks 215(4) provide the mechanism by
which, as discussed, an event can be caused to happen
simply by accessing or modifying a particular variable
in the system. The semantic net 215(4) itself is essen-
tially a tree structured data base containing simple
premises for triggering forward- and backward-chain-
ing operations. The rule syntax for semantic nets is
independent of that used in the rule interpreter knowl-
edge mechanism. However, it is the forward-chaining
process which establishes use of the demon capability
and enables software interrupt capabilities, according to
the invention herein.

Further, at the interface to each knowledge base 215,
there is a collection of functions employable primarily
for searching. Also included at each data base interface
is a procedure for accessing the semantic network
215(4). In addition, there are two primary software
mechanisms associated with these tree structured se-
mantic networks 215(4). The premise portion of the
semantic network structure constitutes a tree structure.
The branches in the semantic network 215(4), in fact,
contain the actual goals and subgoals to be implemented
during operation.

The input of a high level goal such as “welding’” may,
for example, be accomplished by user entry. If the user
actually types in or enters an expression such as “start
welding process” through a particular input/output
device 117i (FIG. 8), this input expression is entered in
the premise portion of the semantic net 215(4) (FIG.
13). This entry is effective to trigger a forward-chaining
rule, which has been previously defined in the semantic
network 215(4) for this purpose. This, in turn, triggers
the scheduler 218 to invoke a rule interpreter 218(2,1)
(FIG. 11) to examine the semantic network 215(4) for

4,877,940

25

any related goals which it might be able to process.
Simply stated, the assertion of a system goal onto the
semantic network 215(4) can cause the scheduler 218 to
direct the implementation of inference processing in
proper portions of the overall knowledge representa-
tion scheme by means of forward-chaining demons. In
this particular case, the appropriate action in response
to the insertion of a system goal to start welding is to
schedule the rule interpreter 218(2,1) for operation in
the running queue 218(1) of the scheduler 218. This
allows the rule interpreter 218(2,1) to take control and
establish a data path between the semantic net 215(4)
and the rule interpreter 218(2,1), enabling the rule inter-
preter 218(2,1) to accept the particular goal entered and
to start work on it. Inserting a system goal onto the
semantic network 215(4) automatically triggers the
scheduling of appropriate software processes to achieve
the goal desired. The semantic network 215(4) and
mechanism 218(2,3) function as a system interpreter
having data base access capabilities and, additionally,
the ability to trigger selected process modifications,
additions, or deletions. The notion of using a semantic
net 215(4) to drive the scheduling of processes, accord-
ing to the invention herein, is unique. Tying the sched-
uler to the semantic network establishes a unique
scheme of data driven scheduling, according to the
invention herein.

Object processes are maintained in operation on one
of three queues, respectively, 218(1), 218(2), and 218(3)
established in the scheduler 218. These queues include a
suspended queue 281(3) for processes that are viable but
not immediately operable. For example, if a process
makes a particular request for information, that process
is suspended until the answer is provided from some
other node. There is, additionally, a running queue
218(1) maintained by the system process scheduler
which handles only one process at a time because the
Lisp processor can, of course, do no more than that.
Once a particular running process has been accom-
plished, its processing terminates or is suspended and
entered into the suspended queue 218(3). Each process
is given a particular predetermined amount of time to
operate on the running queue 218(1). Particular pro-
cesses can finish or terminate during the assigned run-
ning period allocated. They can come to a point where
they need to be suspended or they can continue running
until the end of their allotted time, and, as such, since
they still need to be worked on at some point, they are
not suspended but are directed to the ready queue
218(2). Accordingly, the process can be returned later
to the running 218(1) queue for continued, subsequent
processing. Accordingly, a particular unfinished pro-
cess either goes on to being performed or it is held
suspended.

This arrangement of the invention is clearly data
driven because if a goal is provided to the system, it
need not be independently scheduled—it schedules
itself automatically. Thus, a system goal is a data driven
thing which will trigger its own scheduling.

In view of the established three queues in the sched-
uler 218, there are correspondingly three states in
which an inference process can find itself. For example,
it can find itself in the running queue 218(1), which is a
queue that can handle only one inference at a time. It
can find itself in a ready queue 218(2) of pending pro-
cesses which are not quite complete but which have not
been suspended. These processes are still being con-
ducted and when their turn comes up to be performed

5

10

20

25

40

45

55

60

65

26

in the running queue 218(1), they will be processed for
an additional predetermined period of time, thus incre-
mentally coming closer to ultimate completion. Addi-
tionally, as noted above, there is a suspended queue
218(3) which holds processes that are in a suspended
state of operation. The key aspect of being on the sus-
pended queue 218(3) is the ability to come out of sus-
pension once the answer to the particular request for
information has been returned. This waking up of a
process is accomplished by a particular software demon
embedded in the semantic network 215(4). The sched-
uler 218 itself directs the selection at each next running
process, and particular processes can become the next
running process because the scheduler 218 determines it
is to be the next one to be scheduled, whether it is a
currently pending process, or a process which has been
suspended but now awakened with new information.

Between each set of hardware nodes 115 there are a
pair of communication ports 115p which require a com-
munication schedule for each of the ports 115p. All the
communication processes that are to take place need to
be suitably scheduled according to a context switcher
218", as suggested in FIG. 17, which operates at a se-
lected switching frequency in response to the control
breakhandler 717 of the Lisp system. The context
switcher 218", when activated, checks the semaphore
717 (FIG. 1a) by a call to interrupt 64H to determine
whether to cause the inference scheduler 218 to pro-
mote the first inference process in the ready queue to
the running queue or whether to initiate message pro-
cessing, as has been explained.

According to the invention, in communicating mes-
sages at a low level through a number of ports 115p,
both read and write messages need to be implemented
for transmission. This need to schedule read and write
messages requires the establishment of the context
switcher 218". According to the invention, there is
further established a queue 734, as suggested in FIG. 16,
for maintaining the most important messages that have
been received, such as those which generate inference
interrupts through the control break handler 717, for
example. Further, there is a need to schedule how often
messages on this particular queue 734 will be handled
for disposition. Accordingly, a control break interrupt,
resulting from such a message, intervenes in the sched-
uled operation of the ready queue 218. The inference
interrupt feature of such messages is typically utilized to
insert new system goals at a particularly high level. An
inference interrupt is indicated by-a specific key in the
message itself. When this key is noted, it forces the
context switch 218" of the Lisp scheduler 218 to add the
message directly to the running queue 219(1) for imme-
diate processing. Other kinds of messages are generally
blackboard read or write messages. These are regularly
scheduled, without interruption. Inference interrupts
are scheduled immediately upon receipt since they need
to be performed quickly. These require lengthy process-
ing and need to be scheduled much sooner than the
particular software routine that is merely performing
the reading of the messages. The system, accordingly,
includes multiple reads to accommodate each port han-
dling its own associated buffer mechanism. The port
buffer 739 associated with each port 115p is large
enough to permit scheduling. The invention, herein,
thus permits suitable scheduling according to dynamic
priority assignment techniques, as indicated.

The priority of a process can be based on a number of
considerations, including the inherent priority of a par-

4,877,940

27
ticular process and how much data has been received by
the port, and stored in the internal buffer which, for
example, is represented as a level indicator. According
to the invention, there is-an intermediate level at which
messages come in. When the full message arrives, the
information received can be loaded into the queue 739
associated with that port, so there is a high level way to
figure out what your current message level is. This is
done by looking at an internal queue (not shown) which
maintains messages. This limits the scheduling of pro-
cesses to only the first three processes available. Ac-
cording to context switching, the overall current clock
frequency is monitored and modifiable. In fact, the
context switch 218" can be held frozen, to stay at a

particular context for a selected, extendable period of 15

time. This enables the elimination of inappropriate pro-
cesses which might happen with data transmission from
one port subject to error, perhaps, as a result of a ma-
chine crash, for example. It, accordingly, makes little
sense to complete the transmission. Thus, the first port
115p is abandoned completely and the particular pro-
cess being performed is suspended indefinitely. On the
other hand, it might be desirable to temporarily freeze
such a process because a great deal of attention might
need to be directed toward other processes. Thus, in-
stead of subjecting it to suspension, the process could
just be delayed in its implementation.

The process scheduler software shown in Appendix
VII(A) performs multi-tasking on inference processes
defined by frames, rules, semantic nets, and objects.
Appendix VII(A) includes several functions which are
invoked by the software interrupt in view of the clock
tick scheduler established in the Pascal communication
layer, which is invoked every eighteenth of a second.
Appendix VII(A) particularly shows Pascal code com-
munication routines that are used in the physical layer
152 (FI1G. 19), including a message handler routine
which prioritizes the existing messages defining infer-
ence processes to be scheduled, and selects the highest
priority process for submission via the inference inter-
rupt mechanism to the logical layer 152.

Communication processes are performed by Pascal
and Lisp code, as suggested in Appendices VII(A) and
VII(B). In order to invoke a Lisp process, a control
break interrupt is generated in Pascal, which forces the
Lisp control break handler to determine which process
to run next. Among communication processes are read
and write processes which can be performed with re-
spect to the ports 115p. Each of these ports 115p is
controlled and maintained by the Pascal queue manage-
ment software, as indicated in Appendix VII(B). The
general manager routine maintains a queue of messages
and data relevant to those messages, and at selected
times, the messages on that queue are “de-queued.”
Additionally, the memory addresses and lengths of the
messages are separately transmitted by a different rou-
tine.

Communications can be conducted on the knowledge
layer 151 (FIG. 9) which resides primarily on the se-
mantic network in Lisp. The knowledge layer 151 is a
set of inference rules that form a grammar to enable
translation from a particular knowledge representation
scheme to a general language. Processes communicate
with each other in general language. The general lan-
guage might, for example, call for the production of a
particular value corresponding to an attribute in the
frames’ knowledge representation scheme. This general
language representation is translated by the knowledge

25

40

45

50

65

28

layer into a specific function which actually fetches the
value from a particular slot in a frame 215(1) (FIG. 13).
There is, accordingly, a specific language feature in
each semantic network that corresponds to the general
idea of fetching something which is implemented by a
backward-chaining rule that triggers a software demon
in the semantic network 215(4) (FIG. 13).

The knowledge layer 151 thus comprises a set of
transformation procedures that perform the translation
of a generic request for data from a particular knowl-
edge base in terms of a specific syntax which calls out
information from the particular knowledge mechanism.
The knowledge mechanism 215 is a small entity means
by which to access a knowledge representation. It is, for

example, a query handler and a knowledge base main-
tainer. A query is simply a request for information con-
taining variables which need to be matched to one or
more elements in the knowledge base.

The semantic network 215(4) includes portions of the
knowledge layer 151 used for the translation of specific
requests into a form needed by the particular process to
enable a response process which makes sense as a logi-
cal connection from one process to another. The seman-
tic network 215(4) also handles the syntax of that inter-
process communication. If it turns out that the process
does not reside on a particular node or machine that
needs to be communicated with, then the information is
communicated through the logical layer 152 down
through the physical layer 153 and out through a se-
lected communications port. Accordingly, the semantic
network 215(4) encompasses both portions of the
knowledge layer 151 and the logical layer 152.

The semantic network 215(4) is a discrimination tree
data structure which is composed of nodes and links
between the nodes. Information can be stored at these
nodes in the form of goals and rules, for example. When
rules, goals, or similar mechanisms are entered into the
discrimination tree, it becomes a semantic network.
Inferencing is a search process for either a conclusion or
for particular premises. In the case of inferencing a
semantic network, the discrimination tree is searched or
a value is entered into the discrimination tree. Appendix
IV illustrates how the discrimination tree is imple-
mented to create links and nodes. In particular, it sets
forth the definition of a predicate calculus frame weld.
A predicate calculus variable is a placeholder variable
which may have a value, and it is used in a quantitative
sense across a goal expression. For example, the state-
ment, “For all “X”, where “X” is a weld puddle, “X” is
0.6, is a statement of the kind used in a semantic net-
work. All structures represented in the semantic net-
work have quantified variables, with respect to which
unification is performed. Unification is a way of resolv-
ing conflicts. If there is a desire to bind variable “X” to
the numbers, “1, 2 and 37, for example, and another
procedure seeks to bind “X” to the numbers, “1 and 27,
both procedures aim to bind “X” to “1 and 2", This is an
example of the notion of unification. Appendix IV fur-
ther illustrates several basic access functions that index
information, effectively putting it into the discrimina-
tion tree data base, or looking up information in the
database and building the necessary links in the data
base, if they don’t already exist. The file name index list
contains some additional utility functions which create
and use databases. Unindex, for example, is a way to
retract information from a database such as a discrimi-
nation tree.

4,877,940

29
Appendix IV further shows a file chain which illus-

trates how a software demon can be implemented ac-
cording to the invention. During the search process
through the discrimination tree, a node may be discov-
ered that contains a Lisp program. If a Lisp program is
encountered, then it is immediately evaluated since it is
a software demon. The functions, “chain” and “add” in
Appendix IV, are further examples of software demons
implemented according to the invention herein. The
unification algorithm, in particular, contains a recursive
check according to which patterns are being matched.
They may themselves have variables in them which
would require a complicated procedure to fully resolve
the findings. This procedure requires recursion. Appen-
dix IV further shows a procedure to rename variables in
the course of search. The basic search function shown
may invoke backward-chaining if the information
sought is not directly discovered. The search procedure
chains backwards to find additional premises to support
the particular conclusion indicated. Further, there is
shown a system function which shows the database and
prints it. Data structure is defined as self-maintaining
objects. If one sends a command to an object or sends a
request to the object, the object structure has mecha-
nisms for evaluating the request or command. One ex-
ample of an object is the welding power supply. It is
treated, conceptionally, as an object which can receive
messages. You can, for example, send the welding
power supply a message such as “set the weld current to
10 amps”. The power supply definition is part of the
hierarchy of equipment in the factory. Accordingly, the
message which goes out to the object welding power
supply may inherit some procedures. Simply stated,
objects have procedures and information. The object
acts on that information and also informs other proce-
dures that are related to this object. With regard to
frames, information is requested from them or informa-
tion is put into them in a static fashion. Of course, other
frames may be accessed to inherit information but there
are no inherent procedures to be actuated. A frame is a
list plus the structure with attributes. According to the
invention, there are from one to twenty frames to use.

The knowledge layer 151, on the other hand, is sim-
ply a language translator. The logical layer 152 is a
location translator, and the physical layer 153 enables
the actual translation from software to hardware and
from machine to machine. Furthermore, the semantic
network 215(4) is a structure which holds goals that
need to be satisfied by information in knowledge base
such as a frame, for example, frame 215(1). In different
parts of the frame, there is information regarding differ-
ent goals to be satisfied. Thus, the semantic network
215(4) communicates with the various knowledge rep-
resentations. :

The semantic network 215(4) further relates entities
and attributes as a knowledge base. In particular, the
semantic network 215(4) uses pointers to establish the
relationship between entities and attributes.

The program, which actually accesses a particular
knowledge base, is called the knowledge mechanism
601. This mechanism 601 transforms user queries into
particular programs which are used to search a particu-
lar knowledge base for answers. In the course of search-
ing the database, the semantic network triggers soft-
ware demons just by virtue of accessing a particular
attribute or value: A query is thus automatically con-
verted into a search technique to go through the entire
frame 215(1). If the search does not produce an answer

20

25

30

40

45

60

65

30

to the particular question, another demon program is
invoked to find, for example, particular bounds within
which the answer must fall according to information in
the particular database. Demons are typically attached
to a slot in the structure of frame, but may also be trig-
gered by rules in the semantic network 215(4). The
knowledge layer 151 takes a simplified natural language
and translates it into a small expression that initiates a
search of a particular corresponding knowledge base.

Each node of controller 16 acquires the semantic
network 215(4) at initialization. The controller 16 will
then create inference processes from the rule 215(2)
(FIG. 13) to implement the goals in the semantic net-
work and places the processes into the scheduled
queues. As goals are presented by the user to the net-
work 215(4), each node of controller 16 acquires the
portions of the overall knowledge base needed to per-
form the particular goals. The nodes 115 have no spe-
cific goals within them at start-up time. It is up to the
user or some other program to provide the controller 16
with selected goals to achieve.

The semantic network 215(4) is, accordingly, just a
framework driven by goals. The semantic network
215(4) insures that these goals are transferred to a node
which can achieve them. The rules 215(2) themselves
further have information which is not included in the
semantic network 215(4), and the semantic networks
215(4) establish a virtual link between the rules 215(2)
and all the other knowledge representations in the con-
troller 16. The semantic network 215(4) thus enables
semantic translations between different information
representations.

Appendix VII(A) contains the communication rou-
tines which are part of the knowledge layer 151. These
routines are independently loaded at each of the nodes
115 during initialization. The routines specifically in-
clude a control break procedure 718, which is sched-
uled as specifically indicated in Appendices VII(A) and
VII(B), with a low-level Pascal clock service 719, as
indicated in FIG. 16. This service 719 schedules partic-
ular hardware and software services for the input and
output ports 115p, as well as perform context switching
and servicing of the message queues. Control break is
invoked by hardware interrupt (hex)IB every eigh-
teenth of a second. Scheduling is otherwise performed
based on priorities established in the ready process
queue 218(2).

Appendix VII(A) further shows how non-critical
messages arrive at the low-level blackboard 742, as
indicated in FIG. 16, while “important” messages are
scheduled in an important message queue 734 for read-
ing at a suitable time. Reading is not implemented im-
mediately because that would throw off system timing.
Accordingly, messages are scheduled for reading into
the ready queue 218(2) if there is a message to be read.
In addition, the routines in Appendix VII(B) include
procedures for writing with respect to particular ports.
Write port 740, moreover, involves a procedure very
similar to control break, in that both procedures turn
output queue 736 on and off. Appendix VII(B) further
discloses how the output queue 736 is filled with mes-
sages that are to be dispatched. Output queue 736 is
filled by Lisp. The write port 740 monitors the output
queue 736 and sends out the messages through its associ-
ated hardware as required. Output queue 736 itself has a
variable level, and repeatedly picks up information and
parcels out messages.

4,877,940

31

Appendix VII(B) shows the procedures for reading
incoming images through a synchronous port buffer
739. Incoming messages are processible only if a busy
flag (not shown) associated with the buffer 739 is
“false”. On the other hand, if the busy flag indicates
“true”, the routine blocks the entry of another routine.
A typical message arrives header first, indicating its
length and identification, and providing some error
checking information. Next comes the text of the mes-
sage itself.

To process a message, a high priority control break is
asserted by context switcher 218"”. Additionally shown
are blackboard 742 writes and reads. A blackboard
“read” simply de-queues the normal blackboard queue
742, as indicated. The write port routine selects a port
for transmission and ascertains where the message is and
how long it is. Thus, to invoke a write port 740, one
must indicate which port is selected for transmission,
the location and memory of the message to be sent, and
the length of that message.

The blackboard 742 is a partial reflection of the se-
mantic net. It is a subset of the semantic net reduced to
Pascal, permitting information with another computer
to be repeatedly and rapidly accessed in Pascal without
having to go to Lisp. Accordingly, some information is
simply reflected down into Pascal from the semantic
network in order to avoid the lengthy process of trans-
ferring it directly from Lisp. The kind of information
involved includes triplets, variables, attributes, and val-
ues. Triplets are three values in a set, namely value,
name, and attribute. This is a technique for short-cir-
cuiting the control break message handler to access
values in the machine without going through extra
software layers. The blackboard 742 is essentially a
status board, as indicated in F1IG. 9. -

Appendices VII(A) and VII(B), there is shown a
queue manager 739’ for the read port 741. This queue
manager 739’ holds both control and non-control break
messages. Thus, there are two kinds of queues: control
break 734 and non-control break 742. Further, a deter-
mination is additionally made whether it is safe to inter-
vene without interrupting anything in operation. Every
port on the machine is checked for operation. The out-
put queue 736 is de-queued of any messages which are
pending for dispatch and its contents are sent to the
write port 740.

In introducing new knowledge into the knowledge
base, a check is made to insure that the new knowledge
does not conflict with other knowledge already in the
knowledge base. Toward this end, a consistency
checker, as set forth in Appendix V, isolates any knowl-
edge which is redundant or which weakens the integrity
of the knowledge base. Appendix V further shows the
rule base 215(2) for the consistency checker. These
rules check both redundancy and syntax, which is es-
sentially the format of the information. The syntax of
rule base 215(2) is particularly defined in rules 6, 7, and
8. These rules are called to determine precisely what the
syntax of the incoming information actually is. The
remainder of the rules perform actual logical consis-
tency checking, including both simple and complex
redundancy. A simple redundant rule, for example,
involves the information that is repeated exactly. How-
ever, some forms of redundancy are more difficult to
spot. .

Processes.are placed on the suspended queue 218(3),
as suggested in FIG. 12, for example, in order to enable
the generation and transmission of a message to another

10

20

35

40

45

60

65

32
node. The event which returns the suspended process to
the ready queue 218(2) is the arrival of an answer to a
requested message. This concept of ready, running, and
suspended status for inferencing processes is unique as
applied to the performance of distributed process con-
trol.

According to the communications scheme set forth in
FIG. 15, a message is received according to block 940 at
a particular port, such as port 115p, for example, and is
stored at a low-level in a selected software mechanism,
according to block 950, which forwards the information
received without modification to the physical layer 153,
as indicated at block 960. The physical layer 153 is a
low-level message processing device which parses a
message into its individual components and makes a
preliminary determination as to its context, according
to block 508. Establishing context means, as suggested
at block 508, determining the type of message being
received, the sender, and the origin of the message. It
may also include a destination identifier which specifies
the specific computer node 115 to receive the particular
information.

Based on the context of the message, most informa-
tion need not interrupt any higher level process. The
logical layer 152 of the arrangement herein, in fact,
maintains an organizational structure which insures that
most processing is maintained at the lowest possible
level. This layer 152 has enough context knowledge to
understand whether a message received is related to a
particular local blackboard 741, to another node, or to
machine 115. Such a blackboard-type message simply
maintains information locally at a local process black-
board 741 for reference as needed by other local pro-
cesses. Blackboard messages, according to the inven-
tion, include read-type messages which find a particular
value on the blackboard 741 answering a request for
transmission back out to the originator of the message.

As already noted, the weld process begins with the
acquisition of infrared data regarding weld puddle fea-
tures and geometry. Another type of message is em-
ployed, which is interrupt driven and effects significant
changes to the process currently in force or operation.
Interrupt messages are, for example, employed to start a
new process or to delete a scheduled process. Thus, a
high level request is performed to implement the inter-
rupt process. As suggested in FIG. 21, once IR informa-
tion regarding weld puddle features has been attained,
selected “C” algorithms 711, preferably written in “C”
language, perform low-level processing of the sensory
data to extract desired weld features. At the Lisp level,
which is high-level and knowledge-based, these features
are analyzed as suggested at block 709 to achieve a
current model of the weld puddle in terms of a high-
level formulation. This enables finding the maximum
and minimum axis or width of the puddle.

A software process on one node or machine 115 can
acquire information from another node or machine, by
translation of a request for the information through the
three layers of the communication link. In a frame sys-
tem, to determine the value of a particular parameter, a
predetermined function is performed which searches
through the frame database for substantiation of that
value. If no value for the particular parameter is found
in any slot of the frame searched and the absence of
value is recognized, a message indicative of that absence
is returned.

The inference multiplexing or scheduler mechanism
218 operates three queues, as represented in FIG. 11.

4,877,940

33

These queues include first a running queue 218(1) which
handles onlya single process on the CPU at a particular
time. Second, there is also a ready queue 218(2) which
handles a plurality of processes ready for execution.
Finally, there is a suspended queue 218(3) which holds
processes which have been suspended. The ready queue
218(2) holds processes which have all the necessary
resources to run immediately but are simply waiting for
their slice of time to run. Processes can be transferred
between queues by a context or process switcher, which
acts as a scheduler 218 to perform transitions between
the queues.

According to the invention, the ready queue 218(2)
holds a number of processes including, but not limited
to, the rule interpreter 218(2,1), the frames mechanism
218(2,2), the semantic network mechanism, and two
types of message handlers, respectively 218(2,4) and
218(2,5). These processes are on the ready queue
218(21) at all times so that during successive time slices,
successive ones of these processes come into play and
portions of these processes are executed until they lose
their allocated time slice. According to the invention,
when a particular running process suddenly needs addi-
tional resources which it does not already have, it be-
comes suspended or blocked, and is transferred into the
suspended queue 218(3). Processes on the suspended
queue 218(3) wait for the occurrence of a specific event
which enables the process to return to the ready queue
218(2) for multiplexing onto the running queue 218(1) in
. its regularly allocated turn, as suggested in FIG. 12. As
shown in Appendices VII(A) and VII(B), which con-
tains the software for queue handling, a queue is a data
structure having a list and a position indicator for the
beginning and end of that list. In particular, Appendix
VII(A) shows the software establishing the data struc-
ture of the ready queue, the running queue, and the
suspended queue. An object is a portion of the knowl-
edge base which contains an abstraction of knowledge.

The rule set 215(2) includes, according to 4 preferred
revision of the invention, a statement initially setting
certain variables to “nil”. This is accomplished by the
Lisp expression:

(GLOBALS((DT.NIL)(DELTA-LNIL)
(DELTA-S.NIL))).

Simply stated, this establishes that the time change DT
is initially zero, that the weld current change DELTA-1
is initially zero, and that the speed change DELTA-S is
initially zero. Further, certain tasks are defined by the
expression:

(TASKS((PUDDLE WIDTH
CONTROL(STATIC ROBOT)STATIC
POWER-SUPPLY)))).

In other words, it is the goal of a specific task or infer-
ence process to control puddle width for a selected
robot and power supply. The expression, “static robot”,
is a variable expression which holds the name of the
robot device on which the weld process is being per-
formed.

Additionally, to set the “FL” mode of operation, a
mode selection expression SELMODE FL is employed.
Further, CSET is initialized at nil value. Beyond this, a
prerequisite is established according to the statement:

(PREREQUISITE (AND (NULL CONSTANT’
WELD-ABORTED)))).

5

20

25

30

45

50

55

34

Additionally, entry is set in accordance with the state-
ment:

(ENTRY(PROGN; (UPDATE-PARAMETERS
REMOVED SO DATA DRIVEN
(:=(GLOBAL DT)W-TIME-DERIV
(PARAMETER ‘WIDTH'GET'ALL))))).

Finally, inputs are defined as parameters width, current,
speed, and shield gas temperature.

As suggested in Appendix IX, a first rule of the rule
set 215(2), employed according to a preferred version of
the invention, evaluates whether the shield gas tempera-
ture is greater than the dew point temperature. More
particularly, Appendices IIT and IX are codes for the
expert knowledge representation scheme including the
rule interpreter of the expert systems of the invention
herein. More particularly, the first rule examines the
current value of the shield gas dew point temperature
and compares it to a minimum acceptable dew point
temperature. In case the shielding gas dew point tem-
perature is greater than this minimum acceptable value,
the welding process aborts. More particularly, the infer-
ence process interpreting the first rule is aborted, and a
new “above dew point” process is initiated. This new
process shuts off the welder. The second rule evaluates
whether the parameter puddle width is less than the
constant WMINP, i.e. minimum puddle width. If this
condition is met, the too small puddle routine is called.
The second rule, accordingly, compares the current
value of the puddle width to minimum and maximum
permissible puddie widths. Further, the current is com-
pared to a predetermined minimum and, in case it is too
small, the inference process implementing the rule is
aborted and a new process called “too small puddle” is
initiated. According to the third rule, the current pud-
dle width is compared to a maximum permissible value,
and in case the puddle is too wide, a process named “too
wide puddle” is invoked. More particularly, the third
rule evaluates whether the parameter puddle width is
greater than the constant WMAXP, i.e., the minimum
puddle width. If so, “too wide puddle” is called. The
fourth rule compares the actual value of weld current to
a predetermined desired current level and further com-
pares measured puddle width with a predetermined
puddle width constant. Further, the trend of the change
in puddle width is observed. Simply stated, the previous
value and current values of puddie width are compared
with a maximum difference value to indicate the rate of
change in puddie width. Further, the current value of
the weld current is compared to a desired change that
we wish to make in the current and, if there is a particu-
lar difference level, the weld current is modified by this
value “di”. According to the fifth rule, the weld current
is compared to a predetermined constant current set
point Further, the puddle width is compared with a
predetermined puddle width constant, indicative of the
maximum acceptable puddle width. Finally, the welder
speed change is compared to a maximum speed change
constant. If the weld current is less than 95% of a prede-
termined maximum current level, the puddle width is
greater than the maximum allowed puddle width within
a particular tolerance zone or, if the speed change is
greater than a predetermined maximum speed change,
then a predetermined inference process is initiated
which attempts to change the speed of the robot by a
predetermined value “ds” and also to change the weld

4,877,940

35

power supply current by a predetermined value “di”.
The control system monitors weld speed and current
directly in order to maintain a constant puddle width.
According to the ninth rule, weld speed is controlled as
indicated. The tenth and eleventh rules, respectively,
mirror the eighth and ninth. Accordingly, by conduct-
ing a suitable trend analysis, an intelligent determination
is made as to how much to change the weld speed or
current by using knowledge of the trend of the puddle
growth. Further, the sixteenth and seventeenth rules
perform a comparison of the minimum controllable
puddle width trend with respect to the existing puddle
width. In particular, the trend of the last value is com-
pared to the trend of the derivative of the puddle width
change and the result is compared to an established
constant called D-High, which relates to the greatest
rate at which the puddle width can change. Based on
these comparisons, a change is made in the weld speed.
Further rules, as suggested in the Appendix, evaluate
whether the weld current is below 0.95 of a constant
“IQ” and whether puddle width is below constant
WMAXC. If so, the routine “too low current” is in-
voked. Further, if the weld current is less than 0.95 of
“IQ” and width is greater than WMAXC, and global
delta-S is defined as delta-S high, then changes in weld
speed current are invoked. If the weld current is greater
than 1.05 of “IQ”, and puddle width is greater than
WMINC, then the process “too high current” is in-
voked.

During inferencing operation the rules indicated
above are scanned from beginning to end to determine
whether the antecedents of any of the rules are satisfied.
If the antecedent of a rule is satisfied, its consequence is
triggered and the search for a next rule to trigger con-
tinues.

The welder arrangement 13, according to the inven-
tion, herein further employs a process controller 16
operating according to an Advisable Process Control
Language (APCL), as set forth syntactically.in Appen-
dix X, and which is an adaptation of Lisp.

Appendix IX is an extended formal definition of the
entire process controller architecture. It shows, recur-
sively, the underlying idea of the process controller 16,
including advisors 115ad linked to other advisors 115ad
and eventually linked to an expert controller, which in
turn is linked to actors 115z which are connected to
sensors 116 and/or controllers. Further, the expert con-
troller 115¢ may be directly connected to sensors 116
and/or to custom interfaces, such as, for example, auxil-
iary controller 115. “XADVAC” is defined as an expert
controller combined with any number of advisors or
actors. An expert controller, moreover, is an advisor
combined with a physical layer. An advisor 115¢d mul-
tiple inference expert system has a knowledge layer 124,
a logical layer 129, a physical layer 130, and may have
actor component custom features, such as an interface
to a sensor.

An actor 115¢ includes an application layer of pro-
grams written specifically to interface to a sensor 116,
controllable device 117, or actuator. The actuators must
also contain knowledge, logical, and physical layers,
respectively 124, 129 and 130, so that they can be com-
ponents of the entire control structure 16. An applica-
tion layer is a program combined with some application
specific knowledge, such as an image processing infor-
mation, for example. A physical layer 130 is a program
with specific knowledge of how to transmit messages
according to a particular message protocol. A logical

5

20

25

30

35

45

50

35

60

65

36

layer 129 is a program which also contains logical desti-
nation knowledge. A knowledge layer 124 is a program
layer containing a translation scheme between knowl-
edge representation schemes. A program is obviously a
connected series of statements to solve a problem. The
total of all programming languages in our system is
“APCL”, “C”, “Pascal” or “Fortran” and assembly
language.

The process controller 16 can be formally defined in
a symbolic fashion in terms of its components. Accord-
ing to this syntax, the process controller 16 for directing
welding operation can be defined to include an expert
controller and zero or more occurrences of advisor or
actor elements, respectively 115e¢d ad 115a. Further,
each expert controller 115¢ can be defined as the combi-
nation of an advisor 11544 and a physical layer. Addi-
tionally, the advisor 115ad itself can be defined as a
multi-inferencing expert (MIX) system together with a
knowledge layer 124, a logical layer 129, a physical
layer 130, and zero or more occurrences of an actor
115a. An actor 1154, in turn, is defined as an application
layer together with a knowledge layer 129, a logical
layer 129, and a physical layer 130. Further, the applica-
tion layer is defined as a layer together with application
specific knowledge. Similarly, the physical layer 130 is
defined as a layer together with data transmission spe-
cific knowledge. A logical layer 129 is defined as a layer
together with a logical destination knowledge. A
knowledge layer is defined as a layer together with a
knowledge translator. Additionally, a layer is defined as
a program together with a programming language. A
program, in turn, is defined as a connected series of
statements to solve a problem. A programming lan-
guage, in turn, is defined as either the advisable pro-
gramming control language (APCL), “C”, Pascal, the
assembler or the like.

The advisable process control language (APCL) can
be defined in terms of a formal grammar. For example,
a rule set in the advisable process control language is
defined as a rule set label and zero or more occurrences
of a static declaration, global declaration, local declara-
tion, task expressions, inputs, mask expressions, prere-
quisites, or conflict set together with a selection mode
and zero or more occurrences of rules. A rule set label
is an identifier. A static declaration is the word “static”
with zero or more occurrences of variable declarations.
A global declaration is the word “global” with zero or
more viable declarations. A local declaration is the
word “locals” with zero or more instances of a rule
label with variable declarations. A selection mode is the
word “Selmode” with a key word such as “FL”, “FD”,
or “TARD?”, for example. A prerequisite is the word
“Prerequisite” with a Boolean expression. A task ex-
pression is the word ‘“task” with zero or more Lisp
expressions. A rule itself is a rule label with an “if”
expression with zero or more occurrences of “Then”
expressions. A rule label is an identifier. If and Then
expressions are Boolean expressions.

A variable declaration is an identifier with zero or
more occurrences of an initial value. Additionally, Ap-
pendix I is the software code for automatically loading
files at power-up in order of loading; Appendix II con-
tains the software code for the utility Lisp functions;
Appendix IIT contains the software code for the frame
knowledge representation system, according to the
invention herein; Appendix IV is the software code for
the semantic net knowledge representation system; Ap-
pendix V is the code for the expert knowledge represen-

4,877,940

37

tation scheme including the rule interpreter of the ex-
pert systems of the invention herein; Appendix VI
shows the software code for consistency checking, as
discussed above; Appendix VII(A) is the Lisp/Pascal
communication and process scheduler software inter-
face; Appendix VII(B) is the Pascal communication and
scheduling interface for serial ports, hardware clock,
and Lisp; Appendix VIII is the “C” image processing
code including the algorithm for resistance weldbox
size, according to the invention herein; Appendix IX
shows the example knowledge basis for frames, the
expert system, and the consistency checker; Appendix
X shows the extended Backus-Naur formal definition of
expert advisable adaptive controller, according to the
invention herein; and Appendix XI is the index to the
Appendices.

Finally, FIG. 20 shows the muiti-nodal controller 16,
according to the invention herein. This controller 16 is
effectively both data-driven by information received in
real time from sensors 116 and/or controlled elements
177, and goal driven by goals entered in the semantic
networks 215(4) of the various nodes 115 of the control-
ler 16. Several nodes 115 may reside on a single ma-
chine. The knowledge bases 215 including rule 215(2)
are transparently distributed throughout the various
nodes 115. Thus, inferencing processes conducted by
the controller 16 are effectively muiti-tasked at many
levels. For example, inferencing can be conducted at
the level of the root node or expert ccatroller 115¢ at
any of the various levels of particular actor nodes 115q,
which are connected either directly to root node 115¢
or through advisor node 115ad thereto. Further, in-
ferencing can be conducted at any of the advisor nodes
115ad indicated, irrespective of level.

By way of additional detail, the invention herein
includes real time welding of adjacent materials with a
weld puddle formed between the materials by bringing
the welding apparatus into position to form the weld
puddle at the interface of the adjacent materials, ther-
mographically scanning the weld puddie and its adja-
cent heat affected zone, and producing image signals
representative of a thermographic image of the weld,
transferring the thermographic puddle image signals for
comparison with reference puddle images to evaluate
variations, and adjusting the welding apparatus to
change the weld puddle because of deviations noted
between the detected and reference puddle images. The
process includes adjusting the electrical power and
position of the welding apparatus torch. It further in-
cludes determining whether adjustment of torch cur-
rent will modify puddle the shape to a predetermined
range, and adjusting the torch travel speed when adjust-
ing the current is not sufficient. The process includes
determining whether a predetermined amperage
change, such as ten percent or less, will adjust the width
of the puddle to within a predetermined puddle range
and, if not, then determining the speed adjustment nec-
essary for the torch to change the width of the puddle
sufficiently to cause it to fall within the predetermined
range, and then changing the speed of torch travel ac-
cordingly. The procedure includes storing process and
procedure variables in real time for later analysis of
welds made at a later point in time. The process further
includes inspecting the weld puddle for defects in real
time. The process further includes adjusting voltage or
amperage, lateral adjustments of welding torch posi-
tion, speed of torch travel, and angular adjustment to a
track angle. The procedure further includes taking iso-

20

35

40

45

50

55

60

65

38

therm line scans of the weld puddle and relating the
isotherms in real time to weld size measurements. The
procedure includes real time analysis of isotherm scans
of weld size as a fraction of weld current and tensile
shear versus weld current. The procedure further in-
cludes real time determination of width and depth of the
weld puddle fusion zone. The procedure further in-
cludes determining shield gas temperature in the torch
and aborting welding operation when the gas tempera-
ture is too high. The process further includes analyzing
the forward tip of the image of the weld puddie for
projections indicating deviation of weld path from seam
or interface direction and adjusting the path of the tip to
more closely track the weld seam.

The invention herein is further directed toward ex-
tracting data indicative of irregularities from the émage
signals, including the width of the weld puddle as, for
example, measured perpendicular to the path of travel
through the center of brightness of the puddie to points
on the puddle perimeter of lower brightness than the
brightness at the center of brightness. The data ex-
tracted includes the rate of heat flow out of the puddle
as, for example, measured by determining the rate of
change in puddle brightness at points on the puddle
perimeter, particularly the maximum rate of change.
The data further includes the rate of heat flow out of the
puddle determined by taking the reciprocal of the dis-
tance between two points at predetermined, respective
higher and lower brightness levels located on either side
of the puddle perimeter. The data extracted further
includes the rate of change in puddle brightness at its
perimeter at a point defined by the perimeter and a line
perpendicular to the direction of travel passing through
the center of brightness. The data includes the number
of times the actual puddle perimeter crosses over a
theoretical smooth puddle perimeter within a given
zone, the zone, for example, enclosing the leading edge
of the puddle, and specifically, for example, enclosing a
portion of the puddie perimeter to the left or right of the
puddle center. The data, for example, includes measure-
ments of the area of the puddle within a zone overlap-
ping its perimeter, and, for example, measuring the
length of the puddle perimeter. The data may further
include measurement of the length of the puddle perim-
eter within a zone that overlaps its perimeter.

Process Control Example Turning Off The Welder If
The Puddle Width is Improper

The above description of the invention, taken to-
gether with the detailed listings set forth in the appendi-
ces, sets forth the structure of the invention. The inven-
tive concepts which underlie the realization of a real
time, multitasking, distributed process control system
using artificial intelligence techniques, can be illustrated
by presenting the following over-simplified example of
how the invention can be used to implement one simple
process-control function. In actual use, the invention
would usually be used to implement far more complex
functions than the simple one described below. How-
ever, a simple example, howsoever over-simplified, will
illustrate how real time control of a process can be
realized in practice, and thé system design principles
illustrated may be readily extended to far more complex
systems containing many rule sets that define highly
elaborate process control strategies.

Our task is a simple one: start the welding process,
and then shut it down if the puddle width becomes too
large or too small. The machine configuration is in

4,877,940

39

accordance with FIGS. 8 and 19, both of which reveal
a detector 17 and radiometer 15 feeding infrared visual
signals into an image analyzer 16(1) programmed in “C”
and in Pascal. The “C” programs in the analyzer 16(1)
compute the weld puddle width, in the manner ex-
plained elsewhere, and present this width on a black-
board 742 from which it may be retrieved by the Pascal
physical layer 153 within the image analyzer 16(1) (see
these elements within the advisor 115 in FIG. 19). The
image analyzer 16(1) is serially connected to an image
processing advisor 115, and the advisor 115 is serially
connected to a controller actor 115z (FIG. 19). For
simplicity, we leave out of this example the expert con-
troller 115¢, since our control action (starting or stop-
ping the welding process) is fairly trivial. The controller
actor 115¢ contains programs written in “C” and call-
able from Lisp that can start and stop the welding
power supply and robot, initialize the image scanning
equipment, and in general, run the real time process
under the control of Lisp in the controller actor 115a.

First constants and parameters used in the image
analysis system must be defined. For this purpose, a
frame named GTA1 (for “Gas Tungsten Arc 1) is
created. This frame might define, in general, such things
as the desired welding current and speed, the optimum
puddle width, the maximum and minimus puddie width,
and it might also define a “deadband” about the opti-
mum puddle width—if the actual width falls within the
“deadband” width, then the width is assumed to be
acceptable. For example:

GTAl (frame name)

1Q 272 {desired weld current)

SPEED 21.0 (desired weld speed)

PWA 5.2 (desired puddle width in millimeters)
WMINP 4.0 (minimum allowable puddle width)
WMAXP 6.0 (maximum allowable puddle width)
WMINC 5.0 (deadband minimum width)
WMAXC 5.5 (deadband maximum width)

of these, only the minimum and maximum allowable
puddle widths will be used in this simplified example.
This frame, stored in the logical layer of any one node
115, would automatically be made available to the adja-
cent nodes 115 by the physical layer 153, which would
route any requests from the logical layer 152 towards
the machine that contained this frame in the preferred
embodiment, each node 115 is an AT-class processor,
and such data can only be retrieved from an adjoining
node; but a more general implementation of the inven-
tion could have plural nodes share a single processor
and could permit a node to retrieve data from a nonad-
joining node. The physical layers 153 automatically
advise each other of what information they may access,
so any given physical layer 153 knows which way (that
is, over which of the two possible serial ports) to route
any request for information. Accordingly, the logical
layer 152 does not have to know where any given piece
of information resides. However, a frame containing
constant data might be duplicated within the logical

20

25

30

35

45

50

layers 152 of several nodes to avoid the necessity of 60

Lisp-to-Lisp communication.

Next, the parameters of the process, such as puddle-
width, current, and speed, are defined as system param-
eters in the semantic network, and also into the consis-
tency checker list of variables, so that their use in
newly-entered rules will be permitted by the consis-
tency checking code within the logical layers. These are
entered into the blackboard, and their existence is again

65

40
propagated by the physical layer 153 to adjacent ma-
chines.

Next, any software demons that need to reside in
frames are created and entered. For example, if the
puddle width were a frame value, the frame would
contain a software demon (a Lisp procedure) that
would fetch the value of the puddle width from the
physical layer whenever it is required. But in our exam-
ple, only static variables are contained in the frames,
and puddle width is an entity in the semantic network
that is permissable and may or may not be defined.

The forward- and backward-chaining rules now need
to be entered into the semantic network. We need a
backward-chaining rule to find the puddle width, when-
ever it is undefined:

((puddle-width
?X)(Lisp(-routine-for-puddle-width)))

Finally, the rule set that governs system initialization
is defined:

(ruleset #4
(tasks ((initiate image processor)))
(rules
(1t
(lisp (call init-image-processor)))))

When the inference task name “initiate image proces-
sor” arises, this single rule always executes (since it is
defined to be “t” or “true”), and it calls upon Lisp to
execute the named subroutine or program, which is
written in “C”.

Next, the image processing advisor needs to be set up.
We duplicate the frame GTA-1 here, since the frame
contains constant data. Then we create three rule sets:

(ruleset #6
(tasks ((startup)))
(rules
at
(perform initialize image processor)
(perform initialize equipment)
(perform start welding process))
@t
(abort shutdown system))))

This rule defines the actions to be taken in response to
the “startup” goal. Both rules are executed uncondition-
ally once. The first rule performs the functions indi-
cated, while the second rule un-schedules and termi-
nates the “shutdown system” inference task, if it is ac-
tive. ‘

(ruleset #1

(tasks ((start welding process)))

(entry (parameter ‘puddle-width))

(Selmode FL)

(rules "
(1 (OR ((parameter 'puddle-width) (constant "WMAXP))

((parameter 'puddle-width) (constant "WMINP)))

(abort shutdown system))))

This rule is executed repeatedly, aborting only when
the “abort” command is executed, after which it initi-
ates the “shutdown system” task. This happens when
the wvariable parameter “puddle-width” is above

4,877,940

41
WMAXP, the maximum width, or below WMINP, the
parameter minimum width.

(ruleset #2
(tasks ((start welding process))
(rules
(1t
(net-message
“shutdown Power supply”)
(net-message shutdown Robot™))))

When the system is to be shut down, this ruleset initiates
the transmission of messages to shut down the robot and
power supply.

Next, demons need to be added to the semantic net-
work of the expert controller 115e:

((initialize ?X)(Lisp(net-message X))

This first forward-chaining demon translates any com-
mand to “initialize” something into a Lisp command to
send a message “something” over the network.

((start ?X)(Lisp(preempt-expert-system ?X)))

This forward chaining demon converts a command to
“start” something (assumedly an inference process) into
a Lisp procedure that causes the named task to be exe-
cuted immediately, preempting any other scheduled
task that may be running.

((parameter 'puddle-width)(Lisp(find
*puddle-width)))

This backward-chaining rule in the semantic network
initiates a search for the “puddle width” parameter,
using the “find” procedure set forth below:

(defun find (query)
(let ((id(make-mss-id)))
(add (wakeup-demon id))
(place-msg-list
'(place-msg (find ,query ,machine-id ,id)))
(suspend-this-process)
(retrieve query)))

This transforms any “find (query)” request into a mes-
sage sent onto the physical layer seeking the query
value, and then the inference task is suspended (“sus-

15

20

25

30

35

40

45

42

contains a unique id code. The message, itself, is a re-
quest that the node receiving the message send back a
return message containing the query and the id code.
This rule also creates a “wake up demon” having the id
code that will unsuspend the inference task when the
message returns with the query. When unsuspended, the
inference task executes the “retrieve query” function.

To initiate the process control task, one simply pro-
vides the goal “start welding process” to the expert
controller.

The process controller actor 115¢, in general, con-
tains frames defining the process control parameters
and demons defining actions to be taken relating to
these parameters. A simple frame relating symbols to
actions that must be taken when those symbols appear
suffices for many control actions. Alternatively, rule
bases may be provided to define actions. In this exam-
ple, two rule bases are provided:

(ruleset?
(tasks ((shutdown system)))
(rules
(1t
(net-message
(constant 'Robot-1 ‘shutdown-command)!)
(net-message
(constant 'Power-Supply-1
‘shutdown-command)2)))))

This ruleset defines messages that are translated by a
frame into specific commands:

Equipment
Robot-1
(shutdown-command “halt”)
Power Supply-1
{shutdown-command “off™")

So the command sent to port 1 is “halt” and that sent to
port 2 is “off”’. That completes the establishment of the
process.

According to the invention, spot welding can be
accomplished by shutting-off weld current when the
size of the puddle reaches a predetermined limit.

The information above is directed only toward repre-
sentative ways of carrying out the invention herein,
according to the best mode. The invention itself, how-
ever, is broader in scope, as suggested in the claims

pend-this-query”) until a reply is received. The message 55 which follow.

Appendix I

RE™M™
R
RE™M
PROMPT $P%5

AUTOLOAD IN PROGRESS....

L C
RE ™
REM

LOW LEVEL

Ch
REM

GCL ISR

CURRENT DIRECTORY

REM
REM

REM
GCILISPLM

STARTING

(BiLALSE COMPRUTING)
HIGHER LEVEL COMMUNICATION ROUTINES LOADED BY LISP BELOW.

UP LISP ENVIRONMENT.
THE USERINTT.LSP FILE WHICH IS AUTOMATICALLY LOADED BY ILISP...

ALTOEXEC.BAT FILE AUTOMATICALLY EXECUTED BY DOS AT POWERUP....

PORT HANLDLERS ARE NOW LOADED.

IS GCL1SPZ.

IT WILL CONTINUE THE LOADING VIA

4,877,940

43) 4“4

REM AUTQEXEC.%Q- ~tf AUTOMATICALLY EXECUTED & wGE AT POWERUFP. ...
L s .

REM 2 8y a0

Re'" N ALTOL0DAD IN PROGRESS.. ..o .. LAUTOLDAD IN FROGRESS. . v v v o e

33 Y=Y 4 .

R LOW LEVEL (BLAJSE COMPUTING) PORT HANLDLERS ARE NOW LOADED.

REM HIGHER LEVEL COMMUNICATION ROUTINES LQOADED By C PGEM BELOW.....

pESETeY: .

R STARTING UF 1IMAGE PROCESSOR. 17 WILL CONTINUE THE LOADING OF

REM THE PASCAL HIGH LEVEL COMMUNICATIONS ROUTINES V1A DOS CALLS...

=

: USFRINIT.LGP

7 (.

pol
o

vear tHERT-Fpp

Automatically read in by Lisp at startup to:

Load Lisp source code
Exprute eviernal DOS program to load and start low
clock scheduler and commurication

level

tiok Drograms.

P AGL-LIGHT-Px 1) :
temuiatea)

A couple of environment switches get set...

source rode necessary to process controller.

téormat & "~&Loading Source all "
(oo Ulaben T : Utility fumctions

(loas "funs)

(cg "o,

(cd "framss”™) Frames knowiedce renresentation system

(loac “srames,loc™)

(cd .

(cd "semnet')

1 Semantic net knowlednge representation system

(load "semnet.lod")
(cd ..
cd Cesperit) : Expert knowledocs representation system
(loza "ovrert o lad’s -
(cd "cinNeclienZiicna”?
(icad "creg.ino’? : Pnowledos base consistancy checker
(m "crivhngeollisn2iZhooemm')
(locag "comm, ioad') : Commumication and scheduling functions
(ca "oy
.
(format t "“MAEFirmiohed lcacirg all source necescsary to process controller.
~YSRStarting up tMemcrv Resident Clock Tick Scheduler and Comm, Routines.')

(sys:CQocs

+

(format.

(cd
(format

"tontrol™)
t "~&Current

$1 FUNS.LOD 1I.0AD IN
G_0Aan YecaahgoliispiNig
(LOAD tANNgclisp2\\1
(LOAT "revvgolisp2yZ2\ 1]

(a

o &Now Online

1 Mem, Resident Clock Tick Scheduler and Communicatic

and Ready for Process Control...'")

directory is ~MA" (directory-namestring (cd)))

Appendix II

MANY USEFUL FUNCTIONS TO SERVE OTHER PACKAGES.
oA Aun e NAMAPEUNE)
IDNNfuns\\FOR")
IbNNFfunse\\PLIST")

(LOAD “caidNgelisp2\N1ioivfFuns\\GETS")
CLOAL "oinngclisp2\ V11D Funs \\PRINT")
(LOAN "c:\\aclisp2\\1ib\\Vfuns\\SORT")
(LURD "ciM\golisp2\N i N\+uns\\STEFPLDOAD™)
(LOAD "CiNNGCLISP2NNLIBNNFUNSANASTRINGS")
(LOAD "C:NNBCLISF2NANLIENNVFUNSANNQUEUES'™)
CLGAD "CeMNGCLISFNANL TBM\FURNSAN\MATCH")

4,877,940
45 46

: CCFLNSLLSP VARIOUS MAPPING FUNCTIONS THAT GCLISP DOES NOT PROVIDE

11 MAPCAR IN GCLISP 1S FINE.
:1{dmciob mapcar (x)
HE (list "fapply (cadr x) ‘list (caddr x)))

it {marc fun lis) applies fun to each element of lis and returns nil.
MAPC 1IN GCLLISP IS FINE.

rildmclon mapc (x)

: (lict "Fapply (cadr x) nil4n (caddr x)))

1 dmaocan FUN LID) applies the fumnction FUN to each element of the list
1 (where fun is assumed to return & list) and returns a new list obtained
1t by nconc’ing the resilts together. (CRM, pp.&62,306). (Unlike theirs, this

version accepts onlv one list.

(DEFUN MAFPEND (FUN LIS)
(ARPLY #°APPEND (MAPCAR FUN L1S)))

INVENTED TO SATISFY A MAPPING NEED., AND IN GENERAL GIVE GCILISP SOMETHING
1 BARDLY NEEDFD. NOT THE SAME AS COMMONLISP MAP, S0 CALILED MAPSTEPR.

(DEFUN MAPSTER (FUNC STEPFUN EXFR)
(DO CRESTOF)
((NULL EXPR) (REVERSE RESTOF))
(SETR RESTOF (CONS (FUNCALL FUN (CAR EXFR)) RESTOF))
(SETQ EXMR (FUNCALL STEPFUN EXPR))))

PAIT--U0 (L)
CONULL L) NIL)
CONULL (CDR L))
(FRINT "ERROR: QDD # OF ELTS IN PAIR-UP"))
(T (CONS (LIST (CAR L)I(CADR L))
(PAIR-UP (CDDR LJ))J)))

1t (subset FUN LIS) applies the fumpction FUN to each element of the list
1.L1S and returns a list of all the elements of LIS for which FUN
returns a non-nil value. For example:

(subset "~ (lambda (x) (greaterp+x @)) (-1 1 @ 2))
returns (1 2) .Any duplicate elements in the list wil be retained. if they
are in the subset.

ar as an a0 2
an as ev av e

o~

DEFUN SUBSET (FUN LIS)
(LET (RESULT?
(POLTIST (ELT LIS RESULT)
(WHEN (FUNCALL FUN ELT) (SETO RESULT (CONS ELT RESULTY)Y))))

HOROK KKK KKK ok K oF 0k 3K 0k Kk K 30Kk 3K 3k oK ok 3K 3K 0K K KOK KK 3K 3K 3K 3K 3K KKK KOk 30K 3K ok 30K 3K K K 0K 3k 30K K 0K K 0K 5Kk Kk K ok K K K K K

H .
:'(some FUN L.JS) applies FUN to successive elements of LIS untill
: one of them returns a non-nil value. If this happens, then some

returns the elements of LIS from that point on. Otherwise it

33 returns mil .

COMMON L1SP DEFINES SOME TO RETURN JUST THE RESULT OF THE FIRST PREDICATE
TFST WHICH RETHURNS A NDN-NIL VALUE. GCLISP FOLLOWS THAT. R

1y CHANGING THIS SOME 1O BE: SOME-PLUS WHICH BEHAVES AS ABOVE.

a se an me ae

»e 4y e

(DETUN SOME-PLUS (FUN LIS)
.00P (OR LIS (RETURN NIL))
(AND (FUNCALL FUN (CAR LI1S})) (RETURN LIS))
(POP LISH)Y)

4,877,940
47 48

G R ROR R R R OR RO KR KR KK KRR KKK KK KOK Rk K K K0k ok ok KOk KKK KK KR K Ok K OKOKOKOKOK ROK Kk K 3k K K K K KK K K KK K kK K K Ok % X

i (every FUN LIS applies FUN to successive elements of LIS ., returning
HH nil . as soon as one ot these applications retunrs nil I+ all

11 applications returns a non-nil value, then t is retutrned.

t 14 LIS 1= null. then t is returned.

3 DOLIGP HAS EVERY BUILT IN, BUT HERE IS WHAT IT WOULD LOQK LIKE:

;s (DEFUN EVERY (FUN L1S)
HH (DR IST (ELT LIS T : T IS RETURNED IFF ALL TRUE. ELSE NIL.
H CUNLESS (FUNCALL FUN ELT) (RETURN NIL))))

DU R R R R R ROk R R KK KK KKK KK R OK KOK 3K KK K 0K KOk K KK R KK K KOk K K K Kk K K ROK K R OK R R KK R R R Rk K E XKk K KOk X

11t (none FUN LIS applies FUN to successive elements of LIS |, returning
H n1l . as «non as one of these applications returns a non-nil value. 1+
11 all eoplications return null values. then ¢t is returned.

COMMON LLISP DEFINES NOTANY = NONE. GCLISP DOES NOT PROVIDE EITHER:
: NOTE THAT THIS DEFN., DOES NOTE PROVIDE FDR &REST MORE-LISTS.

DEFUN NOT=ANY (FUN LIS)
(DOLIST (FLT LIS T : T 15 RETURNED IFF ALL FALSE, ELSE T.
(WHEN (FURNCALL FUN ELT) (RETURN NIL))))

TR ROROR R KO KR KKK KK R KKK 3Kk 0K K K K KR JROK K Ok 3k K KK 30K 3KOK K 0k OK K K K 3K K K K 3 ok K OI0OK K 3K K K K Kk K KK KK X

i3t (for-all (VAR in LIS) -EXPS-) expands to (every ‘(lambda (VAR) -EXPS-) LIS)
11 and returne nil 35 socn as one of the lambda expressions evaluates to nil.
I+ all are nomn-nil, then t 1is returned.

DEFMACRO FOR-ALL ((VAR IN LIS) &REST EXPS)
“(EVERY ‘' (LAMBDA (,VAR)
LEEXPS)
LL15))

AR KK KK K KOROR KOR K KKK KK K 0K KK 3 3K 3K K R KK KK KKK K K 0K K K K K K K K KK 0K KKK K K KK K K K K K K K K K K K K K K K X

s {there-exists (VAR in LIS) -EXPS-) expands to

HH (some " (lambda (VAR) -EXPS-) LIS) , and returns the rest of the list
11oas snon as one of the lambda expressions evaluates non-null.

1t 17 all are mil, then nil is returned.

JEFMACRO THERE-EXISTS ¢ (VAR IN LIS) &REST EXPS)
"(SOME " (LAMBDA (,VAR)
LEEXPS)
sLIS))
13 THTD RETURNS REMAINDER OF LIS, AS SOME-PLUS DOES.

(DESMaiTRA THERE-EXTSTS-PLUS ((V&R IN (185) &REST EXPS)

COSURI-PLUE T (LAMBDA ((VAR)
s REXPS)
LIS))
FFé.LS? UTILITY MACROS FOR MAPPING ACRQOSS A LIST.
ty THIS FI CONTATINGS THE DEFINTITION QF THE "FOR" MACR0O, SIMILAR TO THE

c: FOR MaURD (TRM PR, 64-8%) WITH EXISTS AS IN SCHANK & RIFSBECK, PP, S2-54.,

s THE FOR FORM "EXISTS" AND "ALL" ARD NOT SURPPORTED,., AS THEY ARE IMPROPER

13 CONCEPTUAL USES OF THIS MAPPING. USE FUMITION THERE-EXISTS AND EVERY INSTEAD.
o IMPUEMENTED IN GCLISF. JB. 12/712/86.

13 LAST UHANGE:

:: ORIGINAL BRIEF DESCRIFTION OF FOR CAPABILITIES:

71! FOR - this macro mavy be used for virtually any mapping task.

rr (For (v in 1) (do (baz x))) 13 (baz x) 1s an arbitrary expression

2 (for (x in 1) {(when (f0o x)) (do (baz x)})) 33 (foo x) is an arbitrary test
eval ' s (haz ~) for each element x in 1 and returns ()

HH (when (fpoo %)) means for each x such that (foo x) isn’t null.

:: I¥ do abhove is replaced with:

4,877,940

49 50

17 save - applies baz to elements and returns a list of the results.
13 filter - apolies baz to elements and saves all the non-null results.

i: snlice — assumino baz always returns a list or (), applies baz and nconcs

t: all the recsulis together, nconc, like append, discards null results: but

: it ie surcical., so sometimes have to (splice (copy (baz x))) to avoid bugs.
3

1 exists - 1f some (baz x) evaluates to non-null. the tail of the list.

1 starting with that x. is returned. If all (baz x) are null, () is returned.

Same effect as functions there-exists & some.

all ~ means that () 1s returned as soon és one of the (baz x!) evaluates to ()
and t is returned if all are nom-null. Game as functionms for-all & every.
PERFORM 'IS SYNMONYM FOR DO TO ELIMINATE CONFUSION WITH COMMON LISP DO.

o we v A s =n as »e

(DEFIIACRGO FOR ¢ (VAR IN LIS) &REST TEST-BODY)
(LET® { (TEST (aAnD (CDR TEST-RODY) (POP TEST-RODY)))
(BODY (CAR TEST-BODY))
(TYPE (ERROR-CK-FOR VAR LIS TEST BODVY)))
(L, {MAKE-FOR-FUN VAR TEST TYPE BODY)
(FUNCTION , (MAKE-FOR-LAMBDA VAR TEST TYPE BODY))
LISY)

(DEFUN MAKE-FOR-LAMBDA (VAR TEST TYPE BODY)
(COND ((AND TEST BODY)
(EVAL. ' (MAKE-LAMBDA VAR ,(CONS "AND ;Sandwich in AND,
(CONS (CADR TEST) :The WHEN body
(LIST (MAKE-FOR-BODY TYPE BODY)) 1}))))
(T
(EVAL ' (MAKE-~-LAMEDA (VAR ,(MAKE-FOR—BDDY TYPE BODY))))))

(DEFUN MAKE-FOR-BODY (TYPE BODY)

(CASE TYPE
((SPLICE DO PERFDORM) (CADR BODY)) sJust return BODY
{(SAVE (CONS 'LIST (CDR BODY))) sMust listify,since mapcan.

;Necessary to see if NIL
;s for purposes of splice.
(FILTER C(LET ((SILLY-FOR-TEMP ,(CADR BODY))
(AND SILLY=-FOR-TEMP (LIST SILLY-FOR-TEMP))))))

(DEFYACRD MAKE-LAMBDA (LAMVAR LAMBODY)
“EPSUDTE (LAMBDA (.LAMVAR) ,LAMBODY)))

(DEFUN MAKE~FOR-FUN (VAR TEST TYPE BODY)
(COND ((MEMBER TYPE ~ (DO PERFORM!)) "MAPC)H
(T TMAPCAN)Y Y)

(DEFUN ERROR-CK-FOR (VAR LIS TEST BODY)

(LET ((FOR-TWORDS * (WHEN)) (FOR-DOWORDS ' (SAVE DO PERFORM FILTER SPLICE))) -
(OR BODY (PRINT "ERROR:NO BODY IN FOR"™))
{aiiD TEST

(COMND (CAND (CONSP TEST) (MEMBER (CAR TEST) FOR-TWORDS)) NTL)
(7T (PRINT "ERROR: IMPROPER TEST IN FCR"))))
(COND ((aND (CONSP BODY) (MEMBER (CAR BODY) FOR-DOWORDS)) (CAR BODY))
(T (PRINT "ERROR:IMPROPER BODY IN FOR™)Y) Y))

PLIST.LSP NICFR PROPERTY LIST FUNCTIONS THAN COMMONLISP PROVIDES.

PLIET FUNS FOR COMPATIBILITY WITH INTERLISF STYLE. ..

(DEFUN FUTPROP (NAME 1ND VAL)
(SETF (BET NAME IND) VAL))

(DEFLIN GETPROP (NAME IND)
(GET NAME IND))

4,877,940
) 51 52

(DEFUN &DDFROP (NAME IND VAL)
(SETF BET NamE INDY (ADJOIN VAL (GET NAME IND))))

LIN REMPREOE (MNAME TND)
= (SYMBOL-PLIST NAME) IND))

t SETS.LER BASTC OPERATIONS ON SETS

NOT FULLy COMMON LISPR COMPATIBLE, IN THAT TEST KEYS NOT SUPPORTED.
ADDITIONAL LISTS ARE SUPPORTED, S0 (UNIOM L1 L2 L3 ...) WORKS.

(DEFUN THMTERSECT (L1 L2 &REST MORE-LISTS)
(D0« RESULT-5&ET ELT)
COCORCONULL L1y (N 11299
(COND (MORE-LISTS (APPLY # ' INTERSECT RESULT-SET MORE-LISTS))
(T RESULT-SET)))
(AND (MEMBER (SETQ ELT (CAR L1)) L2)
(SETQ RESULT-SET (ADJOIN ELT RESULT-SET)Y))
(SETO L1 (CDR L 1Y)))

(DEFUN UNION (L1 LZ &REST MORE-LISTS)
CLET COLZIVODUPES (UNTON~-AUX L2 N1L)) :Removes any dupes in LZ.
CAPPLY # UNION-AUX L1 LZNODUPES MORE-ILISTS)))

(DEFUN UMION-AUX (L1 L2 &REST MORE-LISTS)
(DOLIST (ELT L1 (COND (MDRE-LISTS
(APPLY # UNION-AUX L2 MORE-LISTS))
(T L2))
(SETE L2 (ADJOIN ELT L2))))

(DEFUN REMOVEDUPS (L (UNION-AUX L. NIL)) i:For convenience.

(DEFUN SET-DIFFERENCE (L1 L2)
(LET (RESLLT)
(DOLIST (ELT L1 RESULT)
CAND (NULLL (MEMBER ELT LZ))
WSETO RESULT (ADJOIN ELT RESULT)YIDIIND

(DEFUN PRINTLIST (&REST X))
(TERFRI
DL IST 1 X NIL (PRIMNC 1))

(DEFUN SFPACES (&NPTIONAL N)
(OR N (SETQ@ N 1))
(DOTIMES (I N) (WRITE-CHAR 32)))

. SORT.LSP SIMPLE SORT FUNCTION. NOT YET PROVIDED BY GCLISP
b4

(DEFUN SOIRT (L &OPTIGNAL PRED xEV)
(CUND (KEY (SORT-KEY L PRED KEY))
(FRED (SORT-PRED L PRED)»)
(T (SORT! L))

(DEFUN SORT-PRED (L PRED)
(COND ¢ ONULL L)Y NILD
«T
(SPLICE-IN (CAR L)
(SORT-FRED (CDR L) PRED)
PREDY))

(DEFUN SPLICE-IN (ELT L PRED)
(COND CONLILL LY (LIST BT)
((FUNTALL PRED ELT (CAR L))

4,877,940
53 54
(CONS ELT L))
T
(CONS (CAR L)
(SPLICE-IN ELT (CDR L) PRED)))))

(DEFUN SORT~-TO-0ORDER (1.1 LNUMS &OPTIONAL UP-DOWN)
(LET (MERGED-LIST
(FOR (X IN L)
CWHEN LRNUMS)
(SAVE (LIST (POP LNUMS) X)))))
(FOR (X IN (S0RT-PRED MERGED-LIST
(COND ((MEMBER UP-DOWN ° (ASCENDING ASCEND UP))
#T(LAMBDA (X Y) (< (CAR X) (CAR V)i
(T #'(LAMBDA (X Y) (> (CAR X) (CAR Y))))y))

(DEFUN GTEPLOAD (FILNAM)
(EVAL. ~(WITH-0OPEN-FILE (STRM , (MERGE-PATHNAMES FILNAM))
(DO ((EXPR (READ STRAM NIL "EOF) (READ STRM NIL "EQF)))
((EQ EXPR 'EOF) FILNAM)
(PPRINT (EVAL EXPR))))

;7 STRINGS.LSP LISP OBJECT TO STRING CONVERSION FUNCTIONS

¥

GENCRAL PURPOSE COCRECION TYPE FUNCTIONS 7O GO FROM LISP OBJECTS TO
: STRINGS. NEARLY ALL CASES COVERED BY LIST-TO-STRING.

(DEFUN LIST-TO-STRING (ITEM)
(LET ((TYPE (TYPE-OF ITEM)))
(COND ((E@ TYPE 'NULL) "))
((EQ TYPE 'CONS) (STRING-APPEND " ("
(LET ((RESULT " ™))
(DOLIST (X ITEM RESULT)
(SETQ RESULT (STRING-APPEND RESULT
(LIST-TO-STRING X) ™ "))))
"y
((EQ TYPE "SYMBOL) (SYMBOL-NAME ITEM))
((MEMBER TYPE " (FIXNUM BIGNUM)) (F1XNUM-TO-STRING I1TEM))
((MEMEER TYPE ' (SINGLE-FLOAT)) (FLOAT-TO-STRING ITEM))
((AND (CONSP TYPE) (E@ (CAR TYPE) 'VECTOR))
(STRING-APPEND "\"" ITEM “\""))
(T "2y

(DEFUN FLDOAT-TO-STRING (FL)
(MULTIPLE-VALUF-BIND (NUM REM) (FLOOR (ABS FL))
(CASE (STGNUM FL)

(1.8 (STRING-APPEND
(FIXNUM=-TO-STRING NUM) (MANTISSA-TO-STRING REM)))

(=1, (STRING-APPEND *“-"
(FIXNUM=T0O-STRING NUM) (MANTISSA-TO-STRING REM)))

a. "@.a"ryy»

(DEFUN FIXNUM=TO~-STRING (INT)
(COND (> [NT 9)
(MULT IPLE-VALUE-BIND (NUM REM) (TRUNCATE INT 1@)
(STRING-APPEND
(FIXNUM=TO-STRING NUM) (FIXNUM-TO~-STRING REM)Y)))
(< INT @)
(MULTIPLE~VALUE-BIND (NUM REM) (TRUNCATE (ABS INT) 1@)
(STRING-APPEND ="
(FIXNUM=TO-STRING NUM) (FIXNUM-TO~-STRING REM))))
(T ONTH INT S ¢ "@u e 2y w3 wger ngh nwgn wgn nge vguyyy))

(DEFUN MANTISSA-TO-STRING (MANTISSA)
(STRING-APPEND "."
(DO% ((MANT "" (STRING-APPEND MANT
(FIXNUM-TO-STRING NUM)))

4,877,940
55 56

(NUM MANTISSA REM) (REM 1) (CNT @ (= 1 CNT)))
((OR (ZEROP REM) (> CNT 6&)) MANT)
(MULTIPLE-VALUE-SETQ (NUM REM)

(TRUNCATE (% 10.@ NUM)))I) D))

1 SIMPLE PARSING FUNCTION FOR STRINGS

(DEFUN STRIP-TOKEN (STR &OPTIONAL DELIMITER)
(LET ¢ (INDEX (STRING-SEARCHXx (STRING (OR DELIMITER " ™)) STR)))
(COND ((NUMBERP INDEX)
(VALUES (SUBSEGQ STR @ INDEX) (SUBSEQ STR (+ INDEX 1))))
(T (VALUES "" STR)))))

1y QUEBES.LSP FUNCTIONS FOR HANDLING GQUEUES

AOARTEL FRUM CRM Ex,190.3, p.113.

11 (mave-queue lis) returns a dste structure in which the list lis
ehaves as a queue.

1 IS au is such a data structure, then
HH (enqueve-1 au 1) modifies qu by engueuing the elements of the list 1
and returns 1 .

A (emgueue Qqu ») modifies qu by enqueuing X and returns %
H (dequeue ais 1) modifies qu by deaueuing and returning the first member
HE nf the gusue.
HE (pudogies gu ox) modifies qu by inserting x at the head of the q.
H Tt returne .x

(elementsigdeus au) returns a list of the elements of the queue.
1] (isemntvn qu) returns t if qu is empty, else ()
HH (frontigqueue aqu) returns the element at the front of the queue.
HH (rear:queue qu) returns the element at the rear of the gueue.
t: The data structure 1s (last-cell.elements) , where elements contains a
17 header Sdummy$. E.g, the gueue (a bc d) ., where a is at the front,
: i reprecented as ((d) $dummvEd a b c d) , where (d) is the same Lisp cell
11 as the last cel]l of the structure. The empty queue is represented as
HH {tsdummvs) SdummvE) | where aagain, the car is the same as the last cell.

(cdefun make—-queue (1)
(let ((x (cones "$dummv$é (append ! ()))))
(cons (last %) ~)))

(detun ennueue {(qu %)
(enquete~1 au (list %))
¥)

(defun enqueue—-1 (qu 1)
(SETF (cdar aqu) 1)
(SETF (car qu) (last (car qu)))
1)

(defun dequeue (gu) ;i Use isemptyqg i+ it might be.
(progl
(caddr qu)
(and (eq (car qu) (cddr qu)) 53 ((b) $dummy$ a b) (M $Sdummy$ b))
(SETF (car qu) (cdr qu))) HH (($dummy$ b) Sdummy$ b)
(SETF (cddr qu) (cdddr qu)))) 53 ((b) $dummy$ b) (($dummy3) $dummy$)
{defun budgies (qu x)
(i+ (isemptyg qu) (engueue qu x)
else
(rplacdd gu (cons x (cddr qu)))
X))
fdefun icewnrnyg (qu) (eq (car gu) (cdr qu)))

(defun elements—queue (qu) (cddr qu))

~

(defun front-queue (qu) (caddr qu)) ;3 Use - isemptyqg if it might be.

4,877,940
57 58

: MATCH.LSP A HIGHLY RECURSIVE PATTERN TO DATA MATCHER.

1: Taven principally frowm Winston and Horn, but greatly extended.

N FXTENSIONS PROVIDED:

I LL¥ MATCH LONGEST POSSIBLY NULL DATUMS

A S% MATCH SHORTEST POSSIRLY NULL DATUMS

HH |+ MATCH LONGEST DATUMS OF AT LEAST ONE ELEMENT

1 S+ MATCH SHORTEST DATUMS OF AT LEAST ONE ELEMENT

HA THE ABOVE MAY BE USED TO CREATE BINDINGS ALSO, AS:

HH (Lx X), (S% vy, ETC...

1 NOTEZ s (MATCH (A (Lx X)) “(A)Y NIL) RETURNS T, SINCE NO BDGS NEEDED.
HH (MATCH (A (Sx X)) " (A) NIL) " "

¢ (& X)) MATCH CORRESFONDING DATUM AND IF TOTAL MATCH SUCCEEDS, THEN

i SETA X TO THE MATCHED ITEM. DANGEROUS IF IMPROPERLY USED.

t&E X)) SETE X TO THE MATCHED 1TEM IRREGARDILESS OF WHETHER MATCH FINALLY
SUCCEEDS. DANGEROUS, BUT USEFUL TO FIND OUT WHY A MATCH FAILS.

LIMITATIONG:
' AT PRESENT., THE RESTRICT PLACE HOLDER "?" IN (RESTRICT ? PRED PRED..)
HH AN GNLY BE & 7. NO BINDINGS DR + OR % FORMS ARE ALLOWED.

(DEFUN MATCH (P D BINDINGS) -
(COND CCAND (WL Py (NULL D)) ;Succeed.
(COND CCNULL. BINDINGS) T)
(T BINDINGS)))
(NULL D)
(COND ((STAR-PATTERN (F1RST P))
(MATCH (REST P) D BINDINGS)Y))) 1skx or 1x? else Fail.
(NULL F)Y NI1LD

C(OR (FQUAL (FIRST P) " 72) tMatch ? pattern.
(EQUAL (FIRST P) (FIRST DY) :Identical elements.
(MATCH (REST P)Y (REST DY BINDINGS)Y)

((EQUAL (FIRST P) ‘S+) sMatch shortest
(OR (MATCH (REST P)» (REST D) BINDINGS) snon-null datums
(MATCH P (REST D) BINDINGS)))
((EQUAL (FIRST P)Y “L+) ’ :Match longest
"(OR (MATCH P (REST D) BINDINGS) snon-null datums

(MATCH (REST P) (REST D) BINDINGS)))

(EQUAGL (FIRST Py 'S¥) sMatch shortest,
(COND ((AND" (NULL D) 1possibly null datums
(MATCH (REST P) NI1L BINDINGS))))
((MATCH (REST P) D BINDINGS))
((AND D (MATCH P (REST D) BINDINGS)))

(7 NILY))Y
((EQUAL (FIRST P) "Lx) ;Match longest,
(COND ((AND (NULL D) spossibly null datums

(MATCH (REST P) NIL BINDINGS)))
((AND D (MATCH P (REST D) BINDINGS)}))
((MATCH (REST P) D BINDINGS))

(T NIL)M)
(CATOM (FIRST P)) NIL) ;Losing atom.
((EQUAL (PATTERN-INDICATOR FIRST P)) " >) :Match $>% variable.

(MATCH (REST P) (REST D)
(SHOVE-~-GR (PATTERN-VARIABLE (FIRST P))
(FIRST Do
BINDINGS))

(EQUAL (PATTERN-INDICATOR (FIRST P)) " <) H b
(MATCH (CONS (PULL-VALUE (PATTERN-VARIABLE (FIRST P
(REST P))

stitute variable.
y) BINDINGS)

D
BINDINGS))

4,877,940

C(EQuGL (PATTERN-INDICATOR (FIRST P)) 'S+) iMatch variables.
(LET ((NFw-SINDINGS (SHOVE-PL (PATTERN-VARIABLE (FIRST P))
(FIRST D)

EINDINGS)))
(OF (M&TCH (REST P) (REST D) NEW-BINDINGS)
(MGTCH P (REST D) NEW-BINDINGS)) 1)

((EQUAL (PATTERN=-INDICATOR (FIRST P)) "L+) sMatch variables.
(LET ((NEW-BINDINGS (SHOVE-PL (PATTERN-VARIABLE (FIRST P))
(FIRST D)
BINDINGSY)
(OF (1aTCH P (REST D) NEW-BINDINGS) tnon-null datums

(M&TCH (REST P) (REST D) NEW-BINDINGS)) 1)) -

VCEQURL (PARTTERN-INDICATOR (FIRST P)) "SX) :Match variables,
CLET ((NEW-BTHMDINGS (SHOVE-FL (PATTERN-VARIABLE (FIRST P))
(FIRST D)
BINDINGS)))
C(COND CCAND (NULL D) ipossibly null datums

(MATCH (REST Py NIL BINDINGS))) tMAYBE NOT NEW-ASSIGN
((MATCH (REST P) D BINDINGS))
(¢{AND D (MATCH P (REST D) NEW-BINDINGS)))

(T NILYY)
((EQUAaL (FATTERN=-INDICATOR (FIRST P)) "LXx) sMatch variables.
(LET ((NEW-BINDINGS (SHOVE-PL (PATTERN-VARIABLE (FIRST P))
(FIRST D)
BINDINGS)))
(COND ((AND (NULL D . 3possibly null datums

(MATCH (REST P) NIL NEW-BINDINGS)))
((AND D (MATCH P (REST D) NEW-BINDINGS)))
((MATCH (REST P> D NEW-BINDINGS))
(T NILLY)Y)

((EQUAL (PATTERN=INDICATCOR (FIRST P)) &) 1Setg it iff success.
(LET ((RESULTS (MATCH (REST P) (REST D) BINDINGS)))
(COND (RESULTS
(SET (SECOND (FIRST P)) (FIRST D))
RESULTS)))

((EQUAL (PATTERN~INDICATOR (FIRST P)) "&&) :Setqg it regardless
(SET (SECOND (FIRST P)Y) (FIRST D))
(MOTCH (REST P) (REST D) BINDINGS))

((AND (EQUAL (PATTERN=-INDICATOR (FIRST P)) sMatch restriction.
"RESTRICT)
(EQUAL (RESTRICTION-INDICATOR (FIRST P)) °72)
(TEST (RESTRICTION-PREDICATES (FIRST P)) (FIRST D)))
(MATCH (REST P) (REST D) BINDINGS))))

.

137 This section contains selector procedures.

(DEFUN STAR-PATTERN (P)
(OR (EO P "Sx)
(EQ P "Lx)
(AND (CONSP P)
(DR (STAR-PATTERN (FIRST P
(STAR-PATTERN (REST P)Y)Y

(DEFUN PATTERN-INDICATOR (L)
(FIRST L))

(DEFUN FARTTERN-VARIAELE (L)
(SECOND L))

(DEFUN MATCH-VALUE <(KEY A-LIST)
(SECOND (ASSOC KEY A-LIST)Y))

(DEFuUN PULL-VALUE (VARIABLE A-LIST)
(SECCNL (AZCDL VARIABLE A-LISTY))

4,877,940
61 6

11 This section contains mutator procedures.

(DEFUN SHOUE-GR (VARIABLE ITEM A-LIST)
(APFEND A-LIST (LIST (LIST VARIABLE ITEM))))

(DEFUN SHOVE-PL (VARIABLE ITEM A-LIST)
(COND C((NULL A-LIST) (LIST (LIST VARIABLE (LIST ITEM))))
((EQUAL VARTARLE (FIRST (FIRST A-LIST)Y))
(CUNS (LIST VARIABLE (APPEND (SECOND (FIRST A~LIST))
(LIST ITEM)))
(REST A-LIST)))
(T (CONS (FIRST A-LIST)
(SHOVE-PL VARIABLE ITEM (REST A-LIST))))))

(DEFUN RESTRICTION~INDICATOR (PATTERN-ITEM) (SECOND PATTERN-ITEM))
(DEFUN RESTRICTION-PREDICATES (PATTERN-ITEM) (REST (REST PATTERN-ITEM)))

a
a
.
A

3 This is the auxiliary procedure for testing datum elements to
: see 1f they satisfy the givem predicates.

H
e
H

(DEFUN TEST (PREDICATES ARGUMENT)

(COND ¢ (NULL. PREDICATES) T) ;Al1l tests T7?
((FUNCALL (FIRST PREDICATES) ARGUMENT) s;This test T7?
(TEST (REST PREDICATES) ARBUMENT)Y)
(T NIL))) ;This test NIL?

i These are some representative predicates used in restrict clause, as:
g (MATCH " (A (RESTRICT ? COLORP (LAMBDA (X) (MEMBER X ‘' (RED YELLOW))))
“(A RED) NIL)> ==> T0 MATCH "HOT" COLORS,

—

123

(DEFUN COLORP (WORD) (MEMBER WORD ' (RED WHITE BLUE)))
(DEFUN BAD-WORD-P (WORD) (MEMBER WORD ’ (SHUCKS DARN)))

i3 A predicate may also look like: (LAMBDA (X) (NUMBERP X))

Appendix III

1t EXPERT.LOD LDALS ALL SOURCE FOR EXPERT SYSTEM

S 0AD NGB ISPPANNL IBANAFXPERTA\EXPORPS ")
LTan "CaNNGCLISP2N\ANL IBANEXPERTANEXPERT, INT™)
(L0OAD "CiNNGCLISP2N\LIB\\EXPERT\\PARMS . INT")
(LOAD "CaNAGCLISP2ANL IBMNAEXPERTAAWINDOWS LGP

13y EXS0PS.LSP SOURCFE CODE FOR EXPERT SYSTEM KNOWLEDGE REPRESENTATION

{
|
L
|
1
{
!
1
|
1
I
t
i
i
|
!
!
i
|
|
1
i
|
1
]
|
I
1
|
|
i
i
i
|
]
]
1
|
|
i
1
|
|
I
|
]
:
|
|
|
I
1
:
I
+
|
i
i
1
1
i
|
}
)
1
}
|
1

(DEFRPAGRAMETER DEBUGON NIL)
(DEFPARAMETER *LDCALS* NIL)
(DEFPARAMFTER *GLOBALS* NIL)

13 TORP LEVEL RULE INTERPRETER

(DEFUN EXFFRT (&0PTIONAL DEBUGON)
(PRNG (TaGkDESC RSNAME RULES SELMODE CSET RULES-FIRED
GOOD~-RULES BDGPKE)

ONE @ (SEND-COMMAND DEBUGON)
(REGUFST-TASKD
(AND (20 ¥ TRACEO&* 2) (AQSTATUS *RESULT-STREAMX))
ONERZ: (UR (KHUNNING-PROCESS)
(MAVE-RUNNING (CHODSE-READY-PROCESS) " *xREADYQEX)
(GO ONE =)

(CASE (CAR (SETQ TASKDESC (GET-TASK "'TASK *xTASKxX)))
((MESSARGE NET-MESSAGE) (MAKE-BLOCKED) (GO ONE:))
(EVALUATE (EVAL-TASK (CADR TASKDESC)) (PDOP-TASK) (GO ONE:)))

4,877,940
63 64
TWO: (AND DEBUGON (BREAK “"EXPERT LABEL TWO:")) -
(COND ((SETG RSNAME (GET-TASK “LABEL)) NIL)
C(SETH RSNAME
(CAR (SETO BDGPK(G)
(SELECT-RULESET *TASKx* (GET-TASK "LAST-RULESET)))))
(INGSTALL-RSE *TASK ¥ RSNAME)
(:=% (CDR BDGPKG))Y)
(T (50 BOT:)))

(SETG *GLOBALLSY NIL)

(SETO xLOCALSx NIL)

(SETQ CSET (GET-TASK "CSET *TASKX))
(SETO SELMODE (GET-TASK 'SELMODE *TASKX))

(aND (EG CSET 'DONE)Y (POP-TASK) (GO BOT2:))
(S5FTOQ RULES (GET-RULESET-ITEM RSNAME "RULES))

(SFETO xLOCALS* (BUILD-SYMTAB RSNAME °LOCALS))
(SETU xGLOBALS* (BUILD-SYMTAB RSNAME "GLOBALS))

(OR (INFERENCE-PRECONDITIONS) (AND (POP-TASK) (GO BOTZ2:)))
(EVAL (GET-RULESET~ITEM RSNAME “ENTRY))

(SETQ GOOD-RULES
CINSTANTIATE-RULES RSNAME
RULES
CSET -SELMODE xLOCALSx %OLOBALSX XTASKxX))

(WINDOW-PRINT ‘RULE-WINDOW RSNAME (AND DEBUGON GOOD-RULES))
(SETQ GOOD-RULES (CRITICIZE~RULES GOOD-RULES SELMODE))
(AND DEBUGON (WINDOW--PRINT ‘RULE-WINDOW

(COND (GOOD-RULES ‘' "RULES CHOSEN")

(T "YNO RULES CHOSEN"))))
(AND DEBUGON (BREAK '“"BEFORE FIRING RULES IN EXPERT"))
(AND * TRACEONX
(PRORN (TERPR] XRESULT-STREAMX)

(ERINC T "PDORULES " xRFSULT-STREAMX)
(PRINC (MAPCAR # CAR GUDOD-RULES) *RESULT-STREAMX)
(PRINC " CHOSEN IN RULESET: " %RESULT-STREAMX)

(PRINC RSNAME RESULT-STREAMX)
(TERPRI *RESULT-STREAMX)))

(FIRE-RULES GOOD-RULES %LOCALS% xGLOBALSH)

BOT: cAND DERUGON (BRFAK “"EXPERT BOT: LABEL"))
CAND »HPOR% (MAKE-READY xRPCB#*))
(MANE-RUNKNING NIL)

(GO ONE @)

BOTZ: (AND DEBUGON (BREAR T "EXPERT BOT~2: LABEL")Y)
CAND ¥xRPCE* (MANE-RFADY xRPCBx))
(MAKE-RUNNING NIL)
(G0 ONEZ:)
CONE r (RTTURN " "Demonstration Comnleted. Thanmk You ')))

(DEFUN SETHR-£xLRT (RFTLE &OPTIONAL TRATZEON)
(SETF AREADYO*® NIL *RPCB% NI{. xBLOCHEDX NIL *xTRACEONX TRACEON)
(SETF »RESULT-FILE® RFILE)
(PLACE-MEG (LIST-TO-9TRING "~ (GRARPH)) MACHINE-ID 5)
(SETH *RECULT-STREAMY (EVAL " (OPEN RFILE :DIRECTION :QUTRUT)))
CCLEAR-WINDOWS)
LEETF xCOUNTS @) ""READY TO BEGIN. TYPE (EXPERT)Y")

(DEFUN FINTSH-EXPERT ()
(PRINT " "RUN COMPLETED" ¥RESULT-STREAMX)
(PRINT " M"=ss==sz===s=========s===s=s=================" XRESULT-STREAMX)
(AND *TRACEQON¥* (QSTATUS XRESULT-STREAMX))
(CLOSE-ALL-FILES) (GO DONE:))

4,877,940 :
65 66
(DEFUN CREATE-PROCESS (TASK PRIORITY)
(LET* ((ORIGIN-TASK (CREATE-TASK TASK))
(NEW-PROCESS (LIST NIL (OR PRIORITY XLOWEST-PRIORITY*)
"TIME (LIST @ @ (GETTIME))
"PROCESS (LIST ORIGIN-TASK))))
(RPLACA NEW-PROCESS (GET-TASK ' 1D ORIGIN-TASK))
NEW-PROCESS)Y)

(DEFUN CREATE-TASK (TASK)
(L1IST "ID (GENID) 'TASK TASK 'LAST-RULESET NIL "VALUE NIL °“LABEL NIL))

(DEFUN GET-PCB (&0OPTIONAL KEY PCB)
(COND (KEY (GETF (DR PCB %RPCB%) KEY))
(XRPCBX)))

(DEFUN PUT-FCE (ITEM NEWVAL &OPTIGNAL PCH)
(CLOBALIST I7TEM NEWVAL (OR PCB (GET-PCB)Y)))

(DEFUN GE1-PROCESS (&OPTIONAL KEY PROCESS)
(COND (KEY (GFTF (0OR PROCESS (CURRENT-PROCESS)) KEY))
((CURRENT-PROCESS))))

(DEFUN BET-TASK (&OPTIONAL KEY TASK)

(COND (KEY (CETF (OR TASK (CURRENT-TASK)) KEY)Y)
((CURRENT=TASK))))

(DEFUN PROCESS-STACK (&ORTIQNAL PCR)
(BET-PCB "PROCESS-STACH PCR)Y)

(DEFUN CURRENT-PROCESS ()
¥RP%)

(DEFUN CHRRENT-TASK ()

PR

(DEFUN PaRE NG ~PROCE
(CADR (PROCESS-S

S5 O)
TACK Y)Y)
(DEFUN PARENT-TAGSK ()
(CAR (LAST (GETF xRP¥ "PROTESSY))

(DEFUN CURRENT~RULE ()
*RULENAME X)

(DEFIJN CURRENT~PRIORITY ()
(CODR (CURRFNT -PROCESS)Y))

(DEFUN LOWER-PRIORITY ()
(CASE (CURRENT-PRIORITY)
(1 25 {7 I) (OTHERWISE %))

(DEFUN UPDATE-PCBE ()
(RPLACA (GET-PCPR) (GET-TASK "ID (FPARENT-TASK)))
(GET--PCRY)

(DEFUN DESTROY-PCB ()
(HMAkE-RUNNTING NIL)Y)

(DEFUN PUSH-PROCESS (PRDCESS)
(CLOBALIST "PRDCESS-STACK
(CONS PROCESS (GET-PCB 'PROCESS-STACK))
(GET-PCB))
(UPDATE~PCE))

(DEFUN POP-PROCLSS ()
(LET*x ¢ (PS (BGET-PCB 'PROCESS-STACK)) (PRDOCESS (CAR PS)))
(COND ((CDR PS)
(RPLLAUB PS (CDR PS))
(UPDATE-PCR))
(T (DESTROY-PCB)))
PROCESS))

v

4,877,940 _
67 - 68
(LEFUN PUSH-TASK (TASK)
(LET ((PROCESS (CURRENT-PROCESS)) (NEWTASK (CREATE-TASK TASK)))
{CLOBALIST ‘PROCESS
(CONS NEWTASK (GETF PROCESS ‘PROCESS))
PROCESS)

NTL))

(DEFUN POP-TASK ()
(LET% ((PROCESS (GETF (CURRENT-PROCESS) *PROCESS))
(TASK (CAR PROCESS)))
(COND ((CDR PROCESS) o)
T (RPLACB PROCESS (CDR PROCESS))) -
((POP~PROCESS)))
TASK))

(DEFUN INSTALL-RSE (TASK RSETNAME)
(LET» ((RS (GET-RULESET RSFTNAME))
(VALSYM (CDR (ASSGC VALUE RSY)) RSED
(SETQ RSE
(LIST "LABEL (CAR RS) 'CSET (COPY-TREE (CADR (ASSOC "CSET RSHY))
"SELMODE (CADR (ASS0OC " SELLMODE RS))
"STATICS (COPY-TREE (CADR (ASSOC "STATICS RS
TINPUTS (CADR (ASSOC " INPUTS RS))Y))
(NCONC (GETF RSE "STATICS)
(HETF (PARENT-TASK) "STATICS))
(= (MEMBER "LABEL TASH) RSE)
C AlLlsT "VALUE
(CDR (ASSDOC vALSYM (GETF RSE "STARTICS)))
TASH.)))

(DEFUN DESTROY-RSE (TASK)
(LET ((RSNAME (GET-TASKE "LABEL TASK)))
(CLOBAL IST "LAST-RULESET RSNAME TASK)

(RPLACR (MEMBER "LABEL TASK) " (LABEL NIL))
RENAME))

(DEFUN GENID (20PTIONAL FLAG)
(FUNCALL *GEENIDH FLAG))

(SETQ xIDSEEDX 1)

(SETF xGENIDx
(CILQSURE " (xIDSEEDH)
#(LAMEDA (FLAG)
{CASE FLAG (RESET (SETQ *IDSEEDXx 1))
(LAST (- %IDSEEDX 1))
(OTHERWISE (INCF xIDSEEDx))))))

3 GETTIME GETS THE TIME OF DAY. RETURNS LIST OF MINS, SECS, HUNDRETHS-SEC.
v TIME-DIFFERFNCE TAKES IN TWO "GETTIME" VALUES AND RETURNS DIFFERENCE, IN
¢ THE SAME FORMAT, IE. (MIN SEC HUNDRETHS-0OF-SEC)

(DEFUN GETTIME ()
(LET (START S-HSED S-SEC S-MIN VALS)
(MULTIPLE-VALUE-SETO (NIL NIL NIL S~-MIN START)
(SYS:ZSYSINT #X21 #X2C00 0 0 @))
: Unpack time.
tSRETQ S-HSEC (LOGAND START #XQ@FF)
S-SEC (LSH START -8)
S-MIN (LOGAND #X@FF S~MIN))
(LIST S-MIN S-SEC S-HSEC)))

°
»

(DEFUN TIME-DIFFERENCE (7@ T1)

(LET ((S-MIN (FIRST T@)) (S-SEC (SECOND T@)) (S-HSEC (THIRD T@))
(F-MIN (FIRST T1)) (F-SEC (SECOND T1)) (F-HSEC (THIRD T1)))

(SETQ F-HSEC (- F-HSEC S-HSEC))) i calc hundreths
(1IF (MINUSP F-HSEC)

(SETD F-HSEC (+ F-HSEC 108)
F-SEC (1- F-SEC)))

4,877,940
69 70

_(GETQ F-SEC (- F-SEC S~5EC)) : calc seconds
VIF (MINUSE F=SEQ)

(GETD F-SEC (+ F-GFC 6@

F-MIN (1- F=MIN)))

30 F=HIN (- F-MIN S-MIN)) ; cale minutes
1F (MINUSP F-MIND (INCF F=MIN &0))
(L 1GT F-MIN F-SEC F-HSEC)))

(S
!

(DEFUIN BET-RUILESET (RSNAME)
(L ET iFTLNAM)
(COND ((ASS0C RSNAME *RULEBASEX))
((QETQ FILNAM
(OR (ASS0C RSNAME
(OR ¥RULESET-FILE~-ALISTXx))))
(CAR (SETQ XxRULEBASE ¥)
(CONS (READI-FILE-EXPR (CDR FILNAM) ‘' XRSET-STREAMX)
*RULEBASEX))))
(T (DO-ERROR " "CANT GET RULESCT" RSNAMED))))

(DEFUN SELECT-RULESET (TASK LAST-SET)
(PROG (RULESETS RSNAME TASKLIST BDGS DEST)
(GETN DESE (GET-TASK "TASk TASK)Y)
(CE10 RULESETS .
LD (LAST-SFT (CDR (MEMBER LAST-SET RULESET-NAMESX)))
(KRULESET~-NAMESX)))

UG CAND (NULLL RULESETS) (RETURN NIL))
(SFET0 RSNAME (POP RULESETS))
(SETH TASKL IWT (GET-RULESET-1TEM RSNAME " TASKS))

(LOODFP (SETO BDGS (MATCH-TASKS (POP TASKLIST) DESC))
(AND (DR BDGS (NULL TASKLIST)) (RETURN NIL)))

(7R BDGS (GO UNBC:))
(RETURN (CONS RSNAME (CAR BDGS)))))

s (DEFUN SELECT-RULES (RULEFS CSET SELMODE)
H (CASE CSET
: (hIL RULES)
H (QTHERWISE
(LOOP (OR RULES (RETURN CSET))
(COND ((EQUAL. (CAAR RUILLES) CSET)
(SETQ CSET (CDR RULES))
(SETGQ RULES NIL))
(T (SETQ RULES (CDR RULES))))))))

s 2e s wa ws

: (DEFUN FIRE-RULES (RULES xLOCALSx XGLOBALSX)

: (LET ¢ *RULENAMEX)

: (MAPCAR #° (LAMBDA (X)

3 (SETQ *RULENAME* (CAR X))

: {MAPCAR # (LAMBDA (Y) (EVAL Y))

: (REVERSE (CDDR X)))

: (CAR X)) '

: (REVERSE RULES) 1))

(DEFUN FIRE-RULES (RULELIST *L.OCALS* *GLOBALSX)

(DO ¢ (XRULENAMEX NIL) (RULES RULELIST (CDR RULES)))
((NULL RULES) T) o
(DG ((THENS (REVERSE (CDDR (CAR RULES))) (CDR THENS)))
((NULL THENS) T) '

(EvAL (CAR THENS))Y) 1 Y 77

B

(DEFLY READI-FTLE-EXPR (PATH &OPTIONAL STREAM)
(Eval " (WITH-0PEN-FILF (.(0OR STREAM ' *DEFAULT-STREAMX} PATH)
(READ ,(0fR STREAM " ¥xDEFAULT-STREAMAK)))))

(DEFUN INFFRENCE-PRECONDITIONS ()
(FvAL. (CONS “AND
(MaPCAR #' (LAMBDA (X))
(LET ((RGNAME (GETF (CAR (LAST (GETF X "PROCESS))) ‘LABEL)Y M)
(COND (RENAME : has ruleset been selected yet?
(OR (BET-RULESET-ITEM RSNAME “PREREQUISITE) T))

(T Ty 3)y)

(PROCESS-STACK)Y) 1Y)y)

4,877,940
B | 72
(DEFUN SET-RULESET-ITEM (RSNAME ITEM)
(CADR (ASSOC TTEM (BET-RULESET RENAME))))

(DEFUN FVAL-TASK (EXPR)
(CLOBALIST "VALUE (EVALIT EXPR) (CURRENT-TASK)))

DEFUN EVALTIT X))

(EVAL X))
(DEFUN 1= (8vYM VAL)
(CASE (Lafr SvMy R
(STRTIC (RPUACD (ASSDC (UNQUIFY (CADR SYM))

(GET-TASK "STATICS (CURRENT-TASK)))
VALY
(GLOBAL (RPLALCD (ASSOC (UNQUIFY (CADR SYM)) XGLOBAILLSX) VAL)Y)
L oraL (RPLACD (ASS0OC (UNQUIFY (CADR SYM))
' (CDR (ASSOC xRULENAMEXx XxLLOCALSx)))
VAL))
(PARAMETER (PARAMETER (UNQUIFY (CADR SYM)) "PUT VvAL))
(CONSTANT (CONSTANT (UNQUIFY (CADR SYM)) VALY))
VAL)

(DEFUN :=x (ALIST)
(LO0OP (OR ALIST (RETURN NIL))
(:= (CAR ALIST) (CADR ALIST)Y)
(SFT0G ALIST (CDDR ALISTY)Y))

(DEFUN STATIC (SYM)
{(OR (CDR (ASSAOC SYM (GET-TASK 'STATICS)))
(CDR (ASS0C SYM (BET-TASK "'STATICS (PARENT-~TASK))))))

(DEFUN GLOBAL (5YM)
(CDR (ASS50C SYM xGLOBALSX)))

(DEFUN LOCAL (SYM)
(CDR (ASS0C SYM
(CDR (ASSOC ¥RULENAMEX xLOCALSX)))))

(DEFUN RUN~-DEMON (SYM &OPTIONAL KEY)
(EVALIT
(GET Svym (OR KEY ‘DEMONY)))

(DEFUN INSTALL-DEMON (SYM &OPTIONAL KEY EVAL-EXPR)
(SETF (GET SYM (OR KEY °DEMON)) EVAL-EXPR))

(DEFy DO-TRROR (MG &OPTIONAL VAL)
(¢ CINT CUERROR: ") (PRINC MSG) (AND VAL (PRINC VAL)) VAL)

(NEFUN CREQTE-CO (LEN &OPTIONAL VAL
(RO* {PTR (CONS VAL NIL))Y (CNT 1 (+ { CNT)) (BOT PTR))
((= CNT LEN) (RPLACD BOT PTR) PTR)
(SETQ PTR (CONS VAL PTRY)))

(LEFUN ITNSTALL-PARAMFTER (SYM &OPTIONAL INIT-VAL G-LEN DEMON)

(LET ((NEWZ (LIST Svym INIT-VAL (OR Q-LEN 1))2
(P (ASSOC SYM *xPARAMFTERSX)))
(RPLACD (CDDR NEWQ) (CREATE-CO (OR G-LEN 1) INIT-VAL))

(COMND (P (RPLACB P NEWQ))

C{PUSH NFWO xPARAMETERSX)))
CAND DEMON (INSTALL-DEMON SYM "PARAMETER DEMONY)
NEWT))

I FARSMETER (Syri ROPTIONAL ARGZ2 %xVALUEX)
(LET ((PARAM-{3 (ASS0C SYM xPARAMETERSX)))

CONUIL L ARGZ)Y (CADR (CDDR PARAM-Q)))
(ER ARGZ " INITIALIZE)
(INITIALTZE-PARAMETER SYM))
((EN ARGZ "GE™T)
H ALL returns (length~-g oldest-val....newest~val)
: and the cdr is a circular list '!'! -

4,877,940
73 74

GET +# qgives the # elt in seq from old to new
H GET ® gives current, like (PARAMETER “which).
H GET -# gives the # elt previous to newest.
In other words, —-# access like stack, +# like queue.
(COND ((EQ *VALUFEXx "ALL) '
(CONS (CADDR PARAM-Q) (CDR (CDDDR PARAM-0))))
((NTH (+ 1 (CADDR PARAM-Q) XVALUEX)
(CDDR PARAM-Q))))
((EQ ARG2 "PUT) (RPLACD (CDDR PARAM-Q)
(CDDR (CDDR PARAM~3)))
(RPLACA (CDDR (CDR PARAM-Q)) XVALUEX)
(RUN—-DEMON SYM ‘'PARAMETER) XVALUEX))))

(DEFUN INSTALL-CONSTANT (SYM &QOPTIONAL INIT-VAL DEMON)
(LET ((C (ASS0C SYM *CONSTANTSXx)))
(COND (C (RPLACB C (CONS SYM INIT-VAL)Y))
((PUSH (CONS SYM INIT-VAL) XCONSTANTSX)))
(AND DEMON (INSTALL-DEMON SYM "CONSTANT DEMON))))

(DEFUN CONSTANT (SYM &OPTIONAL VAL)
(COND (VAL (RPLACD (AS50C SYM *CONSTANTSX) VAL)
(RUN-DEMON SYM "CONSTANT) VAL)
((CDR (ASSOC SYM xCONSTANTSX)))))

(DEFUN INITIALIZE-PARAMETER (SYM)
(DOX* ((PARAM~-O (ASSOC SYM *PARAMETERSX)
(LEN (CADDR PARAM-Q) (- LEN 1))
(VAL (CADR PARAM-Q)) (PTR (CDDDR PARAM-3) (CDR PTR)))
((ZEROP LEN) VAL)
(RPLACA PTR VALY))

(DEFUN CLORALIST (ELT REP LIS)
(LET ({FND (MEMBER ELT LIS)))
(AND FND (RPLACA (CDR FND) REP) LIS)))

(PEFGE . REMOVE-LLIST (ITEMS LIS

CERLG UNEWL TS WORKLIS)
CART (0ROl ITEMSIINULL LIS)) (RETURN LIS)H)
(SETO WORKLTIS LIS NEWLIS NIL)
Liwes

(COND C(NULL WORKLIS) (RETURN (REVERSE NEWLIS))M)
((MEMBER (CAR WORKLIS)Y I1ITEMS) NIL)
(T (5ETQ NEWLIS (CONS (CAR WORKLIS) NEWLIS))))
(GSETE WORKLIS (TR WORKLIS))
(GO LUP:Y 3)

(DEFUN PERFORM (&REST TAGSK)
(FUSH-PROCESS (CREATE-PROCESS TASK (CURRENT-PRICRITY))Y))

(DEFUN START (&REST TASK)
CINITIALTZE-PROCESS (CREATE~-PROCESS TASK (CURRENT-PRIORITY)I))Y)

(DEFUN ARORT {(&REST TASK)
(POP-TASK)
(PUSH-PROCESS (CREATF—PROCESS TASH (CURRENT-PRIORITY)))

(DEFMACRO EXECUTE (&REST CObLED
CAPUSH-TAGE T {EVALUATE (@CCDE)Y))

(DFFMACRO ASSTIGN ((STAT 5YM) TASK) -
T(LET ((TAGKFTR (EVAL TASK)Y))
(RPLACD (ASS50C SYM (GET-TASK "STATICS))
(GET-TASK "VALUE TASKRPTR))))

(DEFUN INITTALIZE-PROCESS (PROO)
(MAKE-READY
(LIST (CAaR PROC)Y (CADR PROC)Y "TIME (CADR (CDDR PROC)Y)
PROCESS-STACK (LIST PROC)))y)

(DEFUN MAKE-READY (PCB &OPTIONAL CURRENTQ)
(SETQ *READYQX (NCONC *READYOX (ILIST PCRB))) 3

(AND CURRENTG (EVAL ° (SETQ ,CURRENTQ (DELETE PCB ,CURRENTQR))))
PCH '

4,877,940
75 76

(DEFUN MAFKE-RUNNING (PCB &DPTI0NAL CURRENTQ)
(SETQ xRPCHx PCERE)
(S5E1Q ¥RPX (CAR (GET-PCB 'PROCESS-STACK %RPCB%)))
(SET1G xTASKx (CAR (BETF *RPx "PROCESS)))
(AND CURRENTO (EVAL " (SETO ,CURRENTQ (DELETE PCB ,CURRENTQ))))
*RPCBx%x) .

(DEFUN RUNNING-PROCESS ()
*RPx%)

(DEFUN MAKE-BLOCKED ()
(PUSH xRPCB% XBLOCKEDX)
(MAKE-RUNNING NIL)

(CAR XBLOCKEDX))

(DEFUN WAKEWLR (1D)
(LET « (PCB (ASS0OC 1D *BLOCKEDX)))
(COND ((AND PCB (RUNNING-PROCESS))
(MAKE-READY PCB **BLOCKEDX))
(PCB
(MAKE-RUNNING PCB ' xBLOCKEDx)))))

(DEFUN CHOOSE-REARY-PROCESS () (CAR ¥READYQNQX))

(D ¢ (LASTID CBENID "LAST)Y)
VEIRGLESSES XREADYIX (CDR PROCESSES))
: (WT 2y (BESTWT @y (PT3 NIt})

((NULL PROCESSES) PCB!
(SETR WT (¥ (CADR (CAR PROCESSES))
(+ 1 (- (CAAR PROCESSES) LASTIDY YN
STONT (Y WT O RESTIWT)
(SFTG PCP (JAR PROCESSFS))
(SETG BESTwWD wT))y))

(DEFUR CRITITIZE-RULES (RULES SELMODE) RULES)

(DEFUN PHASE-DISPLAY (ROPTIONAL PHASE)
CWINDUW-FRINT PHASE-WINDOW (CONSTANT WELD-PHASE)))

(DEFUN STATUS-REPORT (MSBG)
(WINDOW-PRINT "MSG-WINDOW "~ "STATUS REPORT:" MSG))

(DEFUN TIME-~TISF AY (WHAT T@)
CWINDOW=-PRINT - "TIMF-WINDDW WRAT TB))

(TN ABRCET-wEL D (O
(WINDOW-PRINT “PHASE-WINDOW ~ARORTED)
(WINDOW-PRINT "'MSG-WINDOwW ""W E L D I N G ABORTETD ity)

(DEFUN WIDTH~-DEMON (W)
(WINDOW-PRINT "WIDTH-WINDOW W)

(DEFUN [-DEMON (1)
CWINDOW=-PRINT "CURRENT-WINDOW 1))

(DEFUN SPEED-DEMON (S)
(WINDOQW-FEINT SPEED-WINDOW S))

&

(DEFUN SGT-DEMON (S)
(WINDOUW-PRINT "SGT-WINDOW S))

ONLY SELECTS ONE RULE 50 FAR.

1 (DEFUN INSTANTIATE-RULES (RSNAME RULELIST SELMODE)

H (DO ¢ (*RULENAMEX* NIL) (ANSWER NIL)

H (RULES RULEL1ST (CDR RULES)))

: ¢ (OR ANSWER (NULL RULES)) (AND ANSWER (LIST ANSWER))Y)
H (SETQ *RULENAMEX (CAAR RULES))

H (SETQ ANSWER (SATISFY-RULE (CAR RULES)))))

4,877,940
77 : 78

(DEFUN INSTANTIATE-RULES (RSNAME
RULELIST CSET SELMODE *LDCALS* *GLOBALSX *TASKX)

{04 ¢ (RRULENAMEX NIL) (ANSWER NIL) (FND NIL)
(RULES (CASE SELMODDE
((STFL STFD)
(LOOP (COND ((OR FND (NULL RULELIST))
(RETURN RULELIST))
((EQ (CAAR RULELIST) (CAR CSET))
(SETG FND T))
(T (SETQ RULELIST (CDR RULELIST))))
(DTHERWISE RULELIST)Y)
(CDR RULESY))
t (R ANSWER (NULL RULES)Y)
cCOND (ANSWER
(CASE. SELMODE
((FD TRY) (CLOBALIST 'CSET 'DONE XTASKX))

(STFD (CLOBALIST "CSET (DELETE XRULENAMEX CSET) XTASKX)

(OR (GET-TASK 'CSET XTASKX)
(CLOBALIGT "CSET 'DONE xTASKx)))

(STFL (CLOBALIST 'CSET (DELETE *RULENAMEX CSET) %TASKX)

(OR (GET-TASK 'CSET *TASKK)
(CLOBALIST 'CSET
(CaPY-TREE
(GET-RULESET-ITEM RSNAME "CSET))
XTASK¥)Y))
(QTHERWISE NIL)
(LIST ANSWER)
(T (CASE SELMGDE
(TRY (CLOBALIST "CSET 'DONE %TASK¥)))
(LIST ANSWER) 3))
(ST TE KRULENAMEX (CAAR RULES))
(SETWU ANSWER (SATISFY-RULE (CAR RULES) %LOCALS* *xGLOBALS*))))

(DEFUN SATISFY-RULE (RULE XLOCALSX XGLOBALSX)
(AND (EVAL (CADR RULE)) RULE))

(DEFUN BUILD-SYMTAB (RSNAME KEVY)
(COPVY-~TREE (CADR (ASSOC KEY (GET-RULESET RSNAME)Y))))

(DEFUN SEND-COMMAND <(DEBUGON)
(LET (MESBOUT)H
(COND (xBLOCKEDxX
(MAKE-RUNNING (POP xBLOCKEDxXx))
(WINDOW=-PRINT "TIME~WINDOW ""0OUT:" (GETTIME))
(SETE MSGOUT (GET-TASK "TASK))
C(CASE (CAR MSGEOUT)
(NET-MESSAGE
(WINDOW-PRINT "CTRL-WINDOW *"SENDING COMMAND:"
MSGOUT)
(PLACE-MSG-LIST MSGOUT MACHINE-ID 3)
(PRINT (CONS xCOUNTXx MSGOUT) %RESULT-STREAMX))
(OTHERWISE (WINDOW-PRINT 'MSG-WINDOW MSGOUT)))
(POP-TASK)
(MAKE~READY %RPCB*)
(MAKE-RUNNING NIL) T))))

(DEFUN UPDATE-PARAMETERS ()
(LET (DATIN)
(INCF XCDUNTX)
(WINDOW~PRINT “TIME-WINDOW ““IN:" (GETTIME))
(WINDOW-PRINT ~SENSOR-WINDOW “"GETTING DATA POINT: * XCOUNTX)
(SETC LATIN (READ *SENSOR-STREAMX))
(EVAL DATIN)
(AND DEBUGON
(CONSOLE *“SIMULATE THE RECEPTION OF MORE PARAMETERS?"))
)) <
(DEFMATRO (IPDATE-PARAMETER (NAME VAL)
(I IF XCOUNTXO
(WINDOW-FRINT TIME-WINDOW “IN:" (GETTIME))
(WTRDOW-PRINT GENSOR-WINDOW "RECEIVED DATA POINT: * XCOUNTX)
(PARAMETER (QUOTE NAME) (QUOTE PUT) (QUOTE ,VAL)))

)

)

4,877,940

79 80
(HEFUN REQUEST-TASK ()
(O ¥BLOCKEDX xRPCBX *READYQx ; anything in system to do?
GLET ((TASK)Y
(TERPRI)

(PRINC ""WAITING FOR TASK: ')
(SETQ TAGK (READ)Y)
(PRINT ""STARTING TASKY) (EVAL TASK)Y)))

1 ONLY v in the matcher below may have variables. This IS NOT a UNIFIER ¢!
(DEFUN MATOH=-TA8ES (X YY)
CAND (EQ (LENGTH X)) (LENGTH Y))
(DO ¢ (XITEMS X (CDR XITEMS)) (YITEMS Y (CDR YITEMS))
(FDBS NIL) (FAILED NIL)Y)
¢ (OR FAILED (NULL XITEMS)) (AND (NDT FAILED) (LIST BDGS)))
CLUND C(EQUAL (CAR XITEMS) (CAR YITEMS)) NIL)
({VARIABLEP (CAR XITEMS))
(SETQ BDGS (CONS (CAR XITEMS) -
(CONS (CAR YITEMS) BDES)))
((SETQ FAILED) »)))

(DEFUN VARTABLER (ITEM)
CANMD (NDT (&aTOM ITEM))
(MEMBER (CAR ITEM) "(STATIC GLOBAL LOCAL)Y))

(DEFUN UNGHTFY (X))
(COND ((AND (CONSP X)) (EQ (CAR X)) "QUOTE)Y)Y (EVAL X))
(T Xy)

(DEFUN TIME-DERIV (Q)
(LETx (X3 (CAR Q)) (YU (CADR 0)) (Y3 (NTH X3 Q@)) (X1 1)
(X2 (TRUNCATE (/ X3 2))) (Y2 (NTH X2 @) A B)

(SETCG A (x (/ 1 (= X1 X3
(= (/7 (= Y1 ¥Y2) (= X1 X2)) (/ (=~ Y2 ¥3) (= X2 X3)»)))

(SETQ B (x (/7 (+ X1 X2) (- X1 X3))
(= (/ (= Y2 Y3) (= X2 X3)))y))

(+ B (x 2 A X3)))

(DEFUN W-TIME-DERIV (Q).
L= (NTH (CAR Q) Q) (NTH (1- (CAR Q)) Q)))

(DEFUN NEAR-ZERO (X))
(AND (NUMBERP X)
(< (ABS X) XEPSILON%)Y))

(DETLN OSTATUS (KGCPTIONAL STREAM)
(TERPRI STREAM)
(PRINC *"=== PROCESS STATUS === " STREAM)
(PRINC %COUNTx STREAM)
(PRINC " TIME:" STREAM)

(PRINC (GETTIME) STREAM) R
T (AMD *BLOCKED® (PRINT *xxBLOCKEDXXX STREAM)
(PPRINT XRBLOCKED* STREAM))
CAND xJREADYIE (PRINT xxxREADYQx %% STREAM)
(PEFRINT XREADYQ* STREAM))
{AND *RPCBx* (PRINT " xxxRPCBXX % STREAM)

(PPRINT *RPCBx STREAM)) NIL)

I PRINT-ELEMENTS (X))
(MOPTAR B PRINT X)) NIL)

(DEFIIN PRELOAD-RULESETS ()
(MAFCAR # (LarMBDhA (NAME) (LOAD-RULESET NAME)) XRULESET-NAMESX)
CreDane D ALL RULESETS'™)

(DEFUIN LOADRULESET (RSNAME)
(FUSH (READL-FILE~-EXPR (CDR (AS500 RSNAME ¥RULESET-FILE-ALIST*))
"ARGET-STREZAMY)

4,877,940
- 81 82

(DEFUN CONSOLE ()
(BREAK MK A LCEPRPTING CONSOLE I NP UT >>>))

N7 INITiALTZES EXPERT SYSTEM. LOAD BEFORE OR DURING RUN.

Py

(SETQ *RFADYO% NTL XLOWEST-PRIORITY* 1 %RP¥x NIL XTASkXx NIL %RPCBx NILD)
(SETQ *RULEBASEX NIL)

;3 ALL KNOWN RULESET NAMES WITH THETIR ASSCOIATED FILENAMES.

(SETO *RULESET-FILE-ALISTXx " ((WP . "WPL.RLS™)
(PWCRS . "PWCRS.RL.S™)
(ADPRS . "ADPRS.RLS")
(TLLCRS . "TLCRS.RLS"™)
(THCRS . "THCRS.RLLS™)
(TSPRS . "TSPRS.RLS'")
(TWPRS . "TWPRS.RLS")
(CHCRS . "CHCRS.RLS™)
(CHSRS . "CHSRE.RLES")

3)

(SETE *RULESET-NAMEX NIL)
(SETOR RULFECET-NAMESKY (WP ADPRS PWCRS TLCRS THCRS TSPRS TWPRS CHCRS CHSRS))
(SETC »QLOCKEDX® NIL)
(SETA xFARAMEFTERSY NIL)
(SETO *CONSTANTS® NILD
(SETQ *»EPSILOMY 2.138)
(PRELOAD-RUILLESFTS) ,
PARHMS . INT INITI1ALIZES (INSTALLS) PARAMETERS AND CONSTANTS.

CONSTANTS

CINSTAL L -CONSTANT "DEWPOINT-TEMP -6@)
CINSTALL -CONSTANT "WMINP 5.065)
CINGTALL-CONSTANT "WMINC 5.237)
CINSTALIL-CONSTANT "WMAXC 5.580)
CINZTALL -CONSTANT "WMAXP 5.752)

(INSTARLL-CONSTANT "W@ 5.41)

CINSTLLL ~CONSTANT 788 21)

CINGSTOLL-TONSTANT 1 1IQ 272)

CINSTALL -CONGTANT DELTA-T-HIGH 9)

CINSTAIL-CONSTAmT " DELTA-T1-L0OW 2.9)
i

CINGTAL L -CORNSTANT "D TA-S-HIGH 1}
(INSTALL-CONSTANT "DELTA-S5-L0OW @.3)
(INSTALL-CONSTANT "'D-HIGH @.253)
CINSTALL-CONSTANT "D-LOW B8.05)

CINGTALL-CONSTANT "STIME "(@ @ @))

(INSTALL-CONSTANT "WELD-ABORTED NIL " (ABORT-WELD) »

CINSTALL-CONSTANT "WELD-COMPLETED NIL -
‘(STATUS-REPORT "WELD-COMPLETED))

(INSTALL-CONSTANMT "WELD-PHASE @ " (PHASE-DISPLAY (CONSTANT ‘WELD-PHASE)))

i PARAMEIERS

CINSTAILL-PARAMETER "WIDTH B 5 " (WIDTH-DEMON (PARAMETER "WIDTH))
C(INSTALL-PARAME [ER T @ S ' (1-DEMON (PARAMETER ‘1))
(INSTALL-PARGMETER "SPEED @ 1 " (SPEED-DEMON (PARAMETER ' SPEED)))
CINSTALL-PARAMETER 'SHIELD-GAS-TEMP -65 1 .

" (SGT-DEMON (PARAMETER 'SHIELD-GAS-TEMP)))

4,877,940
83 84

i1 WINDOWS.LSP CODE SPECIFIC TO CREATE EXPERT SYSTEM DISPLAY WINDOWS.
et o e
: & DEFINITION OF PPRINT TO PRINT CONVENIENTLY TO THE WINDOW (STREAM)

: SP¢C1F1ED. NESD TO PRE-LOAD SYSTEM PPRINT TO USE IT.

)

(FPRINT °"LODADING AND STARTING A WINDOW SCREEN")

(DEFUN WINDOW-PRINT (STREAM &REST OBJECT)
(LET ((¥PPRINT-RQUOTEX NIL)
(PPRINT--COLUMN @)
(*STANDARD-OUTPUTXx (EVAL STREAM)))
(PUTFROP STREAM OBJECT "LASTHMSG)
(CLEAR-WINDOWS (L IST STREAM))
(EVAL (SEND (STREAM :SET-CURSORPQOS @ 1))
(1-FPPRINT ORJIFCT)
(VALUES NIty))
(DEFUN I-PFRINT (GBJ)
(EVAL "(PPRINT (QUOTE ,0BJ) %STANDARD-OUTPUTX)))

: DEFINE THE DISPLAY WINDOWS
H NOTE THAT THE FIRST S KEYWORDS ARE COMMON 70 ALL WINDOWS.

t MASTER LIST OF WINDOWS, AND WHAT IF ANY PARAMETERS/CONSTANTSE GO THERE.
(SETH AWINDDW-LI=TxX

" (RACVMGROUND-WINDOW SENGOR~WINDOW CTRL-WINDOW RULE-WINDOW
CURRERNT—W W Te SPEFD-WINDOW FPHASE-WINDOW
WIDTA-WINDOW SGT-WINDOW TIME-WINDOW
MSGE-WINDOW CONSCLE-WINDOW

(SETU *¥WINDDW-ALISTA
“

(CURRENT-WINDQW (PARAMETER " 1))
(SPEED-WINDQOW (PARAMETER "SPEED))
(PHASE-WINDOW (CONSTANT "WELD-PHASE))
(WIDTH-WINDOW (PARAMETER "WIDTH))
(SET-WINDOW (PARAMETER "SHIELD-GAS-TEMP))
(TIME-WINDOW (CONSTANT "STIME))

))

(SETF BACKGROUNMD-WINDOW
(MAkE-WINDOW-STREAM
cCURSORPOS-X @
:CLURSORPOS-Y B

tATTREIBUTE 7

:STATUS 4

rPAGE @

:TOP @

:LEFT @

tWIDTH 79

tHEIGHT 24
)

(PUTPRGP " BACKGROUND-WINDOW
""X¥x E X PERT WELDTINGEG SYSTEM xxx” "HEADER)

(PUTPROP ~ BACKGRGUND-WINDOW
" (PROGN (SEND BACKGROUND-WINDOW :SET-CURSDRPOS 24 19)

(QFND‘BACKGRDUND—wINDDN tWRITE-STRING
""O0PERATIOR CONSOLE"Y)
TTEXT

(SETF SENSOR-WINDGW
(MAKE-WINDOW-STREAM
:CURSORPOS-X @
s CURSORPOS-Y @
tATTRIBUTE 7
1STATUS 4
:PAGE @

4,877,940
85
:TOP 2
(LEFT @
sWIDTH 30
tHE1GHT 4
Y

(PUTPROF * SENSOR-WINDOW " "SENGSOR PORTS:" 'HEADER)

(SETF CTRL-WINDOW
(MAKE~WINDOW-STREAM

sCURSORPOS-X @
CURSORPOS-Y @
tATTRIRYTE 7
1STATUS 4
tPAGE 2
:TOP 2
tLEFT 4@

tHEIGHT

4
)
(PUTPROP "CTRL-WINDOW ~"CONTROL PORTS:" ‘HEADER)

(SETF RUL_E-WINDQW

(Mo E~-WINDOW-STREAM
tCURSORPOS-X @
:CURSORPOS-Y @
tATTRIBUTE 7
tSTATUS 4
tPAGE @
tTORP 7
LEFT @
tWIDTH 30
tHEIGHT 7

)

(PUTPROP "RULE~WINDOW ' "RULE ACTIVATION STATUS:" 'HEADER)

(SETF CURRENT-WINDGOW
(MAKE -W]NDOW-STREAM

:CURSORPOS-X @

:CURSORPOS-Y @

:ATTRIBUTE 7

:STATUS 4

tPABE ©

:TCP 7

:LEFT 40

tWIDTH 10)
, tHEIGHT 3
(PUTPROE " CURKRENT-WINDOW * “AMPERES" ' HEADER)

(SETF SPEFD-WINDOW
(MAF~-WINDOW~-STREAM
(CDURSORPOS-X @
cCURGSORPOS-Y @
tATTRIBUTE 7
STATILS 4
rFRAGE @
sTOR 7
LEFT 55
WINTH 10
PHETGEHT 3
)

(PUTPROP "SFFTD-WINDOW “"TIP-SPEED" ‘HEADER)

CMEF =t T NTH
TCUIRSOIRER{G
(CLIRSDRPOS-Y @
ceTIRIONTE T

1STAHTUG 4

86

4,877,940
87 88
1PAGE 6
(TR 7
(LEFT 70
PWIDTH 10
s PEHT S

1)
(PUTFRIOP PHASE-WINDOW ' "PHASE" "HEADER)

(SETF WIDTH-WINDDW
(MAKE-WINDOW-STREAM

tCURSORPUS-X @
:CURSORPNS-Y @
tATTRIBUTE 7
:STATUE 4
:PAGE @
:TORP 11
LEFT 41
tWIDTH 1@
tHEIGHT 3

L
(PUTPROP "WIDTH-WINDOW " “"WIDTH" ‘HEADER)

(SETF SGT-WINDOW
(MAKE-WINDOW-STREAM
:CURSORPOS-X @
:CURGORPQOS-Y @
CATTRIBUTE 7
STATUS 4
:PAGE @
:TOP 11
LEFT §5
:WIDTH 10
tHEIGHT 3
(FUHTPROF SET-WINDOW " "S,B.TEMP" "HEADER)

UMIAE B =W TN

ILEFT 70
tWIDTH 10
THEIGHT 2

)

(PUTPROP " TIME-WINDTW " "TIME" "HEADER)

(SETF MSG-WINDOW
(MAKE-WINDOW-STREAM

tCURSORPOS~X @
rCURGORPDL -Y @
AT RIGTF 7
1GTATUS 4
tPRFT @
cTOF 195
LEFT @
tWIDTH 79
cHE IGHT 4

)

(PUTPROP " MSL-WINDOW "EXPERT SYSTEM MESSAGES" ‘HEADER)

(SETF CONSOLE-WINDOW
(MAKE-WINDOW-STREAM
tCURSORPOS-X @
:CURSORPOS-Y @

4,877,940
89 9%

tATTRIBUTE 7

:STATUS 4

tPAGE @

TOP 20

(LEFT @

tWIDTH 79

tHEIGHT 3

)

: CLEAR ALL WINDOWS CREATED, ANb SET STANDARD INPUT TO THE CONSOLE WINDOW.

(DEFUN CLEAR-WINDOWS (&OPTIONAL LIS RESTORE)
(MAPTAR #° (LAMBDA (X)
(EVAL " (SEND ,X :Ct.EAR-SCREEN))
(WRITE-HEADER X RESTORE))
(OR LIS *WINDOW-LIST*))
NIL

(DEFUN WRITE-HEADER (WIND &OPTIONAL RESTORE)
(LETX ((STR (GET WIND "HEADER)) (TEXTEXP (GET WIND "TEXT))
(LEN NIL) (MSG (GET WIND "LASTMSG))
(WID (EVAL " (SEND ,WIND :SIZE))))
(COND (STR
S (SETQ LEN (LENGTH STR))
(EVAL " (SEND ,WIND :SET-CURSORPOS © ©))
(FVAL " (SEND ,WIND :CLEAR-EQL))
(EVAL " (S5END ,WIND :SET-CURSORPOS
(TRUNCATE (/7 (- WID ILEN) 2))
D Y
(EVAL " (SEND JWIND tWRITE-STRING ,STR))
(EVAL TEXTEXP)
(EVAL " (SEND WIND :SET-CURSORPDS @ 1))
CEND RESTOQRE MSG
(EVAL T (WINDOW-FPRINT WIND
LE(QUOTLIS MS3E))))
(T NILY > >)
(DEFUN GUOTLTS (LTS)
(MAFPCAR & (LAMBDA (X) (COND ((OR (STRINGP X) (NUMBERP X)) X)
(T (LIST "'0QUOTE X))y)
LIS Y

(DEFUN REFRESH-WINDOW-DATA (&0OPTIONAL LIS)
(DO ¢ (WINDOWS (OR LIS xWINDOW-LISTX) (CDR WINDOWS))
(VAL NIL)
(ML WINDOWS) T)
(GETG VAL (EVAL (CADR (ASSOC (CAR WINDOWS) XWINDOW-ALISTX))))
(AND VAl (WINDOW-PRINT (CAR WINDOWS) VAL)Y)Y))

i CLEAR ALL WINDOWS CREATED, ARND SET STANDARD 1/0 TO THE CONSOLE WINDOW.

(SETF ¥STANDARD~INPUTY* CONSOLE~WINDOW)
(SETF *STANDARD--OUTRPUTx CONSOLE-WINDOW)
(SETF *TERMINAL-10% CONSOLE-WINDOW)

(CLEAR-WINDOWS)
(REFRESH-WINDOW-DATA)
Appendix 1V

FNNET.LOD LOADING SOURCE FOR SEMANTIC NETWORK.

11 8F]
t -t

(LOAD "CrM\GCLISPZNA\LIBA\SEMNET\\NETDEF ")
(LOGH " AABCLIGPENNLIBANSEMNETNADISNET ")
CLOAD "CaNNGCLISPZ LI BNASEMNET\\RETRIEVE ")
(LOAD "C:NAGCLISP2ANALIBAASEMMETANANCHAIN)
(LOAD "CaNNGCLISP2N\LIBA\\SEMNET\\UMNINDEY ")
(LOAD "C:NNGCLISP2\\LIB\\SEMNET\\VARIANT")
(LEAD "CeNAGCLISPR2ANLIBNASEMNETANL 1STDB")
CLOAD T NANGTLISPZAALIRVNSEMNETANUNTEY
CLOAD "CanNGULISF2NANLIBANSEMNE TNV INDEX ")
(LOAD "C:NNGBCLISPZN\LIBA\SEMNET\\ACCESS")
CLOAD "CeNAGLL ISP2ANANLIBANSEMNE T\\GSCHED)

4,877,940
91 92

HE hyTDF:.LSP DFFINITIONS OF STRUCTURES USED FOR SEMANTIC NETWORK.
(DEFVAR xRTA-BASEX NIL) ; GLOBAL POINTER TO WHOLE NET
(DEFVAR xPCVARBDGSX NIL) : FOR CHAIN

(DEFVAR ¥NDTEX NIL)

(DEFVAR xSUBSX NIL)

(DEFVAR MARKED-NODE NIL) 1 FOR UNINDEX

(DEFVAR xVL1¥ NIL) : FOR VARIANT
(DEFVAR xV Zx NTL)

CIDEFGE sVARY S MOVTR (STRM CHRS
(L1s7 VLR (READ STRIMDY))

1 (readmacro 7" (lambga () (list ~xVARXx (read!)))
;3 (SET-MACRO-CHARACTER 63 # xVARX-MAKER) +PREFER NOT TO DEFINE A READMACRO

(DEFMACRD 7 (SYM) : THIS WORKS OK...
COXVARY L SYM))

(DEFMACRO *VAaRXx (X))
C(FUNCALL. # POVAR-VAL . (MAKE-PCVAR X)) XPCVARBDGSX))

tiirecord-typs linque () (key . a-list))

$H(DEFSTRUCT (LINGU

oy

(:TYPE LISTY) KEY A-LIST) :a branch

(DEFUN makKE-LINGUE (KEY A-LIST) :DEFINE STRUCTURE BY HAND.
(CONS KEY A-LIST))

(DEFUN LINQUE-KEY (LINQUE)
(CAR LINGUEN

(defun linque—a-list (x) (cdr x)) :need to redefine since defstruct does
:not allow dotted pairs.

si{record-tvoe terminal () (key . item))
: s (DEFSTRUCT (TERMINAL (:TYPE LIST)) KEY ITEM) ia leaf

(DEFUN MAKE-TERMINAL (KEY ITEM)
(CONS KEY ITEM))

(DEFUN TERMINAL~-KEY (TERMINAL)
(CAR TERMINAL))

(defun terminal-item (x) (cdr x)) isee above
;itrecord-type Dcvér ¥VARX (sym))

11 (DEFSTRUCT (PCVAR (:TYPE LIST)) (ID "%VARX) SYM) spred calc variable=s
s (kvar* variablename)
(DEFUN MAKE-PCVAR (SYM)
(CONS "xVARXx (NCONS SYM))
(DECQ: PCVAR-SYM (VAR)
(SCCOND VAR
(DEFUN PIIVAR-F (X :have to define, cause defstruct doesr
CAND (UTiINEE X)) | -

)
IS*PCVAR X))

I

(DEFUN TSAPCVAR (X))
(EQ (ZAR Xx) " xVARX%))

(ddpfun pocvar-val (povar sub) rassumes given (Xvark x) and assoclis-
(let ((bnda (sym-loockup (pcvar—-sym pcvar) «ub)))
(cond (bndo (varsubst (bdg-val bndg) sub)) yrin current val

(t pocvar) 1)) tor just the var itse

4,877,940
93 94

(defun sym—-looruo (sym sub) (assoc sym sub))

(DEFUN VARSURST (PAT SUBS)
(LET ((VAR (CONTAINS-RPCVAR PAT)) 5UB)
(COND (TAND VAR
(SETQ SUR (BRNG-VAL (SYM-LOOKUP (PCVAR-SYM VAR) SUBS)))) :SUBS
REQ? ‘
(VARSURST (SUBST SUB VAR PAT) SUBS))
(T PAT)Y)Y))

(DEFUN QUNTAING-PLVAR (PAT)
(CONLD ((FPCVAR~F PAT) PAT)
((CONGF PAT)
(0N (CONTATNS-PCVAR (CAR PATH)
tCONTAINS-PCVAR (CDR PATII Y M)

11 GOLISK SUBST DOES NOT WORK ON LISTS FOR NEW AND OLD. REDEFINED.
(DEFUN SUBRST (new old GIVEN)
(COND ((EQUAL OLD GIVEM) NEW)

CONULL GIVEN) NIL)

((ATOM GIVENY GIVEN)

(T

(CONS (SUBST new old (CAR GIVEN))
(SUBST new old (CDR GIVEN))))))

tildefun is-pcvar (x) (and (not (atom x)) (is¥pcvar x)))
vil{record-type bdg () (sym val))
13 (DEFSTRUCT (BDG (:TYPE LIST)) SYM VAL) s;a (symbol value) pair

DEFUN MAKE-BDG (SYM VAL)
(CONS SvyM (NCONS VAL)Y))

(DEFUN BDG-8YM (BDG)
(CAR EDGH)

(DEFUN BDBE-VAL (BDG)
(SECOND BDG))

it (record-type restrn () (vars pred)) .
(DEFSTRUCT (RESTRN (:TYPE LIST)) VARS PRED) jRestriction form for use by
) sretriever. Makes sure that pcvar bdgs
ssatisty some predicate.
: D%TNFT.LSP BASIC FUNCTIONS FOR TRAVERSING DISCRIMINATION TREE

t: DISNET ~~discrimination net-
;1: Basic idea from CRM, extended and enhanced toward Common Lisp.
11 Basi1c accessing functions:

(defun index (formula)

(cond ((ea (car formula) “<-=) ibackwarg chaining assertion?
(index?2 (cdr formulal {formula (cadr *data-base*)))
{(en (car formula) "—-->) ;forward chaining assertion?
(imdex2 (cdr formula) formula (caddr *xdata-basex)))
{{eaq (car formula) "'&) isimple premise is ascsertied.
(i1ndex2 (cadr formula) (caddr formula) (car *data-basex)))
(t

(inde=2? +formula formula (car %*data—-base*)))))

(cdefun fetch (pattern)

tcond ({(eq (car pattern) "'<-=) s look for backward chaining
tfetocn? (cdr pattern) (cadr Xdata-basex)))
({eao (car pattern) "—-->) :1look for forward chaining
(fetrhl (cdr patiern) (caddr %data—-basex)))
[ilook for simple premise

(fetzh2 pattern (car *data-basex))))) -

95

11 The function

add is in the file

a
.

H {from cranter 11,
defun index?
(let

~ 4t se ax we

((terminal-link

retrieve

H These next twa functions are a slight change from the ‘index’

4,877,940
9%

is in the file retrieve and the function

chain .

p.127, CRM.

(dkey item 11link)

(establish~links dkey 1link)))

(rplacd terminal-1link

(ADJOIN item

1y These next 2 function

(defun establish-links (

(establish-links (cdr dkey)

(cond ({or (atom d
(estabiish-
(t
YY)
(de+un establiish—-link (k

tiet ((tkey (cond

((PCVAR-P key)

(terminal-item terminal-1link)}))))

s are from chapter 11, p.127, CRM.
dkey l1link)
key) (isxpcvar dkey))

link dkey 11link))

srecursive
(car dkey)
(establish-1ink

(establish-1links
‘cons

11ink)))

ey 1link)
" XVARKX)

(t key)))

(cond ((assoc tkey 1

(t (let
(relacd 1
new-link)
(dedun feich2 (pattern 1
CAor Tterm 1n (tiint
(«plice (copv-—tr
HN This 1% the "travers
(dedun tlinks (nattern 1
(cond ({(pcvar-p patter
(t (apopend
(zond ((at
(t (
ttiinmk "XV
H Thig 15 the travers
58
(defun tlink (kev 1link)
(ler ltfta—-iaist
(cond ¢
(defiin akip-s«n (17ink)
(for {lowsr-1ink in
tehlice
(cnnd ((nea
(list
(t (fo

({new-11ink

1ink?))

(make—-linque tkey nil)))
link (cons nmew-link (cdr 1link)?})
)y 1))

1imk)
= pattern lliok))

ee (cdr term))))) 10r copy-1ist??7777

e-links2’ +4unctiorns renamed.
lint)
n) (skaip-exp 11inmk))

om pattern)
+or
(sub-sub

(tlink pattern 11link))
in

(tor (sub-link in (tlink
(splice (tlinks

‘cons
(car pattern)
sub-link))))

(splice (tlinks sub~-sub)¥)))

ARXx 11inmk)))))

(cdr pattern)

e-link function.
(asz=on key (lingue-a-list 1limk))))
a-list (list a-list)))))

(lingue-a-list 1link))

(lingque-key lower~1link)

lower-1link))

‘cons)

this 1s the code added as a result of exercise

r {(skip-link in
(splice

(skip-exp lower-1link))
(cskip-exp skip-link))}} YY)

11ink))

14.

function

3.

4,877,940
97 98

1 RELTRIEVE LGP SOURCE FOR RETRIEVING DATA FROM SEMANTIC NET

GrTRIEVE == retrieval with restrictions
H fetriseval without restrictions is as in CRM -- (retrieve pat)
s T.=.. trhe thasic form looks like (retrieve " (human Socrates))
1 and vou don't need to read any further, except to note that
11 (retrieve ‘(human ?x)) returns a list of substitutions (substitution
s = laist of bindings). whereas fanswers ~ (human 7X)) returns
1 ((tuman Socrates) (human Fred) ...), and to learn about initializing a data

bacse with create-db, use~dbr., and the functions make-data, save-data. and
: restore-data in %$reset-db.

:: For restrictions, use (retrieve pat restrictions) as discussed below.

DEDUCTIVE REFTRIEVER -- CRM P, 150 7/27/81
tnhanced hyv Peter Gresne.

The ascertions are kept in a data-base called *DATA-BASExX.
This data-base is manipulated by the functions in DOSNET.
Therefore, vou should first (getg *data~basex your—current-database) .

H
0.
52
.
-

Given a renuiest pattern, RETRIEVE returns a list of substitutions.

ey ane lude ueeless Intermediate substitutions, and you can't alwavyse
directly see the value 0f the variable in your request, because

1+ this value is the re=sul! of a chain of bindings, RETRIEVE will return
the cihain pf hredings, 1n no particular order. leaving it up to you to

Tins variable with the constant at the end of the chain.
H TRee aunctinn (varsubst pat subsititution) returns a new version of pat with
v Aall o 1tn variables replaced by their values as determined from substitutionr
Hsing this, 1 have defined a {function (answers request) that returms a list
whoee elpments are versions of reaguest with 1ts variables evaluated

accordinag to each substitution found by (retrieve request). One way to
nrint this leqibly is to epply the funmction print-elements to 1it.
tprint-elements lis) prints each element of lis an a new line.

Thus., vou may want to (print-elements (answers reguest)) .

¥¥xxkbie should also define a function that returns an a-list of request
variaples amd their bindings, according to each substitution, without
the intermediate results.

The internal representatiomn 0f a predicate-caiculus variable is (XVARX x) .

The functions 1ndex and fetch are in the file $index . Different
versions will be appropriate for different purposes.

The data-base should first be initialized by (create-db "name) and
(use-dbr “name) , or (reset-db).

. a

RETRIEVAL WITH RESTRICTIONS:

A reguest consists of a pattern and a list of restrictions (i.e., the
restrictions are packaaed into a list.

A restriction consists of a predicate and a collection of variables
that must satisfy the restriction in any substitution that is returned.
Il iz gunstionable whether a restriction should look like

((x y 2) (foo x)) --note that the function uses the 1st var in the list
or . .
((foo %) x vy z2) .
That is why 1 used a record-type below. 'The record-types for the two forms
are, respectively:
43 (record=-type restrn () (vars pred))
Aty (record-tvre restrn () (pred . vars))
i+ we rhonee fhe former, a retrieval might look like
(retrievss " (?x gave ?y to 77Vbecause Pw)
" ((x 7)) isperson) -— could have used (isperson x)
((y) (and (is=-book vy) (> (pages y) S0@)))
((w v) (and (is-reason w) (good w)))))

s 46 sa we e 2y 4w we a0 ae e

e sr we 4 wa a3 at cae me se am s ss ae

14 we choose the latter, the same retrieval would lcol like
(retrieve " (?x ocave 7v to 72 because “w)
"{ (isperson x z)

4,877,940
99 100
JAtand (is-baok y) (> (pages y) S@B)) y)
((and (is—-reason w) (good w)) w v)))

bitrarily cheoose the first format. If you don’'t like 1t. Just
thre ~ecord-tvoe definition.

HH In ertner “orm above. the restriction is i1ntended to apply to the variabile
X, V. ang &, 1.8.. all the variables in the variable list. THE VARIABLE
USED IN THE FUNCTIONAL TEST SHOULD BE THE SAME AS THE FIRST VARIABLE 1IN

1 THE VARIABLE LIGT.

H Clearlv, 1t would be nice to handle functions of more than one variable

1t -— e, Yo retrieve ' lang (man ?x) (woman ?y), subject to (loves % y),
11oor to retcieve (loves Px ?y) sublert to (and (man x) (woman y)) --—

33 but this will reguire too much code and too much searching to do
11 routinelv. I{f vou wish to do this. then put the screening in your
11 own program.

(de+un retrieve (pat &optional restrs)
(cong (restrs
(for (substn in (retrieve-aux pat))
(when {sat-restrs substn restrs)) (save substn)))
it (retrieve—aux pat?))))

(de+un sat-restrg (substn restrs)
(for-all (restr in restrs)
(let ((varlist (restrn-vars restr))
(pred (restrn—-pred restr)))
(let ((resfun (cond ((atom pred) pred!}
(t (make-lambda (list (car varlist)) pred)))))
(for-all (bdg in substn)
(or (not (member (car bdg) varlist))
(resfun (cadr (varsubst bdg substn)))))))))

(defun retrieve-aux (request)
(cond (tand (symbolp (car request))

{getprop {(car request) 'retrieve-program))
(funcall (getprop (car request) 'retrieve-program) (cdr request)))
(t
(nconc (for (a in (fetch request))

isslice {unify reguest (vars-rename a))))
(let ((implpat " (<-—- ,request #.(? subreq))))
(for (a in (fetch implpat))
(splice (chain implpat ad) 1)M¥y)

11 If assertion A unifies with IMPLPAT = (<{-— original-request 7S5UBREQ),
try subrequest.

a0
»e

tr tmedan ohain (aimplpat 8)
({for (sub in (unifv implpat (vars-rename a)))
1t {splice
(for (answ 1In (retrieve—aux (pcvar-val “~?subreq sub)))
HH (gsave (append answ subl))))

4

{deforon and retrieve-oronram (lamhda (x) (conj-retrieve x ())))
11 {defpron or retrieve-proagram disi-retrieve)

(PUTPRORP " AND "RETRIEVE-PROGRAM * (LAMBDA (X) (CONJ-RETRIEVE X NIL)Y))
(PUTPROF OR "RETRIFVE-PROGRAM ~ (LAMBDA (X) (DISJI-RETRIEVE X)))

1t Comjunctive recguests are handled by generating answers to the First conlunc:
1: and subsituting them into the remaining conjuncts for further processing.

(ciefumn coni-retrieve (comruncte ancsw—so-far)
(conag ((null comntuncts)
{list anaw-«o--far))
(t 7
(for (answ in (retrieve—aux (varsubst (car conjuncts)
answ—so-far)))
tenlice
fconj-retriepve
(cdr conjuncts)
(append answ answ-so-far))))))

. 4,877,940
101 - 102

(defun disi-retrieve (disjuncte)
(cong {{nuil disiumncts) (list (list)))
(t (40~ (digj In disjuncts)
(splice (retrieve—aux disJji)d 1)))

ﬁWQIN.LSD SOURCE FOR CHAINING RULES IN SEMANTIC NET PLUS DEMONS

¢DFMONS —- IF-NEEDED and 1F-ADDED DEMONS
v WOTE: The function answers can have an optional restrictions argument.
. Thiec feature is not yet implemented in for-each-answer

(defun chain (implpat &)
(eetf a (vars-—-rename a)d)
{$0r (gub in (unity 1mplpat al)}
tenlice
(f0r (answer in
{let ((aunhreq (pcvar-val "#.(7 subreg) sub))) 10K 7
(cond ((®a (car subreo) “lisp)
13 in doing L1SP calls we must use ¥pcvarbdgsk
;35 85 variable bindings rather than using PCVAR-VAL
(setf ¥pcvarbdgs% sub)
(setf *notex ())
(eval (cadr (caddr a)) 1))
(t (retrieve (pcvar-val “"#.(? subreg) sub) NIL))))
(save (apnend answer subl)) Y)Y)
1 success means the xpovarbdgsk work, so return them
(detun succeed (list ¥pcvarbdgsx))

i this version of answers does not work with for—-each—answer. The bindings
1 1m this rase are returned i1n a special list called ¥motex.
defun answers (recuest &optional restrs)
{for (ansgs in
' (for (substitution in (retrieve reqguest restrs))
(save (varsubst request substitution))))
(when (NOT-ANY # PCVAR-P ans)) sOK? DOUBT IT.
(save ans)))

: NEED A DEFMACRO FOR THIS ! watch xsubsx
(dmclob for-each-answer (xbod)
(backguote

[P

: (for (subx in (retrieve (varsubst ~(unquote (cadr xbod))
: ¥pcvarbdgsk))

: (filter (cond (subx (:= Xsubs* subx)))

H (eval (varsubst ’(unquote (caddr xbod))

H (append ¥pcvarbdgsX subx)))))))

(defun note () (setf ¥note* (cons Xsubsk *notex)))

: it added demons are given by a change in the function add to look for
t: the "lisp flag.

(defun add (pat)
fingdon 2ot
{let (taddpat "(—-~> ,pat #.(? right)))) s?right 7?77
(for (a in (fetch addpat))
(do (for (sub in (unify addpat a))
(do (let ((subadd (pcvar-val "#.(? right) sub)));?right ?
(cond ((eq (car subadd) "lisp)

(setf kpcvarbdgskx sub)
(eval (cadr (caddr a))))
(t (acdd subadd))) ¥ DY))y))

1 here

LI TIDE X

are still

103

UMINDEXING FUNCTIONS

conceptual

4,877,940

difficulties with unindexing

104

SOURCE TO REMOVE ITEMS FROM DATA BASE

(nat buas) —-- there

doecen 't seem. to be a single policy for handling variabtles that would be

11 accd

for all

applications.

] The UNINDEX function performed by marking.

“Limark’ to {raver se

and mark appropriate nodes in the tree

rhe method 1s thus:

where branches lead

“ing the link onto a
pointer only if

‘mAarked-node’ to

‘uriadex?Z 1e the more general function that uses
HI limte @i tre discrimipation net,
HI where oruting CARn occur.,
HEH Fiven a patt=rn Lo uniadex and 3 lank,
H 1 Set the pointer ("‘marked-node’) to the linmk,
H z Traverzi links of the net. mariing the nodes
HH out of thail node. ‘Marking occurs by cons
HH pointer to that node.
H o For gach descent down into the net. move the
H a lower npode 15 found that has more than one branch.
H 4, when the {final terminal node 1s found, use the
HS iorm the basis ot pruming.
H
(de<yn ynincder (pat2 11inkZ)

(sete gparr eu-node 11inwZ)

(Liver e caty 11ink2)

(comg ({e0 marked-node Jlaink:d)

S Grplard 1liokZ nil))
T
(rolacd (cdr marked-node)

i

kde‘un tlmart

«
LR

33

{defun unindex!

Lo fon

(delete

{assoc

(car marked-node)
(cddr marked-node))

(cddr marked-node))))))

(pattern 1link)

(cond {{amd (atom pattern) (cddr 1linmk))
(csetq marked—-node (cons pattern llink)}))
({amd (povar-p pattern) (cddr 1llink))
(seta marked~-node (cons "*¥VARX 11link))))
(append (cond ((atom pattern)
(tlink pattern 1llink))
({pcvar~p pattern)
(cond ((Llink "XVARX 11ink))
(t (skip-exp 1linkl}) 1))
(t (for (sub-sub in
(for (sub-link in (tlink 'cons 1link))
(splice (tlmark (car pattern) sub-1link))))
(splice (tlmark (cdr pattern) sub-sub)))))
fcond ((null t(pcvar-p pattern)) (tlink "¥VARX 1link)))))

{pat 11link)

(car pat) "<--)
(unindex2 (cdr pat)
((eq (car pat) "—-=>)
(unindex?2 (cdr pat)

tunindex? pat

(cond ((eq

[{car

uninges (nAat)
(candidate 1n
(cond

(+or
{perform

VARG -RENOME

(2

uging NEWSYM
o) into

It turns ?

(cadr ¥data-basex)))

(caddr %data-basex)))
xdata-basex:))))

(fetch pat))
((unify pat candidate)
(unindex!

candidste)) 11))

foo-VRNr! , where n is

VARTABLE RENAMING AND VARIANT PATTERN MATCHING

an integer.

4,877,940 |
105 o 106

(DEV LN WEWSYM (&opticmal PREFIX)

CINTERN tNEED TO INTERN FOR EQL COMPARISONS...
(SYMBOL -NAME s TURNS THE URNINTERNED SYM.TO PRINTNAME
(COND (PREFIX
(MAKE~SYMBOIL

(STRING-APFEND (SYMBOL ~NAME PREFIX)

(FIXNUM-TO-STRING (INCF (GET "VRN *SYM-CQUNT)Y)»))))
(T (GENSYM))Y D))

(defun vars—-rename (pat)
(vars-—-rename—aux pat (newsym "VRNY))

(defun vars-rename-sux (pat qQoofy)
(cona ((atom pat) pat)
({(is*pcvar pat) 13 We've already tested for atom,
1y S0 can use iskpcvar rather than is-pcvar

(MAKE~-pcvar .y (implode (list (pcvar-SYM pat) "—- goofy))
CINTERN
S YMBRDL-NAME
(MAHE-GSvyMHL (STRINC-APPEND (SYMBOL-NAME (PLCVAR-SYM PATY)

"-* BGOOFY)))))) $MAYBE 7
(t icons (vars-rename-aux (car pat) qoofy)
{vars=rename-aux {cdr pat) goofy)))))

(de+un vars-rename-recet ()
(putprop "VRN ‘svm=-count @))

(VARS-RENGME-RESET)

it SFETOH-VARIANTS -- finds items at least as general as request

HH (fetch-variante pat) fetches all matching items in the tree-structured
1 base of Uhar.1d4 of CRAM having a variable wherever pat has any

variable. and possibly in places where pat has a constant. Il.e., 1t will
find any item at least as general as the regquest. but mo item in any way
less general, '

(As in the intended application, we are assuming that the pattermn stored
‘i1 at a leaf of the tree is the same as the pattern that determined the path
11 throucoh the tree to the leaf.)

. ae se wn

{variants patl pat2) returns t if its arguments are equal, except for

T renaming of variables, else () . Thus, variants may be used to-find the
true variants of patl among the items returned by (fetch-variants patl)
caused by the inability of fetch-variants to distinguish among variables.

as

1t The idea of these functions is to see whether a given pattern (up to

1t renaming) is already in the data base. To see where to look, consider the
;3 example pat = (a ?this ?that ?this). The following items are all at the
1t same leaf:

(a ?x 2y Tx), (a 7z 2w ?22), and (a ?z ?w ?w). 0Ff these, the first two are
variants, up to renaming, but the third is not. (2u ?z ?w ?z) is at a
different leaf, a variant. (a bc d) is also at a different leaf and is
not a variant. All of these patterns would be .returned by

({fetch ' (a ?this ?that ?this)), which is thus®

much too unselective. The purpose of (fetch-varianmts (?thig ?that ?this))
is to return only the first four patterns, which is the best it can do.
"Then (40 (x in (fetch-variants bé?j) (when (variants pat x)) (save x})
;1 return all variants of pat , and

(some (lambda (x) (variants pat x)) (fetch-variants pat)))

: various equivalent rewritings using macros) will return the first

1t ovariant nmoticed.

a4 se s #m me av aw

e 4% ae

(defun fetch-variants (pat)
(fetch (force-variables pat)))

(defun force-variables (cat)
{cond ({atom pat) pat)
({i1gipcvar pat) ~xYUVARRY) 11 Atom assumed never precent in any data
(t t(cons (force-variables (car pat))
(forcp-variables (cdr pat)))))

£ *L1x ol xVLZ% ARE GLORALS DEFINED IN NETDEF.LSP
HERE TS A BETTER WAY THAN THIS, BUT 0K FOR NOW.

4,877,940
- 107 108

(defun variants (pl p2)
(SETE %xwvlix NIL kv 12% NI
tvariants-aux plt p2))

(gdefun variantea-me (ol p2»
tcond ({atom p!) (sz Dl p2¥) -
((matom 71 NIL)
{tantd {1s%xpocvar pl) (is¥ocvar pZ))

(aetg ¥v11x (ADJOIN (pcvar—-sym pl) *v1ix))
{aptn %vI1Z2x (ADJOIIN (pcvar~sym p2) %v1Zk))
(e (from—endq (pcvar—-sym pl) %xvI11x)
(from=-enda (pcvar—-sym p2) xv12x)))
({or {1s%xncvar pl) (1skxpcvar p2)) NIL)
((varlanmts—aux (car pl) (car p?))
(varianta-aux (cdr pl) (cdr p2)))))

<4;om—9ndc item lis! :eturn% the position (1,2,3,...) from the end of the
liex lis (last element returns 1) of the earliest element of the list ec
to item . It is assumed that this element is present. If this element

is not assumed present, add a cond clause ((pull lis) (y) .

s (The "a" meane that eq rather than equal is used to find the element.)

wy ae ae as

(defurn +rom-endn (item lis)
(cond ((null lis) nil)
({eq (car lis) item) (length lis))
((from—endg item (cdr lis))))) .
L&5P SDURCE TO LIST A SEMANIC NET DATA BASE

+: LIST-DA lists elements of discrimination tree data base

Ty lret the elements of a data base. We don’ 't want to use retrisve, which
1 would list all derivable consequences'

tli1et-do) works on wnatever 1s the current datas bhase,
11 (list-dbr ‘myb) changes the current data bass name to myb and lasts it.

:: lists-db, listb-db, and listf-db. list the ordinary statements, the backwar
HM inferences, and the forward inferences.

1: These functionns return a list of the items in the data—base. Ta print

;1 the items on separate lines, use (print-db).

(defun list-cdbr (dbname)
(use~dbr dbhname)
(list—-dbt)

(gdediun list-gb ()
(append (lists—-db)
(append (listb-db) (listf-db))))

(defun lists—cb ()
(tetch "# (7 ¥})

(defun listb~-db ()
(fetch " (<K== | #.(2 %))y)

(defun listf~db ()
(fetch " (== . #.07 x3i)))

(defun print-db)
(orint-elements (list-gb)))
Vg FY.LSP UNIFICATION ALGORITHM

sre umifier jnclude an "ocrurs in" check which is slower but more

robust,

:: The internal representation 04 predicate—calculus variable 7x is (*VARX x).
:: Tto torresponding record-type povar is defined in vlisp>disnet>$doénet.
i Nate that (PCVAR-P v) is defined as (and (not (atom x)) (isxpcvar x))
Variables are written as 7x., defined to expand
to iaVARY) as in the book.

-

A cubstitutron Is implemented as a list of bindings.

4,877,940
109 110

(defun unify (natl pat2) (unifyl pat! pat? nil))
{(defun unify! {natl pat2 subst-so-far)
(cond ((pcvar-p patl)

(var-unify patl pat2 subst-so-far))
({ncvear—-op patl)
(var-unify pat2 patl subst-so-far))
{((atom patl) (and (eq pat! pat2) (list subst-~so-far)))
(tatom pat?) nil)
(t (for (subst-from-car in
(unifyl (car patl) (car pat?2) subst-so-far))
{esplice (unifyl (cdr patl) (cdr pat?2) subst~from-car))))))

(getun var—~unity (v7% p% sub)
(et ((bndg (svm-lookup (pocvar-sym vi) sub)))
(cond ¢bndg (unifyl (bdg-val bndg) p% sub))
' 13 1+ already bound
+: Don't bother to bind V to itself--
(teal v p%) (list sub))d

33 Don't bind V to anything containing V--
{(not (occurs—-in v% p% sub))
(ligt (CONS
(make-bdg (pocvar—sym v%) pZ) subl))))
13 No binding——-CONS to SUB

(defun occurs—-in (v4A p% sub)
(cond ((atom p%) nil)
((pcvar—-p p%)
(or (eagl v%4 p%)
(let ((b (sym—-lookup (pcvar—-sym p7%) subl))
(and b (occurs—in v% (bdg-val b) sub)))}
(t (some-plus # (lambda (y) (occurs—-in v%4 y sub)) smay use some
Y ARERD)
¢ T¥.LSP TOP LEVEL SEMANTIC DATA BASE CREATORS AND INDEXERS.

INGEX —-— -DATA-BASE CREATION AND TOP-LEVEL INDEXING

11 211 tne functions here and in $RETRIEVE work with the global value of
H *data-basex , which must be setq to the data base you wish to
access.

Thne most basic version stores the whole patter-n at a node determined by
diecriminating upom the whole pattern (excent for the arrows themselves, whi

11 Aare unnecessary. In applications, it may be preferable to discrf%inate upocr
i1 nart of the pattern only -- e.g.. in plan retrieval, such as the "talk-plan”
1 and "think-plan" of op.162-4, the plan part only of a goal-plan pair is

11 stored at o node determined by the goal part only. This is provided for

;: by startirna a pattern with the symbol # . Thus, the pattern (# fie foe)
31 will cause foe to be stored at a node determined by fie . Almeost certair

other applications will call for other strategies. at which point, the
functions should probably be made data-driven.

TJo create A gata base called my-base , one writes (create-db "mvbase)
The bssic accessing functicons are index and fetch .- Built upon these
are ratrieve and add [which use chaining. All these functions will
11 a@ffect the data base that has last been chosen for accessing. Thus one can
o osimnly wrilte tindex S {mortal man)) to enter this information intd the
H current dats bDase.

H Data hase arcessing functionms ending in d-dbr reset *data-bacex to the
11 dAata hase whose name is the value of their second argument, and then

71 perform the appropriate accessing function. Thus, one writes

HA (index—dbr " (mortal man) "facts-of-lite) to index the fact in the

i: data base whose name is facts-of-life . Although quoting the name requires
yioan erxtra eval , 1t has the (sometimes) advantage that both arquments are

13 guoted. and the certain advantage that the contents of the data base won't

; get printed out when tracing the fumction. 0f course, umtil you wish to
access anhother data bace, you can use the ordinary accessing functions
(without the -—-dbr),

e se we ~ an e

111 4.877,940 112

Note that in the example, facte-of-life is actually changed when items
are indexed in ¥data-basex after setg-ing ¥data-basex to facts~of-life
In fact, until the next time *data-basex is reset, the two data bases
coincide. This is how the accessing functions can index into %data-basex
and have the results appear in the data base of your choice. This means
that we nmeedn’'t pass the value of the data base to each accessing function,
which would make tracing unbearable (or pass the name and use an extra eva.

(create—-db 'mybase) causes the value of mybase to become
CCTAP>>>)Y (TOPB>>>) (TOPFO>>)) . (Using 1ist throughout prevents the
definition from being clobbered by list surgery in the indexing functions.

The following functions are used to create, save, and reset a data base
convenlently when experimenting.

(make-data 'joe) —-- creates data base named joe and makes it the active
date base

(save-data "'joe) -- binds save-data-joex to (copy joe)

(restore—~data "joe) -- binds joe to (copy Xsave-—-data-joe¥) and makes joe

. he active data base

Since cooving & list does a lot of work, save-data and restore~data
are martnly intenagerd for experiments with verv small data-bases.

(de+un create-db (dbx)

(spt dbx (list (list "TOPR>>>) (list "TOPB>>») (list "TOPF»>>1)))

Data ba=e recetting funciiorms end in ~gnr

{defun uvse-dbr (db-name)

(setaq *data-base* (eval db-name)))

(defur imdex—-dbr (formula db-name)

{aela Xdala-bLasedr (eval db-name))
(index formuia’

(detun add—-dbr (formula db-name?

(setg *data-basex (eval db-name))
(add formalady)

(defun fetch--drh- (formula db-name)

(et Ycdata-base¥ (pval db-name))
{fptch formuala))

(gefu~ retrieve-gor (iormula db-name) -

{setq *data-base* (eval db-name))
(retrieve formula))

(defun maker-cdata (dbname)

(create~-cdh dbname)
(use—-dbr dbname))

(defun save-dats fdbname)

fset (1mplods (list " *¥save-data- dbname ' X))
{copy-tree (eval dbname)))
(list dbname ‘saved))

(defun restore-data (dbname)

(setg *data-basex
(set dbname

] (copy—-tree (eval (implode (list ‘%save-data~- dbname “%x)))))})
(lizst dbrame 'restored))

11 ACE-B8S.LSP SOURCE TO HELP ACCESS THE SEMANTIC NET FLEXIBLY
>

CRO INSTANTIATE (POVARS QUERY &OPTIONAL RESTRICTIONS)
C{ANS (RETRIEVE QUERY RESTRICTIONSY) SUBS)
(AND ANS

~
-
m 3
A In

4,877,940

113 114
(DOLTST (PCV PCVARS ° (VALUES-LIST ', (REVERSE SUBS)))
(SETO SUBS

(CONS (VARSUBST PCVY (CAR ANS)) SUBS)Y)Y)

(DEFUN ADDX (FATH
(LET ((QUDPAT PAT) NEWPAT ELT) .
(LOOR (AND (ML, OLDPAT)Y (RETURN (DR (ADD (REVERSE NEWPAT)) NEWPAT))

(SETHY ELT (PQFP OLDRAT)H)

(COND ((EQ ELT ::EVAL)
(PUSH (EVAL (POP OLDPAT)) NEWPAT)Y)
T
(FPUSH ELT NEWPAT))

(LFFUN CHANGE-PARAMETER (PARM VAL)
(UNTNDEX © ((PARM #, (7 V)))
(ATID CCUND RARM (NCONS VALY Y)Y VaL)
13 STUEDLLSP SOURCE TO MIMIC MULTITASKING IN LISP

THEGE FUNCTIONS ENGBLE MULTI-INFERENCING IN LIGP,

11 U=es Stack-Groups ant procese gqueues to schedule the inferencing upon a

i: goal. Accesses thz semantic net directly to handle queries.

:: Calling function QUERY allocates a guery process then begins to ANSWER the
"t auery by searching the semantic net (which may result in generating more
1 gueries of course).,

(SETD FRUNNINGOF (MAKE-QUEUE (LI1IST XxINITIAL-STACK-GROUPX)))
(SETD ¥READVO* (MAKE-QUREUE NIL))

(SETQ »SUSPENDEDGx (MAKE-QUREUE NIL))

(DEFVRAR XQIUIFRY-STACK-GROUPS® NIL)

(DEFVAR XANSWERS* NIL)

(DEFLIN MakE~-OQUERY-STACK-GROUR ()
(LETx ((NAME (INTERN-GENSYM 'S))
(SG (MAKE-ETACK~GROUP NAME)Y 1))
(PUSH S5 xQUFRY-STACK -GROUPGY)
SGY
(DEFUN INTERKN-GENSYM (X)
(INTERN (SYMEDL-NAME (GENSYM X)1)))

(DEFUN QUERY (REQUEST &0PTIONAL RESTRN)
(LET (ANSWER (SG (ALLOCATE-SG))
(STArMK-GROUP-PRESET SG
4 OQUERY-AUX REDUEST RESTRN)
(55703 ANSWER (PREEMPT SG))
(DL-ALLOCATE-SG SG)
ANSWER))

(DEFUN QUERY-AUX (REQ RESTRN)
(SETO *ANSWERS* (ANSWERS REGQG RESTRN))
(STACK-GROUP-RETURN %ANSWERSX)) :

(DEFUN ALLOCATE-SG ()
(COND ((POP xBQUERY-STACK-GROUPSx))
(T
(MAKE-QUERY-STACK-GROUP)
(POP %QUERY-STACK~-GROURS*)) 1))

(DEFUN DE-ALLOCATE-SG (S6)
(PUSH SG ¥QUERY-STACK-GROUPSX))

(DEFUN PREEMPT (SG)
(MAKE-READY (DEQUEUE %RUNNINGOX) !
(MAKE-RUNNING SG))

(DEFUN MAKE-RUNNING (SG)
(ENGUEUE *RUNNINGOX SG)
(FUNCALL SG NIL))

4,877,940
115 116

(DEFUN MAKE-READY (5G)
(ENQUEUE *READYQX SG))

Appendix V
R A8 1LOAD SQURCE CUDF FOR CONSISTANCY CHECKER
CO A ANNLTE TEPDAORNONENANNET)
T NANGCL ISPZNANCNSANCRNEFUNS)
ST NANGRLISP2NNONENNSYNSUR™)
CNNGCLUISPINNINSAWAMETA RLS ™)
T.LEP SUURCE FOR CONSISTANCY DEFINITIONS AND INITIALIZATIONS

. Py h A Y Y RN R X NN VA A XM AN RRELN KRR R A KR IR A XK RARAS R AMHKXXXERRRE XL KA EX XK XXX R KX
H STRUCTU-: DEFINLITS AND INITIaL 1 ZATIONS
. Ak AV R RAKKRRRAKARER AR KKKKR R XK AR XX KR KKK KKK KKK KR ¥ KRKX AR K FF R X X AKX KR KKKk > x
L RIMEEBASE

RULEGROUPS

RULESS

FATORULESS
DIT RULES)
DRE 1 RULES)
RLNLESH
RULESS

(DFFBTHRLTT
(DEFGTH
(DEFSTY

(DETSTR

(e E QT T

sNUMEBEER OF PREMISE CLAUSES

:LIST OF PREMISE CLAUSES

tNUMBER OF CONCLUSION CLAUSES

:LIST OF CONCLUSION CLAUSES

: IS 1T SELF-REFERENCING 7 (T OR F)

FAldT - oarms

vaiupd-narmg

S oArme

AU -DAarme

(DEFPARAIMETER RULEAASE-FIRST (MAKE-RULEBASE :RULEGROUPS NIL :RULES NIL))

s THE RULEGROUPT DEFINES WHAT CONTEXT THE CONCLUSION PARAMETER BELGONGS TQ
(SETF (RULEBRSE-RULEGROUPS RULEBASE-FIRST) ' (PATIENT

DISEASE

DRUG-1

DRUG—-2

DRUG-3)

(DEFCONSTANT PATIENT (MAKE-PAT :RULES NIL))
(DEFCONSTANT LISEASE (MAKE-DIS :RULES NIL))
(DEFCONITANT DRUG~-T (MAKE-DRG-1 :RULES NIL))
(DEFCONSTANT DRUG-2 (MAKE-DRG-2 :RULES NIL))
(DEFCONSTANT DRUG-3I (MAKETDRG-3 :RULES NIL))

tdefconstant known-sets (make-defs))

(DEFVAR NUM-META-RULES 9)
(DEFVAR NUM-MZD-RULES 1)
(defvar num-dom-rules 2@)

4,877,940
, 117 118
(DEF R FATIENT-PARMS - (AGE WEIGHT SEX))
(DEFVAR DISERSE-PARMS ° (DURATION DEGREE TRIALS LENGTH))
(DEFVAR DARLE-PLRMS (DOSAGE RISK PREVIOUS REACTION))

tgdesconetant ig 272)

-

(de o

{op

shant wming S.G6S)
setant wmaxp D.790)
(defcontant wminc S5.237)
(rietoonstart wmaxc 5.858@7
ks Wit D.21)
)

=7 21

Codmed,

(i
(defronetant dejta-i-hiaoh D)
(gefconstant delta-i1-low 2.95)
(gdedirnnetant aella~e~hioh 1)
(Fferizmnetant delta-e-icw @.9)
(defconstart d-hiaon ©@.23)

(gessonstant d-low @.#0)

{oe~consiany siima (6@ @
(defraramie-ter weld-aborted nil)
(defparameter weld-completed nil)
(grinaransy welao-pnase @)

igefraramater Q0

(dea+narameter aneed 03
(gainaramster width O)

{ogefnsrameier chielao-gas—temn @)

(gedivar wmo-oar-ms " (1 speed width shield-gas-temnp)) -
(DEFEEVAR NUMTR M- 1GT (AGE WEIGHT HEIGHT currernt speed width))
(DFFVAR SING! ED-PabEM-LIST " (SEX RATE RISK))

(DERVAR ML TI-UOLUED-P

[aY.
> RM-L187T ~(QUALTITY HEALTH)
(DEFVAR aVaTLAR E-FUNCTI

CTIGNS "¢ = SAME NOTSAME LESSP GREATERP COuUaL))
(DUIEVAR pnowe srme C (AGE WEIGHT SEX HEALTH HEIGHT HISTORY RISK RATE))
(DEFVaR A3k - =PORMSG T (52X AGE HEIGHT WEIGHT))
(DEFVAR NMURERIC-FONCTIONS (> < = RANGE))

(DEFVAR FUZZY~-SETS NIL)

(gefvar defs (list numeric-parm—-list single-valued-parm~list
multii-valued-parm-list
patient-narms disease—-parms drug-parms))

(DEFUN CRFATE-LISTS ()

tgrive list-~rules f0or hoth rule cases
(SETR META-FULES (REVERSE (CAR (LIST-RULES "META)Y))
(5875 MEDICA -RULES (car (LIST-RULES "MED) M
L1ISTS-MADE)

twrite the given list of medical rules to the medical rules file

(LET» ((STRr (OPEN "MEDICAL.RLS" :DIRECTION :103)
(RESULT
(DDLIST (RULE RULELIST ‘DORNE)
(PRINT (EVAL RULE) STRM))))
(CLOSE-ALL-FILES) 1)

LIRT=RULES (TYPE)
the file containing the given rules, and create a list of them

WiLES RULE-LIST RULE-LIST2 RULE-LISTI S
(META-ETRM (OPEN “"META.KLS" ::DIRECTION 10
(MED-STRM (OPEN "MEDTICAL LRLS" :DIRTCTION :10))
(NUM-MET 4 NOM=-ME TR-RULFS)
(NUM-MED NUM-MED~RULES)
(RULES (COND ((EC TVPE "META)

(1 15T

CDOTIMES (] NUM-META RULF-1LIST)Y
(PUSH (READ META-STRI) RULE-I_IST) i)
(LER TYPE "MED)

“a sy »v sa ms es e ‘ee s ‘aw 4v ‘me e e as

4,877,940
119 120
(DOTIMES (1 NUM-FEDR RULE-LIST)
(PUSH (READ MED-STRM: RULE-LISTHII))))

(geotun dad+—-rpis ()

merate 4 ocaae Interactivelvy with the user.

Tzt deoe ot Whether or not the narameters used in the rule are vynown:
HH) Learn about those wnich are not known. _
: 7. Je the rule Satisiianle 7 (maintain a Complete rulebase)
: Jtomhe rule SyntacticAally correct 7
i 4 trrore are found In the gererated rule in steps 2 and I, the rule ig
E -.

t1f nmoerrorzs dound,. return a rule structure (no gliobsl structure defineg)

(let¥ (rulename problems error)
{eetn rulename (make-rule))

: Fmter the ryule Premice clauses

(Format «© ™% ~g5 >y ¢
"tnter FPremise Clauses: Enter as a List of lists ((a b c)(d e f))")
(LETH (RESIILY
(PREMISE-CLAUSES (READ)Y))
{1+ (neot (listo (car pnremise-clauses)))
{seta error 1))
(arnn (not error)’
(prog?
(SETF (RULE-P-CLAUSES RULENAME) PREMISE-CLAUSES)
(SETF {RULE-P-CLAUSE-CNT RULENAME)
(LENGTH (RULE-P-CLAUSES RULENAME))Y))))

1 Enter tne rule Comclusicon clauses

(Format v UTR YR O
"Enter Conclusion Clauses: Enter as a List of lists ({nm 1))™)
CLE T (Fiamigl)

(CONCLUSTON-CLAUSES (READ)Y)Y)

(if (not (ea (length conclusion~clauses) 1))
teeto error 2))
(and (not error)
(STTF (RULE-C-CLAUSES RULENAME) CONCLUSTON-CLAIISES)
(SETE (R E-C-CLALSE-CNT RULENGME
CLENGTH (RULE-T-CLOUGIS RULENAME))Y) 3 Y)

tmtermine 1f the Rule is Sel+ Referencing: indicate result in ruie structure

AT (Rt er-or)

{meonn
(I8 (SELF-REF RULENAME)
(SETF (RULE- SELF-REF RULENAMD) T)
(GFTF (RUILF=-SFILF~-REF RiJi ENAME)Y NIL))))
G- v Aireany bnow nf all the parameter tvoes mentioned in this rule 7
CEma a0l @ saey
(oroan

(dolist (clause (rule-p-clauses rulemame))
tranrt (oot (member (cadr clause!) known—parme))
tlearn-parm-tvps (cadr clause))
tlearn-subtvpe (cadr clause))
(L o miioy

4,877,940
121 122

H {cond ((mpt i{member
H (cadar (rule-c-clauses

rulename?}) known=—-parms))
(learn-pDarm—tyvpe (cadar (rule-c-clauses rulename)))
(learn-subtvpe (cadar (rule-c-clauses rulename))))
(L oauly)y)y)

. .
: Perdorm Eentax verification and reparting of any syntax errors to the User

(ano (not error)
{proan
(cond ((setg problems (syntax rulename))
(format t "~& ~& ~Ma ~& “va"
"xkkx% >> Syntax errors have caused the removal of "
rulename)
{dolist (prob problems) (format t “~& ~& ~a ~a ~& ~& ~at
"Syntax Ervror in Clause :
{car prob) (caadr prob)))
(sett error 3 rulename nil))
(t nil))))

4o e an ‘me sa A% as as s ss v ee s aa

: Determine 1 f the rule is Gatisfiable: for each parameter mentioned in
: the nremiee, does there exist a rule which concludes on that parm ?
: disregard this for ask-first types of parameters (defined above)

tand (not error) .
(cond ({(setq probs (un—-satisfiable rulename))
(dolist (clause probs)
(if (not (member (cadr clause) ask~-first-parms :test 'equal)
(format t “~& “M& “Ya “& “& “Ya ™~Ma & “a ~& M
"SATISFIABILITY WARNING : "

"Thia risle mentions in its premise the parameter" (cadr clause)

"unon which mo current rule concludes.™))))
(t m1l)))

% v av sa s s we e

(if error
sa (format t "N& ~& Ya “& va ta”
"Rule was Invalid: Try Enteripg the rule again ..."

'Freror Code =" error)

t done.

; RULENAME))

L LSF SNIIRCE FOR CONSISTANCY CHECKING ROUTINES

1 Higire=t level logical consistancy verification routine

he-te for cases of:

] 1. kKedunoancy {simple and complex)
HH 2. Negation (simple and complex)
T T, Bubsumption (esimple (7)Y)
v Retaren g listing of:
: 1. How many 1hnconsistancy (s) were identified
: 2. What tvope each inconsistancy was (see above)
: . oWnich rule 1n the existine set conflicted
: 4. Which clauses were at fault and why

SHON K e n ok %k R RR A R A R n kXK R R K KK KK KK ok ok K KRR ka0 Kk K K R K 3k ok K % ok sk ok dk K K K K Ok R Ok K KOk Ok AR R R K K X X
:) The New Stu++

203K KOR Kk O KoK b KRR R KR R 3R KK ok K Kk KK 0K KK R OK K R 80K KK K K K0OK K R K K K K K K R 3K %R K 3K K K K K K K Kk K K K
efun concludes-on (parm) .

O se o

ther rules in the set of current domain
nnothe oiven narameter. _

et ofF ruienumbere corresnonding to rules which
ocaramter

123 4,877,940 124
(dolist (rule-2 medical-rules result)
{ {setn res (match (7 ,parm 7)
(car {conclusions rule-2)) nil)
, {puseh (rle-num rule-2) result)))))
reverze result-2) 1)

(defurn atll-comcls)
1 it ihe cunclucsions of all rules., rules denoted by rule number
(ietx (result-i
(result
(polist (rois medical-rules result-1)
(ousi: (1ist (rule-num rule) (car (conclusions rulejl))
result-1)))) result))

(defun rules ()
s prants out the existing domain rules

(farmat t "™~& ~a ~a ~& “&" (lemngth medical-rules) "domain rules ")
(dotimes (1 (length medical-rules))
(cond ((eq (mod (i1+ 1) S) @)

(format t "™~& ~a ~&" "Press Any Key to Continue")

(read-char))

(format t "™~& ~a ~a ~a ~& “&" (premises (nth i medical-rules))

‘==> (gar (conclusions (nth i medical-rules)))))
(t (4prmat t "™~& ~a ~a ~a ~& ~&" (premises (nth i medical~rules))
‘~=> (car f(conclusions (nth i medical-rules)))) 1))))

£ e e e
12 Top Level Furction. .
11 Generate a new rule, then test it for logical consistancy.

e Gen~te@et ()
fieth (Grule credoruled))
faryg (e ra-vntav-grr-porss @)
(re-onon
t+tormat t "M& “Mav "Press Any kKey to Conmtinue ...™M)
(read-char)
(format t "™~& ~& “a' "Part Two: VERIFICATICN')
(report (c-check rule))
(format t "™M& "~ YMa Y& t~a ta
e e e "
¥looiral—-errorsx
“toocical Error (s) Detected™)
(format b "™ME Ta Tat dwarningsx "Satisfiability Warnmings Iscuesd’)
CAore))
v oo Alopgicai-errorsa) Amsw-~rulexd))
(de-uin parms-Conmon (Darm-list rule)
(letyr {(res-)
(res-2
tcolict (parm parm-list res—1)
(i{4 (pot (has-elt oz-m rulel))
tertg res—-1 t)))))
YiTovaes=0 il -
L gy
(d=+g~ ——cherl (new-ryle)

(imtdx (reeyite findinps—-7 results—-I recults-1
(row-parme (parm—gset new-rule)))
{golist Camni-rule medicali-rules)
(congd “ieo (parm-set ¥new-rulex)(parm-zet anol-rule))
ettt ((difference (set-difference (rle-rulelist appi-rule}
(rie-rulelist mew-rule’)))
(cond ((net dafference) t 0 clauses different
(pusn (list (rle-num appl-rule)
"redundant") results))
({eq (length difference) 1) 3 1 clause different
(push (list (rle-num appl-rule) "negation" difference)
resuglts)) D)))))
{meic ¥loorcdi-s=rrorex (lencin results))

4,877,940

Reoort the results of logical inconsistancy checks in a nice formatted
manner.

O as v ae

efun report (result-list)
(letx ()
(format t "~& ~& ~a ~a & “&" (length result-list)
“lnconsistanc? (g) has been Identified")
(dolist (err-elt result-list)

(format t "~a ~&" ~
n______________________.____________________________________: ______ 11})
{format ¢ "NM& - ~a ~a “&" "Inconsistancy Number"
(length (member err-elt (reverse result-list) :test ‘equal)))
(+armat t "™& “~a ~& “a “& “&" "Newly Generated Rule :"
(rle-rulelist *new-rule¥))
({format t "™~& ~a ~& ~a “& “&" "Conflicting Existing Rule:"
irle-rulelist (nth (car err—elt) medical-rules)))
(iormat t "™M& Y& TYa Ya Ya Y& Ya TYa Ta ~M&" "The New Rule conflicts with"

"domain rule Number'" (car err-slt)

"Tue to" (second erc-eit) "type lnconsistancy”)

odlh el Z) otihae bat a faulty claunes 1ncluded
M

A ng clauses in Rule"

Sy e

<
(format t "% Ta Ya Ya Ya ~M& " "The Conflict
{rar prre—-plt) "1s”

{mar Tthird err—-slitdd Y)

{format © Y& Va3

ormmleen (ruie)

froveraE (cMr D eomber -- (maveorsp ivie-rolelietl ruled)) rteet Tenl))))

R I e L R AT Y

fese imemomyr —=L (rle-ruylelist rulel ttest ‘equal)))

getun tas-aeit (elt lis)
3

: returne 1 id the oiven Jaisl contains the «upplaied atom
: wark s s il nested ligte
{(corg mild 1Tia) njily

((enl eit lis) t

({conen 1is)

(or (has-elt elt (car 1lis))
(has—-elt elt (cdr lis)))d))

(defun parm-set {(rule)
(letx (results~-1 results-2
(finaAal
(aonend

(dolist (clause (premises rule) results-1)
(push (eecond clause) results-1))

fdolist (clause (conclusions rule) results-2)
(push (second clause) results—-2))))) Final))

1 L e e e e e e e e et o e e o et o e e e e e 2 o e

defun all-sim (rule)
1 retrieves all rules from the domain rulebase which contain the same set
i ¥ narameter types as the given rule, but no more or less.

4,877,940
127 128

(new-parms (parm-set ruiel)
(final
(doiicst tew—-rule medical-rules results)
(letx ((results-2 t)
14
(dplist (parm new-parms results-2)
(1§ (not (has-elt parm ex—rule))
(selag re<ults—-2 nil))) : t = good rule match
Lpush ev-rule resulte))d) resultsy 3)) finall)

oE e s d el (rule)

1 e vrrone- uges list tvoe structures S/27/87
Amroemire 14 the qgiven role mentians army one 0f jts premicse parameters
1r. oo of its coaciusinn clauses
{1ty {remagi b

= (CconclusiIons ruledy)

Altee (nremises rule) reeylt)
az~ejit (gecmmd clause) concle)
oot oty) result))

amater *xwarningsy 0}
ameter »locical-errorsx @)
Fametor ynew-rueler nil) 11f rule 15 GKy 1t 1s returred 1n here

a G
L' At]
N
s |
[T
B

H Vit v mmoen s 2 ryle by 1ncdividual clause.
11 LEart @l ooooonown parameter types
c1 Feriore cvntias checkainn nn the voge, -
{(desun sntor)
(letx (ciauze-—l1ot str svntav-e-ror)
Cloon Cformat v vk Ma" "Ermter a Clause .. "
Le@2rg =t- isiring-anpend (7 (read-line’ ")V))
7 Soviegual atr TOYT) (return))
* (learn-parm-tvpe {(secund (read-from-string =tri))
{leparn-subtvos (second (read-from-string str))
(thirg (read-{from-string stri))
(14 (i1ncorrect-elt-order (read-from—string str))
{setq synlax-—error t))
(if (invalid~parm—+4unction (first (read-from—-string str))
{second (read-from-stiring str))
(setg svntax—error t))
(if (invalid-parm—-value {(second (read-from—-cstring str))
(third (read-from-string str))i
(setc svntax—-error t))
(if (not syntax-error)
(push. (read-from-string str) clause—-list)
(seta syntax—error nil)))))
ciauss-list))

11 benrrate a rule -interactively with the user,
i following these constraints along the way :

70 Test for @ 1. Whether or not the parameters used in the rule are known;

[‘Learn’ about those which are not known.

;; a. Context type of the parm (patient, drug,..)

HE b. Value type of parm (numeric, single-valued..)
ii 2. Is the rule Satisfiable 7 (maintain a Complete rulebase:
;; ¢ 2. Ie the rule Syntactically correct 7

a. Notify that a svntax error (&) was found
b. Incicate that the rule has beer deleted
HN c. ldentrfiv the tvpe of error in nmatural lang
: d. Identafy the clause which was faulty

4,877,940
129 130

i Frreore ara found in the generated rule in steps 2 and 3, the rule is

T4 no errors dound, return a rule structure (no glghbal structure defined)
: { List tvoe of structure version /727787 3

(gefin tes—rule)
(let’d (rulenames problems error r-1 r-2 results)
(setq rulenamns (make-rle))

(goia kuvnlav—errorsXx @)

(format ¢t "~& ~Ya “& “~a V& Ya ~v&"

Cicimat Lo UYE YA YAt “Part Dam: GEMERATION")

tr Enier the vrole Rromlier mlaocoes
(Format t "~& ™4 ~a ~M& ~a “ME MR
"Onter Premise By Clause: 1i.e.. Function Parameter Value "
" 44 Tyre a Return at the promot when finished")

(sl prenise-clauses (enter))
t: Enter the ruls Conclusion clauses

(Format € "~k ~& ~a Y& “Ya “& V&
"Enter Conclusion By (lause: i.e., Function Parameter Value "
" X% Type a feturn at the prompt when finished')

(eztq conclusinn—-clauses (enter))

Tri+ oolnt in the code cannot be entered without having generated a valid
rule - no syntax errors, or unlearned parameter types beyond this pecint.

buila the actual list structure with these clauses
(oush "--> premise-clauses)
(eptf (rle-rulelist rulename)

(reverse (push {(car conclusiomn-clauses) premise—clauses)))

1t Determine if the Rule is Self Referencing: indicate result in rule structure

(IF (SELF-REF RULENAME)'
(BETF (RLE-~SELF-REF RULENAME)Y T)
(5F7F (RLE~-SELF-REF RULENAME) NIL))

: Letaermire 1+ the rule is Satisfiable; for each parameter mentioned in
t the oremise, dnes there exist a rule which concludes on that parm ?
3 disregard tnis for ask—first types of parameters (defined above)

(setn fwarmningsx @)

(cond ((seta probs (un-satis‘iable rulename))
(setg *warninas* (length probs))
(o) ist (prob orobs)
(Aremat 4 UYE N YMa Y& Y& Ya Ya ~t& Ya tM& ¢
"GOTISFIARILITY WARNING @

“Thiz rule mentions in its premise the parameter” prob
"uneon which no current rule concludes. "))
tt mil)

crmat t "8 YK Ya Ya Y& kwarninage¥ "Satis+rability Warninge Generated':
alo Anew-ruler RULENAMT®))

COEFUN LEARN~PARM=-TYFF (FPARM)
rr ometsrmane 14 the aiven carameter tvpe is known. 14 so. return. Else,
proAask o tme e e sunoly the needed indo.,

4,877,940
131 132
(LET* (AND)

(COND ((and (not (MEMBER PARM PATIENT~PARMS :TEST 'EGQUAL))
(not (MEMEER FPARM DISEASE-PARMS :TEST "EQUALS)
{not (MEMRER PARM DRUG-PARMS :TEST "EQUAL)Y))

(FORRET T A & YA YE Y& MG ML Y5 MR MY YSe
PATM
"This Parameter Type is Not vet Recognized" =
wmich nf the Following Types Best Matches PaiRM 7"
"Ro= Patient D = Drug R = Disease")

4NS (READ-CHARY)

({or (en ans 112)(EQ ANS 80))
(FUSH FARM PATIFNT~PARMS)
(PUSH PARM known-parms))

({or (ga ane 100 (EQ ANS 66))
(FUSH FARM DISFASE-PARMS)
(PLISH PARM known-parms))

({or (g ans 1143{(EQ ANS 82))
(PUSH PARM DRUG-PARMS)

(PUSH PARM known-parms))

(T (PRINT "INVALID ANSWER")Y)))

(f nil)) Parm))

FUN LEFARN=-SUBTYPE (PARM &optiormal val)
Determine i4 the Suh-type of the given parm is known. If so, return.
Else., ask the user to supply the needed info.

(COND ((and (not (MEZMBER PARM NUMERIC-PARM-LIST :TEST “EQUAL))
(not (MEMBER PARM SINGLE-VALUED-PARM-LIST :TEST 'EQUAL))
(not (MEMBER PARM MULTI-VALUED-PARM-LIST :TEST "EQUAL)))
(Format T "™& ™~& ~a ™~& ~a ~& ~& s ~& ~g
parm "is not yet fully definmned..."
"...What i858 the Functional Type of Parm 72"
"N = Numeric M = Multi-Valued S = Single-Valued")
{s2etq Ans (read-char})
fcond ((or (20 ans 83)(eg ans 1195))
(PUSH PARM SINGLE-VALUED-PARM-LIST))
taor (eg ans 77)(eq ans 1@09))
(PIUSH PARM MULTI~VALUED-PARM-LIST)
(adg-val parm val))
{or (eg ans 78)(eq ans 118))
(P{ISH RPARM NUMERIC-PARM-LIST))
! it (tormat t "~& ~Ma" "Invalag Entry"))))
{imemter narm multi-valued-parm-list :test “equal)

(afdp-vsxl perm o val) o))

urn ur-zatisfiable (rule)d

metermines 1§ the current rulebase containg ruirs which conclude on all
naramstera mertioned 10 the rules premice., 0OF thio list, all acsk-First
ruoe of parameters are deleted. and those remaining are returnecd.

(lets (res res~-narms
(New- Darms (cdolist (clause (premisecs rule) res)
oush (zecond clause) res))

et 4 o oid-rule medical-rulss yes-parma)

vrolael {(parm Nnew-parms res-0erms)
(1f (match (7 parm Py (car (conclusicrs olid-ruler: nal)

tegtn res-parms (delete parm new—-parms)) 3)))

treal-leftovers

(cdrlict tparm Jleftovers leftovers)

i f Amember parm ask-+irst-parms test ‘equal)
(retg leftovers (delete parm leftovers)dy)d))

roaloledltro o ers

SAYNSUB.LLSP SOURCE FOR SYNTAX AND SUBSUMPTION CHECKING ROUTINES

133 4,877,940 134
R T L I e T mmmTTTT™
: SYNTA> ANMD GUREUMAT TN CHECKING ROUT INES
2ok Ok % B KKk oK K KOR ORER R kORI R R R K R K kO Kk ok K K R KK R KK KK K K KK K K R kR K KR KK KKK K K

INTMRRECT-ELT--0ORDER (CLAUSE)
moothat the first element of the clause 15 a Param
the second 1s a +tunction

ter

il

(NOT (MLEMBCR (secord CLAUSE) known-parma s TEST EQUALL)Y)
(NT (MEMBER (first CLAUSE) AVAILABLE~-FUNCTIONS TEST "FQUAL)Y)Y)

]
(Droul
(foeman & "TA Ya v
"¥ Svntax Frror: Irvalid Ordering of Clause Elements")
i)

(DEFUN INVAL ID-FPARM~FUNCTION (FUNCTION parm)
¢ Detarmyne that the function used with the Parameter is one that i1s of
:othe correct Tvpe 1 numevic, sirgle--valued or multi-valued
[
(CONT ((MEMTE S PARM NIUMERIC-PARM-L IST TEST CQoUAL)
CEEONDT (MEMBER FUNCTION NUMERIC-FUNCTIONS :TEST "EQUAL))

) -

Ceoss (HPMPE R PARM QINGLF~-VALUFD-PARM-L 1ST :TEST 'EQUAL)
CREMBRER PaRM MLT I-VALUED-PARM=-LIST ::TEST 'EQUAL))
CLE ONDT (DR (LQUaL FUNCTION " SAME)
’ (EQUAL FUNCTION "KOTSAME))

(pronl
(format + "MA Tta YMa YMa va v

“x> Svniaw Frror: Invalid Function” function "Applied to Parameter" parm
ti)

(DEFUN TRVALTD=-FARM-VALUD (F&RM VALUE)
jDetermine that the value assigned to the Parameter in the clause given
t iz 24 the same Type as the Farameter : numeric, single-valued or multi-
(if
(COND C(MEMBER PARM NUMERIC~-PARM-LIST :T1EST 'EQUAL)
CUEOONDT (NUMBERP VALUE)Y)Y 1))
((OR (MEMBER PARM SINGLE-VALUED-PARM-LIST :TEST "EGQLUAL)
(MEMBER PARM MULTI-VALUED-PARM-LIST :TEST "EQUAL)Y)
(IF (NUMBERP VALUE)Y TH))
(proaZz (format ¢t "~& ~a ~a ~a ~a "
"*> Svntax Error: Invalid Value" value "Assigned to Parameter” parm)

t))
(defun syntax (rule) .
i: perform a syntax check on the given rule
tt 4 types of checks are performed:
L t. valid number of atoms in the clauses
HH 2. valid tunction applied to the given parameter
i 2. vaiid value assigned to the parameter
HE 4. valid ordering of atoms in the clause
11 { all svntay rules are held in the Meta-rulebase)

((=vi-rules (nthodr S meta-rules))
reci it
(rgpe -
(dolist (s-rule syn-rulss result)
(dolist (clause (prém:;ps ruie’ result)
(1% (evail (car s—-rule))
(push (list clause (cadr s—rulel) rexult)))
(dnliset (clause (ronclusions rule) resgit)
(14 {(eval (car s-rule))
(oush (liet clause (cadr s—-rule)) result))) 1))

N .

135 4,877,940 136
ok K m ko R b R OO P R ok Ok Ok ok 1k R 0K K KR R R 3k 0K OK K KR R ok kKO Ok ok 3K K kK KOk sk K ok ok ok ok ok Kk K K ok R kK Rtk ok R R Ok KXW
The Fuzzvy Relation Marmipulating Routines
Eob Y A a AR N R ke Kk b R R % K R b XK K K K Ok K K 3 % K 3k K 3K ok % ok kR K K 0K K K R kK Kk 3k k ok kR Oh ok k R X Ok R KOk OK X R X Xk dox
Wby s Inrovactaive Routinees to Modify or View the Fuzzy Gets
as desired by the Expert

- VIEW the fuzrv relatioms for a given Parameter type
- AT a2 values to the furzy relations of & given Parameter tvpe
- brttB1F A value from the furtv relatiomns of a given Parameter tvope
k% F o A K L R R xR R R Rk kRO K ok KR R KR R R R 0k Kk oK kR 07 sk ok R sk ok Ok kR kO R OO Sk kR Ok k K Ok K K K K X X

SRS CS T (T LR,
show tha evystino fuzzy relations for a given parameter tyope
(CDR (R GO Al Tig77y=-GET5)))

(DET s REM=VAO (RPAKRM oL UE)
Feoove 3 value $ron the set of fuzzv relations far a given parameter tyvpa
1nciudes grrer cngcving for wrong entry values

CLET® (INNER CINDEX &)
(RESULTL
(ASSUC PARM FUZZY-SETS))
(RESULT
(PR TST (SUB (CDR(ASS0C PARM FUZZY-SFETS)) INNER)
CORTE INDEX 1+ INDEX))
(IF (MEMBER VALUE SUB :TEST "EQUAL)Y (RETURN (LIST SUB INDEX))13))
CINDEX
(TF RFSULT (1- (CADR RESULT)Y) NIL))
(SUBLIST
(TF RESULT (CAR RESULT) NIL)))
C1 ONOT RESULTIY{FORMAT T "~& ~5" "NOG SUCH PARAMETER YET')
(PROGN
(COND ((NOT SUBLIST)
(FORMAT T “~& ~& ~S" "PARAMETER NOT DEFINED YET")
(FORMAT T "~& ~5 ™~&" "“THE SETS FOR THIS PARAMETER ARE:"))
(T (CONMD C((NOT (EQUAL (CAR SUBLIST) VALUE)Y)
(SETF (NTH INDEX (CDR (ASSOC PARM FUZZY-SETS)))
(RFMOVE VALUE
(NTH INDEX (CDR (ASS0C PARM FUZZY-5&ETS)»)))))
({AND (EQUAL (CAR SUBLIST) VALUE) (< 1 (LENGTH SUBLIST)))
(SETF (NTH INDEX (CDR (ASS0C PARM FUZZY-SETS)))
(CDR (NTH INDEX (CDR (ASS0C PARM FUZZY-SETS))))))
E4 1 (LENGTH SUBLIST))
< 2 (LENGTH (ASS0OC PARM FUZZIY~-SETS))))
(SCTF (CDR (ASSOC PARM FUZZY-SETS))
(APPEND
(SUBSEQ (CDR (ASSOL PARM FUZZY-SETS)) @
(IF (EQ INDEX @) @ INDEX))
(NTHCDR 1+ INDEX) (CDR (ASS0C PARM FUZZY-SETS) 1))
CeanDd (F0 T GLENGTH (ABSUT PAPM FUZ7VY-SETS))
(EG 1 (LENGTH SUBLISTI))
(COND ((NOT (EQUAL (CAAR FUZZY-SETS) PARM)Y)
(SETF FUZIY-SETS (REMDVE (ASS0C PARM FUZZVY-5ETS)
FUZZY~-SETS)))

CCAND (
€

()
(SFETH FUZ7Y-SETS (CDR FUZZY-SETS))y)))))
(Com (AGSHU Paktt FUZZY-SETSY)Y Y) 1)

(DEF L D=-vi, cFas" Ve UE)

tads a value to tre fuzzy relations which exist for a given parameter
1mteracrtive, Agts the user to cgetermine where the new value pest +1ts wittiin
tthe - lsmQ relations

(PROG (P{ACE SET POS RESULT)
(O ot 0T Pastt FRZ7V-QETSY
CLONT ((DODLTART (SUBLIST (TDR (ASS0C PARM FUZZY-SFTS)))
C1F IMEFMBER VALUE SURLIST ::TEST "EQUAL) (RETURN Tiy
(FORmAT T "~§ ~& ~G" “That Parameter Value Lvists Alreandy”))
(7 AFORMAT T “"™~& ™~ ™~& PARMD
CFORMAT T YR YR YA YR YK YR -

I
: S

(FO&RMAT T "™E&

PARM

et m get-ozub

s

(ct

SEeles i ng wh
aver the Qiv
rigorcus con
aFf TFurTv v

T,oretriees

2, Lhe more
Ty the {4
Efim mirdy 4 (G

allnw the oo
the ezt

canafirlity to
svatem ¢ deos

(et {1men

(fmvrm

LT

{m=r]

imitione cf 1ts woeid,

4,877,940
137 138

" oThe Existing Fuzzy Sets for this parameier are
(CDR (ASSOC PARM FUZZIV-8ETS)))
CHORMAT T "NME ME MG Y& Y Y& Y Y& M5 YR
"The sub-liste given describe separate claceses of values whichk
"the narameter may nnld. Cach Class List is ordered in"
"a orogression of these values. which values range from”
"very kxix GENERAL X¥% to very ¥xx QRECIFIC xXx™)
CEORMAT T "vE Y& Y5 YR MG Mg
“Into which Class (list) does the current value
best fit? (1,2,3..3"
" (Enter a Non-Numeric Key if No
Sub-set presently exists)")
(SETO PLACE (~ (RFAD-CHAR) 48))
(SETQ SET (NTH (1~ PLACE)(CDR (ASS0OC PARM FUZZY-SETS)))
(COND (< PLACE 1@)
(FORMAT T "~& ~& ~X ~& ~5 ™~& ~5 ~& ~G ~&*

GET
"And of this Class, into which position"
"within the class does the new"
"value best fit? {(1.,2,3,..23")
(SETQ POS (- (READ-CHAR) 48))
(SETF (NTH (1- PLACE)
(CDR (ASSOC PARM FUZZIY-SETS)))
(APPEND
(APPEND
(SUBSEQ (NTH (1—- PLACE) (CDR
(ASSOC PARM FUZZY-5ETS)))
@ (1~ POS))
(LIST VALUE)
(NTHCDR (1- PBS) (NTH (1- PLACE)
(CDR (ASSOC PARM FUZZY-SETS))))))
(T (SETF (CDR (ASSOC PARM FUZIY-SETS))
(APPEND (LIST (LIST VALUE))
(CDR (ASSOC PARM FUZZY-SETS)IY Y0305

CORMAT T UN& Y& MG NM& MG MR X

"New Parameter Tvpe to the Fuzzy Relations ..."
‘e Sef Being Created ..." {(PUSH (LIST PARM
(LIZT VALUEDY)
FUZZY-SETSY)))
~5 ~& o vee
(CDR (ASS0C PARM FUZZIV-SETS))Y)))

(clause—-1 clause-2)

ich of the two given clauses describes a more general situatior
en parameter. Determine which clause describes a tighter, more
ctraint over the civen parameter. Use the Expert-defined set
~lations {a-list) to make comparison.

the assnc for the given psrameter

ceneral case 1S the clause whose value 1s found to be closer
~ontis of the returned list from =tep 1.

3

ticAation (addition to. deletion from. viewing of) any of
~viranment ga-ameters. e.q., provide the user the
clearlv see. and possiblv change. the

b
5

ar t "SR YA Y& ta YRR Ma Ya M& Ya YMa Y& Ya Ya Y& YA

w2 Lnown sete are "

Faram=ter Vslue Tyne Sets and Their Memberships:”
"1 NMumeric” pumeric-~parm—list

e Sangle-valued" sinnle-valued-parm—-list
Multi-valued" multi-valued-parm-list))

-

(format t "~a ~& ~& Ya ~a ~& ~a ~Ma “v& ta var

"Parameter Context Types and Their Memberships:"

4,877,940
139 140

g Parimsnt"” patient—-parms
TR Diceaser" disease—parms
=38 Drug " drug-parms))

(m=0

(fnrmat t "vME Ta" "wWhich Set to Consider 7 { 1.2.3,... 2"))
(ansl (=~ {regac-char) 495
(msol
({format t "™~& ~a" "Operation ? (Add. Delete : A.D)"))
(arme? (read-char)))
(cond ((or (eg ans2 6&5)(eq ans2 97))
(add~value (nth ans! defs))})
((or {(eq ans2 68)(eq ang2 10@))
(del-value (nth ans! defs)))

(t (format t "~& va" "Invalid entry: exiting")))))
(ce-um and-value (listname)
FOrog Anew-val)
(farmat t "™~& ~a " "What to Add to the Set?")
(eetq new-val (read))
{push new-val listname)) listname) <«

(deiam dzl- value (listname)
(1w, » (imsn! (formatv & "ME gt
i “Which Value to Delets 2 (1,2,3,...)"))
(amzl (- (read-char) 49)))
Coanel @)
iocelete (nth ansl listname) listmname))
(t (pop listnamm}) 3 jiciname))

ot

(gefun cimpie Chech (rule)
13 poertorm a4 checl o the rule against the entire domain rulebase for the
! casg: of simnle mogation and cimple redundancy

Redundacy == same premise & same conclusion
fecarion == game premice & diff comclucion

xix @mrcentlon to nenation case : 1f parameter in conclusions is multy valusg
Anc tiirse. asgioned in the two casnes are subeets of one anoiher.,
a rase of simole Subsumpticn has been found.

f s

ths cortiicting clauses are not returoed here bhecanse of the natuare ofF
iiie conflicting cases where the comflict is aguickly spottecd.
lite: (trulenumber "conflict type"){rulenumber "con{jiict type"i)

(1=t4 (roault
tHomy

Ly —

(new-rule-—premicse (premises new-rule))
(mew-rule-concl (car (conclusions new-rulel)
(new-c-parm (second new-rule-concl))
(similar-conc~rules (concludes-on (cadar (conclusions rule))))
(+indings
tdoliet (old=-rule-num similar-comc~rules results)

(lety ((old~rule (nth old-rule-num domain-rules))
(old~rule~premise (premises old-rule))
(old-rule-concl (car (conclusions old-rule))))

(cond ((equal new-rule nld-rule)
push (list (rle-num old-rule) "simple redundancy')
resul ts))
({and (not (equal old-rule-concl rew-rule-concl))
(equal old-rule-premise new-rule—-oremise))
(cond ((not (member (cadr new-rule-concl)
multi-valued-parm-list))
(push (list (rle-num old-rule)
"simple negation")

4,877,940
141 142

results))
(t (push (list (rle-num old-rule)
"conclusion subsumption") results)))))
results)))) (reverse findings)))

»e
e se

Too Level routine to search out logical inconsistancy

G¢ ren Hdor oases of negation., redundancy, subsumption.
H
2y tand {a = AXih = @)Yy - dg o= £y) New Rule
Voaetinme Rueles which “appiv
t: UASE ORE: same parm menticn-order as the pattern (new rule)
Polant ta = ?x2) (b = Tx3)) == (¢ = 7x1))
I prem vale., came concl val = ok rule
: nrem val, diffd concl val = covered in simple-check
H prem val., same roncl val = covered in simple-check
HE prem vals., dit+f concl val = ov rule
Ak’ Sl Orso. rule’s concl parm shows up in premice of other rulse
H
olarng (o= Tuidta = TuZ)) == (b o= "u3))
Pifa. same ¢ val., = @ oriqg. prem val diff = redundacy <--—-
}3%b. same ¢ val, = 1 orig. prem val diff = negation <——-——
: cLosame (own 1 ONE orain. orem val daiff = ok rule
SLoocifd e oval, = @ orig. prem val difd = POSSIBLE megation, subsumntion
H e, Cridoooval, = o= b opria. prem vair dlfd = ok rule
s oretyrna 1 (rulenum error-tune Aoptinonal error-clause)

Appendix VI

A ES.LOD LOAD IN ALL SOURCE CODE FOR FRAMES KNOWLEDGE REPRESENTATION.

ey

(LOGD “ce:rNNacltispZ \\1ibVWVframesi\frames")
11 FE"MES.LSP SOURCE CODE FOR FRAMES SYSTEM.

11 Frames idea from Minsky, contributions to the idea from CRM, greatly
11 extended and written toward Common Lisp style.

;3 The global flag ¥indexing-modeX determines whether indexing is to be
i1 alwaye done automatically, never done, or done selectively.

13 (For explanation of indexing. see book and files mentioned above.)

11 This flag is set to () as the default, so that the user must change it
1y to "all or ‘some to set the indexing mode accordingly.

PN

DEFPARAMETER XINDEXING-MODEX NIL)

! FORM ¢ create a form.

HH 1t will 1ritialize all slots to nil but retainm the old 'instances’
HH 1t will also undate Lhe "instances’ o©of its ‘isa’ (i.e. add its mname
HE to new "isa’ and delete its name from old 'isa’.

HEH non-slot properties will remain as they were,.

HY usage: (form GTA-1 prototype a GTA-process

H with (CURRENTA = 200)

HH (SPEEDg = 20.8))

H or: (form-e "GTA-1 'prototvpe ‘" (GTA-process)

i : ’ " (CURRENTg = 200) (SPEEDq = 28.@)))

(DEFMACRO FORM (NAME CLASSIF A I5AS &REST SLOTS)
(LET ((SLOTS (CDR SLOTS)Y M) s(with (color = red)...) IGNORE "WITH"
"(APPLY #'FORM-E (QUOTE ,(LLIST NAME CLASSIF (COND ((CONSP 15AS) ISAS)
(T (LIST ISAS)Y)) SLOTSYY)M

4,877,940
143 144

(DEFUN FORM-E (NAME CLASSIF ISAS SLOTS)
INDICATE CLASSIFICATION

(PUTPROP NAME “TYPE "FORM)
(PUTPROP NAME °"CLASSIFIED-AS CLASSIF) i
;UPDATE LINKS IN ISA HIERARCHY
3 (REMEMBER, THIS MAY BE AN EXISTING FORM)
(FOR (1 IN (GET-1S5A NAME}) 33 REMOVE NAME FROM DOLD ISAS
(PERFORM (PUTPROP I " INSTANCES
(DELETE NAME (GETPRQOP I ' INSTANCES)) 1)))
(FOR (1 IN 18AS8) ;2 NOW PUT NAME IN NEW ISAS
(PERFORM (ADDPROP I ' INSTANCES NAME)))

(PUTPROP NAME “15AS ISAS)
;3 UPDATE SLOTS. AGAIN, FIRST
: WE MUST DELETE OLD VALUES.
(FOR (A=-SLOT IN (GETPROP NAME °SLOT-NAMES))
{PERFORM (WIPE~-SLOT NAME A-SLOT))
(FOR (SLOT IN SLOTS)
(PERFORM (DO ((SLOT-NAME (CAR SLOT))
(ASPECTS (CDR SLOT) (CDDR ASPECTS)))
CONULL ASPECTS) NIL)Y
(ADDSPEC-E NAME SLOT-NAME
(CAR ASPECTS) (CADR ASPECTS))))
;3 RE-DO INDEXES FOR ALL INSTANCES,
sSINCE VALUES MAY BE DIFFERENT NOW
(RE-INDEX NAME) .
53 FINALLY, RUN ANY "IF-FORMED" DEMONS
(RUN-DEMON " IF-FORMED NAME NIL NIL)

NAME)
1 'D®.FTE-SILOT : aeletes a slot. The reqular version unindexes the slot for
HH itz old value, then re—-indexes 1t 1f it still has a default value.
HIE 1+ also does this for instances of this form.
Function wipe-slot is used by delete—form and form-e, since in those
cituations we don’'t want to re-—-index the slot.
i+ the slot value is an embedded form, it is deleted.
T Qs {delete~slot GTA-1 SPEEDqg)
H or: (delete-slot-e "'GTA-1 "SPEEDg)

(DEFMAULRDO DELFTE-SLOT (&REST NAMESLOT)
TeARPPLY HODELETE-SLOT-E (QUOTE ,NAMESLOT)))

(DEFUN DELETE-SLOT-E (NAME SLOT)
(WIPE-SLOCT NAME SLOT)
(RE-INDEX NamMz (LIST SLOT)Y))

(DEFUN WIPE~SLOT (NAME SLOT)
(UNINDEX~E NAME SLOT) 33 MUST DO EVEN IF SLOT NOT FILLED
(AND (MEMBER SLOT (GETPROP NAME “SLOT-NAMES))
(LET (VAL (GRET-VAL NAME SLOT)Y)H)
(AND (BET-ASPECT NAME SLOT "EMBEDDED-FORM)
(DEL. ¢ TE-FORM~-E VAL)) -
(PUTPROP MNAME " SLOT-NAMES
(DELETE SLOT (GETPROP NAME "SLOT-NAMES)))
(PUTPROP NaME SLOT NILD)
(RUN-DEMON " IF-DELETED NAME SLOT VALY)))

1 'DELETE-FORM & deletes all slots from form ang its instances,
HE but leaves all non-{form properties intact.

HE usace: (delete~-form GTA-1)

HH or: (delete—-form~e 'GTA-1)

(DEFMACRD DELETE-FORM (NAME)
T(FUNCALL #'DELETE-FORM-E (QUOTE ,NAME)))

(DEFUN DELETE~FORM-~-E (NAME)
(COND ¢ (NDT (FORM-P NAME))
(PRINTLIST "xXxx " NAME " IS NOT A FORM xxx')
NIL)
(T (FOR (ISA IN (GET-1SA NAME))
(PERFORM (PUTPROP ISA ' INSTANCES
(DELETE NAME (GETPROP ISA " INSTANCES)Y))))

4,877,940
o145 146
(FOR (A-FORM IN (GETPROFP NAME " INSTANCES))
(PERFORM (LET ((1 (DELETE NAME (GETPROP A-FORM " ISASY)Y)
(PUTPROP A-FORM " 1IS8AS 1)
(OR 1 (DELETE-FORM—-E A-FORM)))})
(FOR (A-SLOT IN (ALL-SLOTS NAME))
({PERFORM (WIPE-SLOT NAME A-SLOT)))
(REMPROP NAME ' INSTANCES)
(REMPROP NAME °“TYPE)
(REMPROP NAME 1545}
{REMPRO® NAME ‘' SLDT-NAMES)
(REMPRUOP NAME "CLASSIFIED-~-AS) 3.))

1 LADD-18A 3 add an isa to isas list for a form
H usage: (add~isa GTA-1 ContinuousProcess)
H or: {add—-isa-e 'GTA-1 ‘'ComntinucusProcess)
DEFMACRO ADD-18A (AREGT FORMISA)
C(APPLY # ADD-1SA-E (QUDTE FORMISA)Y)Y

o~ se an

DEFUIN ADD-ISA-E (NAME 15A)
(LET (¢18A-LIST (GET-15A NAME))
(AND (NOT (MEMBER ISA ISA-LIST)Y)
(PUTPROP NAME ‘' ISAS (APPEND ISA-LIST (LIST 18A)))
(ADDPROP ISA " INSTANCES NAME)

(RE-INDEX NAME))})) 33 re—-do indexes,., since values may be di+ff.
1 DELETE~TSA @ oelete an iwa from isa list for a form
HY usage: (delete~isa GBGTA-1 ContinuousProcess)
HH ar: (delete~ica-e 'GTA-1 "ContinuousProcecs)

DEFMACRO DELETE-I1S5A (&REST NAMEISA)
C(APPLY # DELETE-ISA-E (QUCTE NAMEISAY))

DEFUN DELETE-ISA-E (NAME ISA)
(LET ((ISA-LIST (GET-ISA NAME)))
(AND (MEMBER 15A ISA-LIST)
(PUTPROP NAME ' 1SAS (DELETE ISA ISA-LIST)Y)
(PUTPROP ISA " INSTANCES
(DELETE NAME (GETPROP I1S5A “INSTANCES))

(RE-INDEX NAME)))) 31 re—-do indexes
33 'ADDSPEC : add an aspect to a slot, check "always conflict, and
HH execute the “if—-added field. also can add embedded forms.
P1 usage: (acdspec GTA-1 S6Temp = —60)
HH or: (addspec—e "'GTA-1 "'SGTemp "= ' -60)

(DEFMACRO ADDSPEC (2REST EXPFORM)
" (APPLY # ADDSPEC-E (QUOTE ,EXPFORM)) O

(DEFUN ADDSPEC-E (NAME SLOT ASPECT VvAL)
(CASE ASPECT
((= ALWAYS)
(COND
((SLOT-ALWAYS NAME SLOT)
(PRINT "Xx%x CONFLICT 7O UPPER LEVEL'S ALWAYS ASPECT '!'")
NIL)
((AND (NOT (ATOM VAL)) (EQ (CAR VAL) " %FORM))
(LET ((NAME1 (GENSYM (CAR (CDDDR VAL)Y))))
(EVAL (CONS "FORM (CONS NAME1 (CDR VAL))))
(INSERT-ASPECT NAME SLOT "EMBEDDED-FORM T)
(ADDSPEC-E NAME SLOT ASPECT NAMEL)))
[sUsual case...
CINSERT-ASPECT NAME SLOT ASPECT vAL)
(RE-INDEX NAME (LIST SLOT)Y)
(RUN-DEMON ‘' IF-ADDED NAME SLOT vaL)
SLOT)))
(INCLUDE
(COND ((ATOM VAL) (PRINT "INCLUDE VALUE MUST BE A LIST"))
((EQ (CAR VAL) " xNDTx)
(INSERT-ASPECT NAME SLOT ° INCLUDE
(SET-DIFFERENCE .
(GET—-ASPECT NAME SLOT " INCLUDE)
(CDR vAL)Y))
(RUN-DEMON " IF-UNINCLUDED NAME SLOT (CDR VAL)))
(T

4,877,940

147 148
. { INSERT-ASPECT NAME SLOT ° INCLUDE
£ (UNION VAL
(GET-ASPECT NAME SLOT * INCLUDE)))
(RUN-DEMON " IF-INCLUDED NAME SLOT VALY)))

(DTHERWISE
(INSERT-ASPECT NAME SLOT ASPECT VvAaL) SLOT)))

11 INSERT-ASPECT : add an aspect to a slot, avoiding "= ‘always conflicts
(DEFUN INSERT-ASPECT (NAME SLOT ASPECT VAL)D
(ADDERORE NARME “SLOT-NAMES SLOT)
(CASE ASFECT
(= (DELETF-ASPECT NAME SLOT “ALWAYS)Y)
(ALWAYS (DELETE-ASPECT NAME SLOT "=))
(OTHERWISE NIL))
(LET ((ASFELCT-VAL (ASSOC ASPECT (GETPROP NAME SLOT)Y) D))
(oD

; REMOVE =" AND
: "ALWAYS" CONFLICT

11 BEWARE OF RPLACD HERE. DEFENDS ON IMPLEMENTATION OF FORMS PERHARPS. ..
(ASPECT~VAL (RPLACD ASPECT-VAL VAL
(T (ADDPROP NAME SLOT (CONS ASFECT VAL))Y))))

1 RUN-DEMON 1 execute any "demon' functions of given type

(DEFUN RUN-DEMOMN (TYPE NAME SLOT vAL)
(FRF (&4-FORM IN (ALL-T15AS NAME))

(FILTER :Save results? for IF-NEEDED.
(LET ((DEMON-FUN
(CASE TYPE :Decide where demon stored.
(CIF-FORMED) (GET-VAL A-FNRM TYPE)) 3 Also IF-KILLED?
(UTHERWISE (GET-ASPECT A-FORM SLOT TYPED))) 1))

" (AND DEMON-FUN (FUNCALL DEMON-FUN NAME SLOT VAL)Y))))

1t 'DELETE-ASPECT : delete an aspect for a clot
- usage: (delete-aspect "GTA-1 "SGTemp '=)

(DEFUN DELETE-ASPECT (NAME SLOT ASPECT)
(LET ((PLIST (GETPROP NAME SLOT)Y)
(AVAL (ASSOC ASPECT (GETPROP NAME SLOTY)))
(AND AvAL (PUTPROP NAME SLOT (DELETE AVAL PLIST)Y) NIL)Y))

71 ALL-SLOTS @ make a list of all slots, including defaults, for a form
HY usage: (all-slots 'GTA-1)

(DEFUN ALL-SLDTS (NAME)
(REMOVEDUPS
(FOR (A-FORM IN (ALL-ISAS NAME)) iMUST do append (like COPY).
(SPLICE (APFEND (BETPROP A-FORM “SLOT-NAMES) NIL)))))

1 !'FORM-P : determine if name is a form
H usage: (form-p "GTA-1)

-

an

(DEFUN FORM-P (NAME)
{AND (SYMBOLP NAME) (EQ@ (GETPROP NAME ‘TYPE) “FORM)))

'BLOT-VAL @ find value of a slot, using defaults or 'if-needed if necessary
checking value and "if-needed at each level before moving up
(Winston-Horn's "fget-z")
usage: fslot-val GTA-1 SGTemp)

Ag ar: (slot-val-e "GTA-1 "'SGTemp)

-

s ms we wa ae

av as ae

(DEFMACED SLOT-VAL (&REST NAMESLOT)
THAPPLY 8 SLOT-VAL~-E (QUOTE .NAMESLOT)Y))

(DEFUN SLOT-VAL~E (NAME SLOT)
(1SA-SEARCH NAME SLOT " IF-NEEDED))

1 OL0T-VAL=N : find value of given slot, first searching for any default
HE values., themn searching for any if-needed s (Winston—-Horn's "fget-n')
HH usage: (slot-val-n GTA-1 SGTemp)

HE or: (slot-val-n "GTA-1 'SGTemp)

: 4,877,940 .
149 150

(DEFMATRO SLOT-VAL-N (&REST NAMESLOT)
C(APFLY # SLOT-VAL-N-E (QUOTE (NAMESLOT)))

(DEFUN SLOT-VAL-N-E (NAME SLOT)
(OR (1SA-SEARCH NAME SLOT "VALUE-ONLY)
(1SA-SEARCH NAME SLOT ' IF-NEEDED)?»)

11 1SA-SEARCH @ does breadth first search of isas of a name, until given
: furction is satistied for a slot and one ot the isas
(DEFUN T&a-SELARLH (NAME SLOT METHOD)
(DOX ((NEW=-TSAS NIL (SET-DIFFERENCE (GET-1ISA AN-JSA) ISAS-SEEN))
(ISA-LIST (LIST NAME) (APPEND (CDR ISA-LIST) NEW-ISAS))
(ISAS-SEEN (LIST NAME) (APPEND ISAS-SEEN NEW-1SAS))
(AN-184 NAME (AND ISA-LIST (CAR ISA-LIST))) ANSWER)
C(OR (NULL ISA-LIST) ANSWER) ANSWER)
(SETO ANSWER (EVAL FUNC))H
(SETO ANSWER
(CASE METHOD ;Can use other methods also!
(INDEX-NEEDED (BET-ASPECT AN-ISA SLOT ' INDEX~NEEDED))
(ALWAYS (BET-ASPECT AN-ISA SLOT "ALWAYS))
(VALUE-ONLY (GET-VAL AN-1SA SLOT)) iNo IF-NEEDED's.
(OTHERWISE (OR (BGET-VAL AN-1SA SLOT)
(CAR (RUN-DEMON ‘" IF~-NEEDED AN-ISA SLOT NIL)Y)))))

11 GET-ASPECT : find value of a specific aspect of a slot
(DEFUN GET-AGPECT (NAME SLOT ASPECT)
(LET ((vaL (ASS0OC ASPECT (GETPROP NAME SLOT)Y)
(COND (VAL (CDR VAL))Y)))

3¢ BET-VAL : 4ind value of a slot, NOT using defaults or 'if-neededs
(DEFUN BET-VAL (NAME SLOT) (OR (GET—-ASPECT NAME SLOT 'ALWAYS)
(GET—-ASPECT NAME SLOT '=)))

1 !GET-INCLUDES : get included values for a slot, including defaults
HE] usage: (get-includes GTA-1 ProcessVariables)
1 or: (get—-includes 'GTA-~1 ‘'ProcessVariables)

o~

DEFMACRO GET-INCLUDES (&REST NAMESLOT
(APPLY # GET-INCLUDES-E (QUOTE ,NAMESLOT)Y))

o~

DEFUN GET-INCLUDES~-E (NAME SLOT)
(DO¥ C(CINCL-LIST NIL (UNION (GET-ASPECT (CAR ISA-LIST) SLOT " INCLUDE)
INCL-LIST)
(1SA-LIST (ALL~ISAS NAME) (CDR I5A-LIST)))
(INULL ISA-LIST) INCL-LIST)))

'GET-1SA : find the "isa list of a form
usage: (get-isa "'GTA-1)

(DEFUN GET-1SA (NAME) (GETPROP NAME " I5A5))

1 'PRINT-FORM : Show the description about a form. The internal structures
HH (e,g. type, instances. slot-names) will not be print.
HH usaage: (prant—form GTA-1)

(DEFMACRKRD VALUE-FORM (NAME)
TUFUNCALL # VALUE-FORM-E (GQUOTE ,NAME)))

(DEFUN VALUE-FORM-E (NAME)
(SYMBOL-PLIST NAME))

(DEFMATRDO PRINT-FORM (NAME)
T(FUNCALL # PRINT-FORM—-E (GQUOTE (NAME)))

(DEFUN PRINT-FORM-E (NAME)
(COND ((FO™M-P NAME)

4,877,940
151 152

(FRINTLIST NAME " HAS ")
(TERPRD) °
(FOR (ITEM TN (PAIR-UP (SYMBOL-PLIST NAME)))

(WHEN (NULL (MEMBER (CAR I1TEM)

" (INSTANCES TYPE SLOT-NAMES))))

(PERFORM (PRINT-SLOT ITEM))) NIL)

(T (PRINTLIST "#%x " NAME " IS NOT A FORM XXX"))))

12 PRINT-SLOT : Primt a slot in a pretty format
(DEFUN PRINT-SLLOT (A-SLOT)
(LET* ((NAME (AR A-SLOT)) (NAME~TAB 3)
(VaL-TAB (+ NAME-TAB (FLATSIZE NAME)))
(VAL (CADR A-SLOT)Y)

(TERPRI)
(SPACES NAME-TAR)
(COND ((AND (CONSP VAL)
(CONSP (CAR VAL)))
(PRINC NAME)
(DOLIST (SLOT VAL NIL)

(PRINC " ')

(PRINC (CAR SLOT))
(PRINC ™ ™)

(PRINC (CDR SLOT))
(TERPRI)

(SPACES VAL-TAB))
(7T (PRINC NAME)

(SPACES 4)

(PRINC VAL)

(TERPRIY))

t: TN T-ALWAYS @ return always aspect (if any) of a slot. using defaults

(DEFUN SLOT-ALWAYS (NAME SLOT)
(1SA-SEARCH NAME SLOT "ALWAYS))

1 'ALL-ISAS @ return list of all isas of a form, including 1tseld
HH usage: (all—isas 'GTA-1)

copv-list was necessary in below. else plists accidently spliced and
r infinite loops resulted.
DEFUN AL ~-TSAS (NAME)
(DOx ((ANSWER NIL (APPEND ANSWER ISA-LIST))
(18A-LIST (LIST NAME) (FUR (AN~I1SA IN ISA-LIST)
(SPLICE (COPY-LIST (BET-ISA AN-IS5AYI))

CONULL 18a-UI15T) (REMOVEDUPS ANSWER)))) 3 do we want redund. unions?
1 'ALL-INSTANCES @ list all instances 0f a given {orm
HE usage: (all-instances 'GTA-1)

: NOT 700 SURE IF THE UNION AND RECURSION DONE RIGHT--WHO USES IT 7
: UNION BLEW UP. USING REMOVEDUPS INSTEAD...AS SHOULD HAVE BEEN DONE.

(DEFUN ALL -INSTANCES (NAME)
(FUNCALL # REMOVEDUPS (FOR (X IN (GETPROP NAME “INSTANCES))

(SPLICE (APPEND (ALL-INSTANCES X) (LIST X) Yy oY))
13 RE-INDEX : unindex and re-index all slots which may have been changed
H] in value for instances of a given form., including itself
HH 1¥ Vsiots" argqument is present, just do given slots

(DEFURN RE-INDEY (NAME &OPTICONAL Si.OTS)
(ANT % TRTEX ING-MODE ¥

(FOR (A-FORM IN (APPEND (ALL-INSTANCES NAME) (LIST NAME))Y)

(PERFORM (FOR (SLOT IN (OR SLOTS
' (SET-DIFFERENCE (ALL-SLOTS A-FORM)
(GETPROP A-FDRM 'SLOT-NAMES))))
(PERFDORM (COND ((OR (EQ XINDEXING-MODEX ‘ALL)
(1SA-SEARCH A-FORM SLOT

4,877,940

153 154
" INDEX—-NEEDED))
(UNINDEX~E A-FORM SLOT)
(INDEX-E A-FORM SLOT))))))y))
;:'INDEX-FORM : place a form on index list according to a slot value
HH usage:! (index~form GTA-process SGTemp)

ar: (index-e ‘GTA-process 'SGTemp)

(DEFMACRO INDEX-FORM (&REST NAMESLOT)
‘{APPLY #°' INDEX-E (QUOTE ,NAMESLOT)Y))

(DEFUN INDEX-E (NAME SLOT)
(COND ((NOT (MEMBER (GETPROFP NAME ‘'CLASSIFIED-AS)
‘({CLASS PATTERNY)
(LET ((THE~-vAL (SLOT-VAL-E NAME SLOT)))

(COND (THE-VAL (ADDPROP SLOT THE-VAL NAME)))

H usage: (get~index SG6Temp —-355)

H Qr: -

(DEFFLCRD GET~-INDEX (&REST SLOTVAL)
T(APPLY # GET-INDEX-E (QUDTE .SLOTVAL)Y)Y)

-

DEFUN GET-INDEX-E (SLOT VAL)
(GETPROP SLOT VALY)

) D)))

'GET-INDEX : retrieve list of forms having given value for given slot

1 'UNINDEX-FORM : remove a form from index list for given slot

usage: (unindex—form GTA-1 SGTemp)
1 or: (unindex—-e "'GTA-1 'SGTemp)
(DEFEART UNMINDEX-FORM (&REST NAMESLOT)

T(ARPPLY # UNINDEX-E (QUOTE NAMESLOT)))

O CTCLISP., NDT SAME AS MéaP IN COMMONLISP.

DEFUN UNINDEX-F (NAMF SLOT)
(AND X INDEXING-MODEx

USES MARPSTER INVENTED 70 SATISFY GENERAL NEED NOT OFFERED

IN COMMONLISP

(FOR (PROP IN (MAPSTEP " (LAMBDA (X)) X) #' CDDR (SYMBOL-PLIST SLOT)Y)
(PERFORM (PUTPROP SLOT PROP (DELETE NAME (GETPROP SLOT PROP)Y)

P VINDEX-PROPERTY @ 1ndex the instances ot a form w.r.t a givem slot
HH and mark the "index-needed"” aspect of the slot to be indexed
HH therefore all of the new instances (i.e. those forms entered

H the svstem atter “"index—-pronerty'" was called)

H usane (imdex—-property GTA-process SETemp)
HE or:

(DEFMACRO INDEX-PROPERTY (&REST NAMESLOT)
"(APPLY # INDEX-~-PROPERTY-E (QUOTE (NAMESLOT)))

(DEFILIN TNDEX-PROPERTY~-E (NAME SLOT)
(FOR (A-FORM IN (ALL-INSTANCES NAME))
(PERFORM (INDEX-E A-FORM SLOT)Y))
(ADDSPEC-E NAME SLOT ' INDEX-NEEDED T))

an ws s s

({DEFMACRD MATCH-FORM (&REST X)
"(APPLY #°'MATCH-FORM-E (QUATE ,X)))

will

(index—-property 'GTA-process ‘SGTemp)

be indexed-also.

: '"MATCH-FORM : check 1f 2 forms match, using given matching mode

§ if no matching mode is supplied, 'always-compat is the detault
H usage: (match animal~x GTA-1 slot-compat)
H or: (match-form~e ‘SomeGTA 'GTA-1 'always-compat)

)
)

; ASLUMES THAT MATCH-MDDE IS THE NAME OF A FUNCTION TO USE IN APPLY BELOW.

(DEFUN MATCH-FORM~E (INST PAT &OPTIONAL MATCH-MODE)
(COND ((EQUAL INST PAT) 10@)
((MATCH-FUNC-P INST) (MATCH-FUNC-EVAL INST PAT
({MATCH-FUNC-P PAT) (MATCH-FUNC~-EVAL PAT INST
({(NOT (AND (FORM-F INST) (FORM-P PAT))) NIL)

¥)
1)

(:1SLOT-BY-SLOT-MATCH INST PAT (OR MATCH-MODE ~ALWAYS-COMPAT))))

)

Y

)

4,877,940
155 156
1t SLOT-BY-SLOT-MATCH : check whether 2 forms match on all slots
HH return percentage, of exact matches, or nil if no match using match mode

(DEFUN SLOT-BY-SLOT-MATCH (INST PAT MATCH-MODE)
[(S 0TS (UNTION (ALL~-SLOTS PAT)Y (ALL-SLOTS INST)) (CDR SLOTS))
{ it (LENGTH SLOTS)H)
¢ . @ Y VAl)
SLOTS) (COND ((ZEROP COUNT) 100
(T €/ TOTAL COUNT)Y))
(SETQ VAL (FUNCALL (SYMBOL-FUNCTION MATCH-MODE) ;NOT #' ...
INST PAT (CAR SLOTS)Y))
(AND VAL (SETO TOTAL (+ TOTAL VALY

1 MATCH-FUNC-P 1 check i1if a value to be matched is a matching function
GONFY WsSC OF ATOM. MATCH-FUNC SHOULD BE SIMPLE FUN---

(OET LN AT THSEUING - (VAL
RO VAT 0N VALY)
Sran o VAaL) CemMAaTCH—=-FUNC)))
s MATIH-TUND EVAL @ applv matching function to value to be matched

(DEFUN MATIH-FUNC-EVAL (FUNC VAL)
(AND (EVAL (SUBST VAL "XxVALUEx (CADR FUNC)))
1@)

11 ALWAYS~COMFAT @ do sleot matching for always-compatible mode (CRM type metch)
(DEFUN AL WAYS-COMPAT (INST PAT SLOT)

(LET CeInsT-vaL (SLAT-VAL-E INST SLOT)) -
(PAT -Vl (8L.0T-VAL=-E PAT SLOT)Y)
(POY -~ Wi & (SLOT-ALWAYS PAT SILOTHY))
CETRD L ONULLL INST=-VALY @) 13 MATCHES, BUT LOW “QUALITY"

CINULL PAT-ALWAYS)
(COND ((MATCH-FORM-E INST-VAL PAT-VAL "ALWAYS-COMPAT))
(T @))y) 13 IF "= MATCH, ASSIGN "QUALITY"™ OF MATCH
((MATOCH-FORM~E INST-VAL PAT-ALWAYS "ALWAYS-COMPAT))Y)))

i3 EXACT-COMPAT @ do slat matching where every slot must match exactly

(DEFUN EXACT-COMPAT (INST PAT SLOT)
(MATCH-FURM-E (SLNT-VAL-E INST SLOT)Y (SLOT-VAL-E PAT SLOT) "EXACT-COMPAT))

31 SLOT-COMPAT : do slot matching where all common slots must match exactly

(DEFUN SLOT-COMPAT (INST PAT SLOT)
(LET C({INST-VAL (SLOT-VAL-E INST St.OT))
(PAT-VAL (SLOT-VAL~-E PAT SLOT)Y)
(COND ((AND INST-VAL PAT-VAL)
(MATCH-FCGRM-E INST-VAL PAT-VAL 'SLOT-COMPAT))
(T @)y)y)y)

$'FIND-FORM : find all forms matching given one and which have given isa,
: using given matching mode. list is by decreasing quality of match.

H i¥ po mode is given, ‘'always—-compat is assumed. If no isa is given,
HM the same one as the first isa of the given form is used.

i usane: (find—-farm SomeProcess—«x)

HH aTadt (find-form—-e ‘SomeProcess-x ‘always—-compat ’'SomeProcess)

(DEFMACRD FIND-FORM (&REST PMI)
" (APPLY # 'FIND-FORM-E (QUOTE ,PMI)))

(DEFUN FIND-FORM-E (FPAT MATCH-MODE ISA-TYPE)
(LET (FORM-LIST
QUAL-I.1ST
(MATH-MODE (OR MATCH-MODE “ALWAYS-COMPAT))
“~TYPE (DR ISA-TYPE (CAR (GET-ISA PAT)))))
M 1w (GETFRDP ISA-TYPE “ INSTANCES))

CWHER (BT (ZG (GETRPROP A-F0RM "CLASSIFIED-AS) "PATTERN)Y)
(PERFORM (LET ((QuUAlL (MATCH-~0RM-E A-FORM FAT MATCH-MODE) D))
(COND (QUAL

(SETQ FORM-LIST (CONS A-FORM FORM-LIST)Y)
(SETO QUAL-LTIST (CONS QUAL QUAL-LISTY))))
CSORT-TO-0RDER FORM-LIST QUAL-LIST)))

4,877,940

1 'WHAT-15-1T ¢ searches a hierarchy of forms for best nmom-individual match
H usane: (what—-is-it mvstery)
(DEFMACKH({) WHAT-15-1T (PAT)

TIRHICH=-OF-1SA-181T (QUOTE ,PAT) (QUOTE ,(CAR (GET-15A PATI)Y)Y)Y)
13 WHICH-OF-ISA~ISIT : used by what—-is—-it to do recursive tree descent

(DEFUN WRICH-DF-15A-1SIT (FAT 15A~TYPE)
GFT (¢ FORE-LIST (FIND-FORM-E PAT 'ALWAYS-COMPAT ISA-TYPE)))
COOMD (0] (NuLL FORM-LIST)
(EQ (GETPROP (CAR FORM-LIST) ‘CLASSIFIED-AS) “INDIVIDUAL))
ISA-TYPE) :¢ IF NO MATCHES ON THIS LEVEL, JUST RETURN 1SA
((WHICH~-0OF-1I5A-I5IT PAT (CAR FORM~-LISTY)))))

Appendix VII(A)

(FORMAT T "t % ~M&" "LOADING COMPUTER~COMPUTER ISP COMMUNICATION ROUTINES:"™)
CURLE SRS CFUNCTIONP CENBUEUD)
(LOAD "C3N\GCLISP2N\ALIBAAFUNS\\QUEUES ™)) *

(LINLFSQG (FUNCTIONR "LIST-TO~-STRING)
LAl "CaNNBLCLISPZANLIBANFUNSNANSTRINGS)

(LOAD T NNGELISP22N\\COMMN\NCOMMDEF ")

(LOAD "INNGCL TSP2NNCOMMANBUFFER"™)

Conal "N TSP COMMANCOMMEUN" Y

(L 0an "N GRTLISE2NANCOMMANMESSAGE ")

CFOAD "EaNAGTL IGFPINNCOMMANCOMINIT ™)

11 CaMMDEFR (LSP SOURCE TQ DEFINE COMMUNICATION BUFFERS

rr DEFINMITION OF DATA STRUCTURES FOR THE PASSING OF MESSAGES BETWEEN LLISP
ARND PASCRL LOWER LEVEL COMM ROUTINES.

(DFFCONSTANT MACHINE-ID "COMPUTER™)

(DEFCONMSTANT INCOMING-MSE (MAKE-ARRAY 100Q@ :ELEMENT-TYPE 'STRING-CHAR
tINITIAL-FELEMENT 32))

(DEFCONSTANT QUTGOING-MS (MAKKE-ARRAY 1000 :ELLEMENT-TYPE °“STRING-CHAR
tINITIAL-ELEMENT 32))

(DEFVAR ACBMSGRINGY (MAKE-QUEUE NIL)Y)

(DEFVAR ¥MIGINGy (MANC-QUEUE NIL)Y)

(DEFVAR %CBMSGDOUTA* (MAKE-RUEUE NIL))

(DEFVAR xMSGOUTOX (MAKE-QUEUE NIL))

(DEFVAR *MSRTNS® NIL) :STACK OF ALREADY READ MSGS

(DEFVAR *MICTRUTS% NIL) ;STACK OF ALREADY PLACED MGGS

(DEFSTRUCT 1CA
SEL ’
SEG
OFF
END
SEGDBUF
(OFFGBUF @)
SEGIBUF
(QFFIBUF @)
SELINB
SELOUTB
)

(DEFCONSTANT 1CA1 (MAKE-ICA :SElL #X4Q@ :5EG @ :0FF 240 :END 2595))

4,877,940
159 160

11 The buffer addresses are spectfified here. As more ports are added,; include
13 more minp and maxp oftfsets. Assumes the seg and selector will remain same,.

(DEFETRUCT MSGBUF SELL SEG OFF NEXT-OFFSET PORT-0FFSETS
ARY-NAME ARY-BASE ARY-OFF SI1ZE)

:NOTE: -Pascal Inbuffers have length of 95@, but start at offset © and 1000.

(DEFCONSTANT MSGINBUF (MAKE-MSGBUF :PORT-0OFFSETS sport# ; start, end
(1 @ 949)
(2 1002 1949}) ,
«tS1ZE 2000 sused during allocation only.
1ARY-NAME ° INCOMING-MSG))

(MULTIRLE-VALUE-BIND (ARY-DFF ARY-BASE)
(SYS:%POINTER INCOMING-MSG)
(SETF (MSGBUF-ARY-BASE MSGINBUF) ARY-BASE
(MSGRUF-ARY=-0FF MSGINBUF) (+ 11 ARY-OFF)))

Pas

' £ 21 Outbuffer goes from @ toc 999 (length 1200).Used by both ports.
: Imitial value =f next-offset must aggree with start of port-offset,
H whetner it is @ or whatever. It will take on values between the start
arc end of the buffsr inclusive.

EECORSTANT MSGOUTBUF (MAKE-MGERUF tPORT-CFFSETS " ((1 B 1999)

(2 @ 1999))
:S178 200@ jused during allocation only.
fNEYT-0FFCET @ imaintasined by senmd-msg
ARy -tAME C QUTGEDING-MSG))

(ML T IPLE-VALUE-BIND (ARY-DFF ARV-BASE)
(SYS:UPOINTER DUTHRIING-MEG)

UF ARY~RASE MSGOUTBUF) ARY-BASE

UMBGRUF -aRY-0FE MSGOLTRUF) (+ 11 ARY-0OFF))

(RETE (S

(DEFVAR ALLOCATED-BUFFERS NIL)

(DEFCORSTANT SN0T #X2)

(DEFCONSTANT PREFLIX-BYTE-LENGTH 2

(DEFCONSTANT HEARDER-ID-LENGTH 3)

(DEFCONCTSNT HEADER-LENGTH 5

(DEFCONSTAT TEXT-OREFIX-LENGTH (+ 1 PREFIX-BYTE-LENGTH HEADER-ID-LENGTH))
(LGeFTONARTANT »CHRREMA ~STREAMY (MANE~-WINDOW-STREAM

TLEFT 4V 708 21 tWIDTH 39 tHEIGHT 3))
gR.LeR SOURCE TO ALLOCATE DOS MEMORY FOR COMMUNICATIONS

FEROANLMTATTON
Cooorently ailocates and initializes two msgbufs
1 omecinnef and msgoutbuf) onlv. Should be more flexible.

(DUTUIN INTTCOM ()
(LET “(SEL-ICA (ICA-SFL ICAL1)Y) (OFF-ICA (ICA-0OFF 1CAay))
IN-GEG (IN-QFF @) IN-GFL
OUT-SFG (QUT-NFF @) OUT-SEL)

AT TR L - VALDE-SETO (IN-5EG IN-SEL) P INCOMING MESSAGE RIHFFER
_LOTGTRE-MGERUF T MSGINRUF)) tALLOCATE MEM FROM DOS.
T T Y YA NL YA YX NYYL va vX
"INCOMING MESSAGE ARES CALLED: " "MSGINEIF

CCREATED AT (HEXYSEG"
TG 7 ASTIANED TO (HEX)ISELECTOR" IN-GEL)
;Store buffer addr in I1CA
(SYS:%CONTENTS-STORE SEL-ICA OFF-ICA IN-SEG T)
(SYS 1 UCONTENTS-STORE SEL-1CA (+ 2 OFF-ICA)Y IN-OFF T)
(CLEAR-MZGRUS "MSHINBUF) :Initialize the mem~-block

L]
3
s

(

(

(
(

(

4,877,940 -

161 162
(MUL TTFLE-VALUE-SETQ (QUT-SEG OUT-SEL) 1DUTGOING MESSAGE BUFFER
(ALLLOCATE-MSGBUF "MSGAOUTBUF)) 1ALLOCATE MEM FROM DOS.

(FORMAT T "~% ~8 ~A ~A ~X ~7% ~A ~x*

"OUTGOING MESSAGE AREA CALLED:" ‘MSGOUTBUF

“CRFATED AT (HEX)SEG

QUT-SEG " ASSIGNED TO (HEX)SELECTOR " OUT-SEL)

+Store buffer addr ain

SYG:UCOMTENTS-STORE SEL-ICA (+ 4 OFF-ICA) QUT-SEG T)
(8YS:%ACONTENTS-STORE SEL-ICA (+ 6 OFF-ICA) OUT-GFF T
(CLERR-MSIGBUF MSGOUTBUF))

(SETFE (ICA-SEGIBUF JCAl) IN-SEB) yREMEMBER THE SEGS
(GETF (1CA-SEGOBUF ICALl) OQUT-SEG)

(QETF (ICA-SELINR ICAL) IN-SEL) tREMEMBER THE SELECTORS,.

(SETF (ICA-SELOUTRB ICA1) OUT-SEL)

L4
(PRINT "COMMUNICATIONS AREA INITIALIZED AND ZERQED OUT.™)
1CAY Y)

DEFUN ALLOCATE-MSGBUF (STRUCTURE~NAME)
(OR (TYPEP (EVAL STRUCTURE-NAME) "MSGBUF)
(FRROR "~A ~A" "CANNOT ALLOCATE-BUFFER:" STRUCTURE~-NAME))
(MULTIPLE-VALUE-BIND (SEG SEL)
(LMALLOC " (MSGBUF-SIZE ,STRUCTURE-NAME))
(EVAaL " (SETF (MSGBUF-SEL ,STRUCTURE-NAME) SEL
(MSGBUF-SEG ,STRUCTURE-NAME) SEG))
(PUSH STRUCTURE-NAME
AL OTATEDR-BUFFERS)
(VALUES SEG SEL)))

DEFUN DE-ALLOCATE-MSGBUF (STRUCTURE-NAME)
(OR (TYPEP (EVAL STRUCTURE~-NAME) 'MSGBUF)
(ERROR "~A ~A" "“CANNOT DE—-ALLOCATE-BUFFER:" STRUCTURE-NAME))

VB AL T (BYSIUSVSINT #X21 #X#UF200

- (MSGBBUF-SEG STRUCTURE-NAME) @

(MSGBUF-SEL \STRUCTURE-NAME) 1)

(GET STRIF T —NAME NIL)
(5P 7F ALLOCATED-BUFFERS (REMOVE STRUCTURE-NAME ALLOCATED-RUFFERS))

fF-imitive to allocste & block of DOS memorv.

DEFUN LMALLOC (SIZE)
(ML TTPLE-VALUE-BIND (FLAGS RMODE~SEG 1GNORE IGNORE PMODE-SEL)

(CVGIUSYSINT #X?1 #X#UT100Q @ SIZE ©) . :DO LMALLOC
(1f (_OGBITP @ FLAGS)
(FREOR “ILMALLOC FAILED -- TNSUFFICIENT LOW MEMBRY!™)
(vl UE S RMODE-SFG PMODE~GEL)) 1)
DEFUN CLEAR-MBGRIF (STRUCTURE -NAME)
(UFF (TyFr P (EVAL STRIN E-NAME)Y TMSGBUF)

(ERFEOR ™% & ~R&* "CANNDOT CLEAR-BUFEER, NOT A BUFFER:" STRUCTURE-NAME))

(EVAL " (CLEAR-MEM-BLOCK (MSGBUF-SEL ,STRUCTURE-NAME)
(MSGBUF-0OFF ,STRUCTURE-NAME)
(MSGBUF-SITZE ,STRUCTURE-NAME) @)))

DEFUN CLEAR-MIM-BLOCK (SEL OFF LEN &DPTIONAL INIT)
(DOTIMES o LENDY
(SYSZCONTENTS-STORE SEL (+ I OFF) (OR INIT @) NIL))M)

(DEFUN COMM=F X TT-HONK ()
(MAaFEC

Merlar 5 DE-ALLOCATE-MSGBUF ALLOCATED-BUFFERS))
SOURCE FOR THE COMMUNICATION INTERFACE

»e

s LIS FUNCTIONS WHICH INTERFACE T3 LOWER LEVEL PASCAL COMM ROUTINES.

1 NECFSSARY DATA STRUCTURES DEFINED ELSEWHERE.

:Change History:

Allorates DONY memory as specified inm the previously created structure
; detinition which is passed in as a name. Updates global variable to hold
i names o+ allorated buffers for de-allocation—--{for example on exit from Lisp.

4,877,940
163 164

1 Tranemjt a list object.
(DFFUN PLACE-MSGE-LIST (LIS MID! MID2 MID3 PORT)H
(PLACE-MSH (QTRING-APPEND MIDtT MIDZ MID3I (LIST-TO-STRING LISY) RPORT)Y)

tTraremit a =te1nn chlect.,
(TEFUN PLATE-MSE (MEGTEXT ™MID1 MID2 MIDI PORT)
(LETH C(LEN (LENGTH MSGTEAT)
(HILIET =NAME " MSGOUTBUFR)
(ARY (EVAL (MSGHUF ~ARY-NAME (EVAL BUF-NAME)))))

(DOTIMES (1 LEN)
(SETF (AREF ARY (+ I 6)) (SCHAR MSGTEXT I1)))

(SETF (ARFIF AarRY @) ?

(AREF ARY 1) (LOGAND LEN #XFFoD)

(AREF ARY 2) (LOGAND LEN #XQQFF)

(AREF ARY 73 MIDI

(AREF NRY 4) MID2 -

(OREF ARY 531 MID3I

(aEF ARY (+ [EN 7))

(EVAL (CONS "LOGXOR icalc checksum
(COFRCE (SURBERQ ARY @ ¢+ LLEN &)) "LISTI)))

(SEND-MST BUF-~-NAME LEN PORT)Y)Y)

Need to define a PUT-MSGE here for top level access (via Lisp Queues) to the
11 SEND MGG lawest level. Should be counterpart to the GET-MSE defined below.

1 Lowest level {function to transter msc data from Lisp array to external msg
13 butfer for asynchronous tramsmission.

:Read location 2:0444.4f5 to get offcset of mext available stra addr.

iPead location W:084+46,4f7 to. get the nffset.

sStore the array at this address

;Flaces mew address 1n ica "next-msg-to~go” which is read by software int.
;Then. imvokes the interrupt to actually send the interrupt.

1—~—> assume msgtext is an array, length is the length of the message+head

(DEFUN SEND-MSE (BUF-NAME LENGTH PORT)
(LET* ((BUF (EVAL BUF-NAME))
FLAGS
(ERRCODE @)
(TOTAL-LENGTH (+ LENGTH 7))
(ARY-BASE (MSGBUF-ARY-BASE BUF))
(ARY-0FF (MSGBUF-ARY-0FF BUF))
(SEL (MSGBUF-SEL BUF)
(QFF (MSGBUF-0OFF BUF))
(NEXT-0OFFSET (MSGBUF-NEXT-OFFSET BUF)) :NOT relative to OFF
{MINBUFOFF (SECOND (ASSOC PORT (MSGBUF-PORT-QFFSETS BUF)Y)))
(MAXRBUFOFF (THIRD (ASSOC PORT (MSGBUF-PORT-OFFSETS BUF))))
(ROGM-LEFT (1+ (- MAXBUFOFF NEXT-OFFSET)))
(ND-CODE #X20@)(CX (+ (LSH PORT 13) LENGTH))
(DISPLAY-STRM (CAR (GET "RECEIVE-MSG "'STREAM))) sNOT USED YET
(DIGRLAY=FUN (CAR (GET "RECEIVI-MSG "FUNY)) :NOT USED YET

40

:Move the msg into arravy

((> TOTAL-LENGTH RUCM-LEFT)
(8YS:ZMOVE-MFM ARY-BASE ARY-0OFF SEL (+ OFF NEXT-OFFSET)
ROOM-LEFT) 16O TILL END QF BUFFER
(5YS: UMIVE-MEM ARY-RASE (+ ARY-0OFF ROOM-LEFT) SEL
(+ OQFF MINBUFOFF)
(- TOTAL-LENGTH ROOM-LEFT)

(RETF (MSGRUF-NEXT-DOFFSET BUF)
(+ MINBUFOFT (- TOTAL-LENGTH ROOM-LEFT))))
(AYVE VMO VE-MEDN

L5y -EASE ARVY-0OFF SEL (+ OFF NEXT-OFFSET) TOTAL-LENGTHD
T CEDORUF —NEXT-IWFSET BUF)
(+ MINBUFOFF
(MUOD (+ NEXT-OFFSET TOTAL-LENGBTH) MAXBUFUFF)I Y)Y))

4,877,940
165 166

(LONA (MOL T TPLE-VALUT-SETQ (FLAGS 1GNORE IGMORE IGNORE ERRCODE)
(GQYRt%BYSINT #X67 NO-CODE NEXT-0OFFSET CX @)) :Loop till not busy
(AND (NOT (ZERDP ERRCODE)Y) (RETURN ERRCODE) M)

rt Ton Ievel 4unction to get a msqg from a gqueue of "received msgs'.

s 14 QUFUE re nonenil. the Control Break Quepue is referenced, else the
s norra: Queue.,

(DEFUN GFT-mi5 (AOPTICNAL QUFUE)
LET ((MSG (COND ((ISEMPTYG (COND (GUEUE %CBMSGINGX)
(T XMSGTING*))) " DUMMY)
(T (DEQUEUE (COND (QUEUE xCBMSGINGX)
(T XMSGINGx)))))

(COND ((EQ MGG "DuMmMy)y NIL) s I4+F mso was dequeued, return 1t.
(T MSGYY)

11 Intermediate level function to receive a msg and store on Lisp Queue.
11 1 QUEUE argument is non-nil, the Control Break Queue is referenced, else
:: the normal Queue.

(DEFUN READ-MSG (&OPTIONAL QUEUE)
(LET € (MBG (RECEIVE-MSG QUEUE)) HEADER TEXT)

+COND (mMS6 A sWas a msg actually read? Yes.
(MULTIPLE-VALUE-SETQ (HEADER TEXT)

(STRIP-TOREN MSG " ")) 3Strip off header up until blank.
(ENQUEUE (COND (QUEUE XCBMSGINGX)

(T xMSGBING%)) MSG) ;Store whole msg (hdr + text).
(VALUES HEADER TEXT))))) sReturn parsed msqg.

11 Lowest level function to transfer msg data from outside Lisp to a Lisp
11 arrayv for further processing.

It CORTAN argument is non-nil, the Control Break Queue is referenced, else
1t the normal Queue.

(DEFUN RECEIVE-MSGE (&OPTIONAL CBREAK)
(LET* (FLAGS BYTE~CNT B-0OFF CX msg ;Data returned by msgg manager

(BUF (EVAL "MSGINBUF)) sbisp array loc. and dos mem alloc’'d
(ER=TZOLE @) PORT ;Portd of incoming msg (relates to buf)
MINDUFOFF MAXBUFOFF sWhich portion aof the buf holds meg?

TARN -BASE (MSGRUF~ARY-BASE BUF))

(ARY-UFF (MSGBUF-ARY-0OFF BIIF))

(BUF-LIST (MSBBUF-PORT-OFFSETS BUF))

(SEL (MSGBUF-SEL BUF))

ROOM-LEFT

(DNO-CODE (COND (CRRFAK #X01) (T #x101)))

(DISPLAY-STRM (CAR (GET 'RECEIVE-MSG 'receive-msg-STREAM)))
(DISPLAY=FUN (CAR (GET "RECEIVE-MSG 'receive-meg-FUN)))

CLOGH (MULTTPLE-VALUE-SETO (FLAGBS BYTE-CNT B-0OFF CX ERRCODE)
’ (GYSIZSYSINT #x63 DE-CODE B G @) tLoop ti1ll nmot busv
(ARD (NUI (ZEROFP ERRCODDE)Y) (RETURN ERRCGDE)Y)

(COND (= ERROCODE 1) °

PORT (LSH CXx -13))
MINBUFOFF

:SUCCESSFUL DEGUEUE
iDetermine Fort#d &

(SECOND (ASSOC PORT BUF-LIST)) swhich part of
MAXBUFQOFF
(THIRD (ASSQOC PORV BUF-LIST))) sbuf to use?

(€ETG ROOM-LEFT (1+ (- MAXBUFDFF B-0OFF)))

Move the men into array

CTUND (0 BYTE-CNT ROCOM-LEFT) :Did msg buf wrap? no.
(SYS:UMOVE-MEM GSEL B-0FF ARY-BASE ARY-0OFF -
ROOM-LEFT :GO TILL END OF BUFFER

fSYS:“MOVE-MEM SEL MINBUFOFF ARY-BASE (+ ARY-0OFF ROOM-LEFT)
(- BYTE-CNT ROOM-LEFT))
(T
(SYS:%MOVE-MEM SEL BR~0OFF ARY-BASE ARY-NFF
BYTE-CN1)))

4,877,940
167 168
(et msg
(COFRLE (SUEBSEQ INCOMING-MSG @ BYTE-CNT)Y "GTRING))
tandd (functionp display—+fun)

t+unmcall display-fun display-strm msg))))

11 ACCESSING FLAGS AND MESSAGE CGUREUES

t: Allocate selector for Lisp access to DOS memory. No longer needed?
s (DEFUN GCT-G (SEG OFF LEN)
: (LET ((ADDR (+ (LSH SEG 4) OFF))

: (MULTIPLE-VALUE-BIND (FLAGS AX)

H (EY5:ZGYSINT #X21

H #XH#UBBROY

H (LOGAND ADDR #X#UFFFF)
H LEN

{LSH ADDR -16))
(IF (= (LOGAND FLABGS 1) 1)

H (ERROR “NO MDRE SELECTORS AVAILABLE"))
H AX)))

(DEFUN L1SPBUSY ()
(LET ((RESP (SET-LISPBUSY)))
(COND ((EQ RFEGP QKD
(CLEAR-L ISPBUSY)
NIL)

[

o

0 RESP "PRESET)
:)

(DEFUN CLEAR-ILISPBUSY ()

CLOOP (M TIPLE-VALUE-BIND (IGNURE IGNDRE IGNORE IGNORE DX
COVELUSYSINT #X42 5 T 0 O

3

VaD (= DXOD) (RETUSN TY))
(DIFUN SET-LISFRUSY)
(M. TIP F=VALUE-RIND (1IGNORE IGNDORE TGNORE IGNORE DX
(SYS17Z8VSINT #x64 S 1 @ ©)
(COND ((FG DX G2
CRPREGET
((RG D L

LI

Chiecks to eee the curremt "caller” of the Conirol Breabk Interrupt.
13 Pascal will set the caller flag to { just before i1mnvoking the C-Break.
;73 If the returned value is 1, then Pascal invoked the C-Break handler.
I+ NTW-FLAG araument is non-nil. then set the caller flag to 0.
1t Rtmns 1 i Pascal invoked, else 0.

(DEFUN PASEA ~CRREAN (LOPTIONAL CLEARIT)
(LOOP (MULTIPLE-VALUE-RIND (IGNORE TGNORE IGNORE CX DX)
FESUBYSINT #Xed #XPA
(COND {(CLEARIT 13 «(T @) 1Test =@, set =1

@) iAlways @ from Lisp side.
CanNDy (NULL (ZEROCP DX (RETURN CX))))

r1 Prants Queue status ot the Control Break Queue.

(OHFFUN READ-CG ()
(GYS %SYSINT #X6T 4 0 G @)

(PRINT)
(PRINT = ™)
" DONED

(DEFIIN REED-NQ ()
(SYS:USYSINT #X63 #X104 © 0 @))

3t Check the Gueue <izes for Normal and Control Break Queues.

‘ 4,877,940
169 : 170

(DEFUN CQ-SIZE ()
(LODP (MULTIPLE-VALUE-BIND (IGNORE IGNORE IGNORE CX DX)
(SYS:7%SYSINT #X63 2 0 @ @)
CAND (NULL (ZEROP DX)) (RETURN CX)))))

(DEFUN NQ~SIZE)
(LOOP (MULTIPLE~VALUE-BIND (IGNORE IGNORE IGNORE CX DX)
(SYS:LSYSINT #X63 #X102 0 @ @
CAND (NULLL (ZEROP DX)) (RETURN X3))))

(DEFUN DO-S1ZF)
(LOCF (MULTIPILE-VALUE-BIND (IGNORE IGNORE IGNORE CX DX)
(SYS:ASYSINT #X63 #X202 ¢ @ @)
(AND (NULL (ZEROP DX)) (RETURN CX)))))

(defun test-ports (n &OPTIONAL DELAY)
(dotimes (i n)

lace—mes “onrt one cbrk" 1 @21 1)
(place-mesg “"port twe cbrk”" + @ 1 2)
{place-msg “port ome Ncbrk® 1 2 1 1)
(nlare-msa "port two Ncbrk" 1 2 1 2)
CouEl CONUMBERP DELAY)

(DELAY=-MS DELAY))

(DELAY (READ-CHAR)))

{defun show-stats ()
(oyamiZieysint #x63 7 0 @ @)
(read-char))

(DEFUN DELAY-MS (N) s IF COMPILED, NEED TQO CHG THIS.
(DOTIMES (1 (7 N 1.9))))

11 FUnction which is nominated to handle Control Breaks. whether generated by

:: the uvesr'e keyboard, or by software interrupt from communications layer.

73 The raller Flag identifies 14 Pascal inveoked the routine.

s Ascumptipns: Befor invokation by comm layer, a LispBusy flag is set to
prevest recurajve invokations of this routine before processing a message

to rormpietion. Otherwise, a stream of control break messages can be eval’'d
1 in reveree oroer-—da to the nossibility of recursion induced by C-Breaking
a -breal ., ,The Comm laver does NOT 1nvoke this functiom 14 Lisp is still

: busy processing a C-Break msg. The msg is simply Q°'d up, and it is up to
i this reuvtine to D'G the msgs and process them sequentially until EmptyQ.

ae an we sv e sw e

(DEFUN REMQTE-INTERRUPT-HANDLER ()
(LET (HLADFR EVAL-FORM MSG)

(COND ((= (mascal-cbreak) 1) . :Did Pascal cause this evaluation?
(FARTCAL -CBREAK T) :Reset caller 4lag so keyboard Cbreak
(UNWIND-PROTECT '

(progn sNOW will force execution of (break).

(READ-MSG T)
(SETA MSG (GET-MSG 1))
(MULTIPLE-VALUE-SETO (HEADER EVAL-FORM) (STRIP-TOKEN MSG " "))
(IGNDORE-FRRORS (EVAL (READ-FROM-STRING EVAL-FORM))))
(IGNORE-ERRORS (EVAL (READ-FROM-STRING MSG))))
(CLLEAR~-L ISPBUSY)Y)) iWill ALWAYS be executed!
(T (BREAXK)Y)Y Y))

P

(DEF:IN REMOTE-INTERRUPT (&OPTIONAL FLAG)
(COND ((EQ FLAG T

(SETO SYS:*BREAK-EVENTX ‘REMOTE-INTERRUPT-HANDLER)
(SETF (GET "'REMOTE-INTERRUPT~-HANDLER 'DEBUG NIL)))
((EQ FLAG 'DEBUG)
(SETQ SYS:*BREAK-EVENT¥ ‘REMOTE-INTERRUPT-HANDLER)
(SETF (GFT "REMOTE~-INTERRUPT-HANDLER "DEBUG) T))
(T {SETR SYS:*xBREAK-EVENTX “"BREAK))))

: 4,377,940
171 Ry 172
(DEFUN REMOTE-REP-LOOP ()
(LET (HEADER EVAL~-FORM)
{PRINT "UNDER REMOTE CONTROL....")
(LOOP (MULTIPLE-VALUE-SETG (HEADER EVAL-FORM) (READ-MSG))
(COND ((AND (STRINGP EVAL-FORM)
(STRING-FQUAL EVAL-FORM "REMOTE-QUIT"))
(RETURN D))
({STRINGP EVAL-FORM)
(PRINT EVAL-FORM) (PRINC " = ")

(PRINC (EVAL (READ-FROM-STRING EVAL-FORM))))))
(PRINT "BACK TO LOCAL CONTROL...")))
HH M%CRAGF.LRP SQURCE 7O ALLOW SIMPLE COMPUTER - COMPUTER "TALKING"

s MULTI-COMPUTER COMMUNICATION UTILITIES.
s URIM-GT UAUSES A REMOTE COMPUTER 70 EVAL A
: DESIRED EXPRESSION (INTERRUFT DRIVEN) AND PRINT THE RETURNED VALUE BACK
1 UN THE LOCAL MACHINE,
1 "MESSAGEY SETS UP 2 WINDOWS WHEREBY TWO USERS ON DIFFERENT COMPUTERS MAY
. TALKT FREELY USING THE KEYBOARD.
1 USFS WINDOWS. ARRAYS AND MULTIPLEXES INCZOMING MESSAGES AND OUTGOING
1 MESRAGES. USES REAND-MSG AND PLACE-MSG DEFINED ELSEWHERE.
1 THE "OPTICN-LIGT" DEFINES THE PERMISGSIBLE REMOTE EVALUATION FORMS.
: EXAMPLE IS GIVEN BELOW FOR FRAMES PACKAGE:

(DEFCONGT YT FRAOMES USLOT-VAL ("FORM NAME 72" “SLOT NAME 7?24
"GFT THE ValLE OF A SLOT™M)
(VALUE-FORM ("FORM NAME 72") "PRINT A FORM")

(GET-INCLUDES ("FORM NAME 7" "SLOT' NAME 2")
“GET THE INCLUDED VALUES OF A SLOT")
(ADDSPEC ("FORM NAME 72" "SLOT NAME 2"
"ASPECT TYPE (= or ALWAYS) 72" "SLOT VALUE 7?'")
"ADD AN ASPELT TO A SLOT™)
(DEFLETF-FORM ("FORM NAME 7") "DELETE A FORM™)
) -

(DEFCONSTANT GLITGOING-MESSAGE (MAHE-ARRAY 1000 :ELEMENT-TYPE "STRING-CHAR
INITIAL-ELEMENT @))

(DEFCORSTART TRIOMING~MESSAGE (MAKE-~ARRAY 1Q80@ :ELEMENT-TYPE "STRING-CHAR
sINITIAL-ELEMENT @)

(DEFUIN CLFAR~-ARRAY (ARY INIT)
(DOTIMES (I (ARRAY-LENGTH ARY))
(SETF (ARZF ARY 1) INITY))

(DEFUN DRAWRNRDER (STRM CHAR)
(DOTIMES (ROW 24)
(SEND STRM :SET-CURSORPOS @ ROW)
(DOTIMES (COL 79)
(SEND STRM :WRITE-CHAR CHAR))))

; REM-D "REMQOTE GQUERY" PRQOCESSOR.

(DEFUN REM~-Q (OPTION-LIST)

(SETF (GET "RECEIVE-MSG 'RECEIVE-MSG-STREAM) ;s PUSH STREAM NAME
(CONS ‘responses (GET 'RECEIVE-MSG “RECEIVE-MSG-STREAM)))

(SETF (GET "RECEIVE-MSGE "RECEIVE-MSG-FUN) :PUSH FUN NAME
(CONS "remq-DISPLAY~-FUN

(GET "RECEIVE~-MSG "'RECEIVE-MSG-FUN)))

(SFEND ¥TERMINAIL-I0% :CLEAR-SCREEN)

(DRAWBNRDER RcKGROUND 42) ¢

(SEND USER-INPUT :CLEAR-SCREEN)

(SEND QUTER-HEY 1CLEAR-SCREEN)

(SEND OPTIONS :CLEAR-SCREEN)

(SEND OPTIONS :SET-CURSORPOS 1 @)

: 4,877,940 .
173 174
(SEND OPTI0ONS :WRITE-STRING "Place the Cursor On an Option™)
BEND 01 TONS «SET-CURSORPOS 1 1)
(e OFETIONS cWRITE-STRING “"and Hit Return”)
(SEND GOLTE R-RESPONSES s CLFAR-SUREEN?
(el Re SRPUNSES 10 FAR-SCREFN)
(&END LABEL-0OPTIUNS :CLEAR-SCREEN)
(SEND LABEL-OPTIONS :FRESH-LINE)
(SENDY LAREL-OPTIONS tWRITE-STRING OPTIONS™)
(SEND LABEL-RESPONSES :CLEAR-SCREEN)
ND LABFL-RESPONSES (FREGH-LINE)
VAT L -RESPONSES tWRITE-STRING ¢ RESPONSES")
LARFL-{ISER tFRESH-L INE)
(GEND 1 ARFL~LISFR sCLEAR- SCREFMN)
(GEND LARFL —ISFR tWRITE-GTRING ™ USFR INPUT™)
(LET (Y 1)) :
(D2TST (CP GRTION-LICT)
CETTIONE 1GET-LURBAOREDS 2 (SETR Y (+ Y 29
OGP O T TONS s WRITF=-STRING (THIRD OP)Y)Y)
(SEND USTH-INFUY :SET-CURSUORPOS 3 22)
(SEND INFUT-KEY :CILEAR-SCREEN)
(GLNG INFHT-TEY (1 SET-CURSORPOS 2 &)

a8

[t

(DO (XPES ¢ ¥iPDs T)Y) PROMPT-LIST FUN-NAME-STRING OPTION-ELT)
CONLIL vIPI5) (RETURN " DONF))
(Ml TIPLE-VAL U -SETR (XPOS YPOS) -
(DO (RYIE (URPARKOW 734) (DOWNARROW 25))
(R OCED BYTEF I@Y(EQ BYTE 81))
(COND CCER BYTE 1)
(SEND INPUT-KEY :CURSORPOS))))
LSETG BYTE (SEND INPUT-KEY :READ-CHAR))
(O0ND C(ER BYTE UPARROW) (BUMP-CURSOR INPUT-KEY "UP 2))
' (e BYTE DOWNARROW)
(RUMP-CURGOR INPUT-KEY "DOWN 23))))
(COHD ((RUMBRREP ¥PQS)

.
.

(SETQ ORPTION-ELT (NTH (TRUNCATE (/ YPDS 2)) OPTION-LIST)Y)
(SETC FUN-NAME-STRING (CAR OPTION-ELT))
(SETQ PROMPT-LIST (CADR OPTION-ELT))))

(PLACF-MSG
(LIST=-10L-STIRING
(ECHO-FUN (\FUN-NAME-STRING ,@
(LET ((USER-PARMS NIL))
(DOLIST (PROMPT PROMPT-LIST USER-PARMS)
(SEND USER-INPUT :SET-CURSORPOS S5 21)
(SEND USER~-INPUT :CLEAR-EQL)
(SEND USER-INPUT :WRITE-STRING PROMPT)
(SETQ USER-PARMS (APPEND USER-PARMS
(LIST (READ USER-INPUT)Y))))))
""RESPONSES)) 1 @1 1)))

(DEFUN ECHT--FUN (REMOGTE-EVAL-FORM LOCAL-STRM)
TILET ((REMATE-RESULT ,REMOTE-EVAL-FORM))
(FLACE-MSGR
(list-to-string REMOTE-RESULT) 1 @ 1 1)))

(DEFUN BET-WINDOW-MSE (STRM ARY TERM-CHAR)
CLET O (ONT (+ 1 (AREF ARY @))) (BACKSPACE 127)
(ACHAR (SEND STRM :READ-CHAR-NO-HANG)) MSG)
(COND ((EQ ACHAR BACKSPACE)
(WINDOW-BACKSPACE STRM)
(SETF (ARCF ARY @) (- CNT 2)))
({OR (EQ ACHAR TERM--CHAR) (> CNT (ARRAY-LENGTH ARY)Y)).
(SFTQ MSG (COERCE (SUBSFG ARY 1 CNT)Y "STRING))
(SETF (AREF ARY @) @
(HERD GTRM GWRITF-CRAR ATHAR))
(LlHAR

4,877,940
175 176
(AREF ARY CNT) ACHAR)
(ARTF ARY @) UNT)
ST (WRITE-CHAR ACHAR)))

(DEFCONSTANT ME (MAKE-WINDOW-STREAM
cERT L
HERSL AR I
tHE(GHT 8
sWIDTH 77
(STATLS 4 -

tATIRIBUYL 7)

(defconstamt nrhground (make-wlindow-stream
tleft @

1top @

thelight 24

twidth B2

istatus 4
tattribute 7)

(DEFCONETANT THEM (MAKE-WINDOW-STREAM
LEFT 1
(TORP 1
tHEIGHT @
sWIDTH 77
STARTUS 4
rATTRTIBUTE 7 3

(SETF (BET 'THEM "HEADFR-LGC) (8 23))

(DEFCONSTANT INFO-AREA (MAKE-WINDOW-STREAM
LEFT 1
rTOP 20
tHEIGHT 2
tWIDTH 77
:STATUS 4
PLTITRIBUTE 7O

1A MESSAGE UTILITY SIMILAR TO DTHER “"TALK TO" PROGRAMS.

(defun messaae (dest-str)
(SETF (GET 'RECEIVE-MSG 'RECEIVE-MSG-S5TREAM) s PUSH STREAM NAME
(CONS " THEM (GET "RECEIVE-MSG 'RECEIVE-MSG-STREAM)))
(SETF (BET "RECEIVE-MSG 'RECEIVE-MSG-FUN) s PUSH FUN NAME
(CONS MESSAGE-DISPLAY-FUN
(GFET "RECEIVE-MGEG "RFCEITVE-MSG-FUN)Y)
AUTEDINR-MESSAGE O
fRLEARN-AREAY INTTIMING-MEESARE &)
(SEND xTERMINAL-ITOx CLEAR-SURTEN)
(DRAWRBNDRDFR BCKGROUND 619
(SEMD INFO-AREA (CLEAR-SCREEN)
(SEFND MF CLFAR-SCRFEND
THEM 1CLEAR-SCROETN?
INFO-AREA WRITE-STRING v MESSAGE"
INFO-AREA (FRESH=-L INE)

sl

(CLFaR-ad

(ESLAFE--S0T #X09)
(GHIT-STR "QUIT)
(TERM-CHAR 1O

(MES- 00T (read-lime me)
tread-line med)))
H (BET-WINDDW-MSG ME CUTBOING-MESSAGE TERM-CHAR)
H (GET-WINDOW-MSG ME QCUTGCING-MESSAGE TERM-CHARY)

((COND ((AND MS5G-0UT (STRING-EQUAL MSGE-0UT QUIT-STR))
(SFND INFN-ARFA (CILFAR-SCREEN)
(SEND INFO-ARFA :WRITE-STRING " YOU HAVE QUIT.")))
CPROGN (GETE (GET "RECETVE-MSE "RECFRIVE-MRG-STREAM)
(CDhR (BT T RECUIVE-MSE " RECEIVE-MSL-STREAM)))
(SETE (BRET CRECEIVE-MSE " RECEIVE-MSG-FUN) -
(CDR (GF1 "RECEIVE-MSG "RECEIVE-MSG-FUN) D))

4,877,940
177 178

(COWND (0AND MBG-0UT (NULL (STRING-EQUAL MSG-0UT "")))
(nlace-msy (strimg-apoend dest-str " " meg-out) 1 @ 1 1)))

(detun remg-disnlay—fun (stream-pame maqg)
(let¥ ((stra {eval stream—-name)))
(send stre tdre=h-line)
(eend strm twrite-string msa)
(csend aetre tclear-eocl)))

(DEFUN MESSARF-DISPLAY--FUN (STRFAM-NAME msg)
LTy (0 MEAR-HEAD MGGB-TEXT
(STRM (EVAL STREAM-NAME)))
(send info-area :set-cursorpos @ @)
(SEND info-area sWRITE-STRING "FROM: ")
(MULTIPLE-VAI.UE-SETG (MSG-HEAD MSG-TEXT)
(STRIFP-TOREN M3G6 " "))
(SEND jn+n-area :WRITE-STRING MSG-HEAD)
(SEND STRM tfresh-1ine)
(SEND STRM :WRITEF-STRING MSG-TEXT)
(SFND STRM :CLEAR-EDL)Y
1 COMINIT.LGF INITIALIZES COMMUNICATION ROUTINES AND BUFFERSG

B B e e e e e e e e e e e e e

CRORMT T My s MY INITIALTIZATION ROUTINE BEING PERFORMED: ')

(OR (MEMRBER CCOMM-EXIT-HOOK (GET "EXIT "EXIT)Y) idone only once
(SETE O (GBET CEXIT "EXIT) (CONS "COMM-EXIT-HOOK (GET "EXIT "EXITHY)))

CIRTTOOM)

(REMOTE = IMTERICURT T)
(FORMAT T "~% ~A" "REMOTE INTERRUPTS ENABLED™)

Appendix VII(B,

(% CLKSCHED.PAS PASCAL SOURCE TO IMPLEMENT LLOW LEVEL SCHEDULING AND
H COMMUNICATION BETWEEN LISP / PASCAL AND BETWEEN
PASCAL / RS232 SERIAL PORTS

X)
{(gC-3

pronram Clock:
{BLAISE COMPUTING UTILITY CODE)

(] tools.inc:
{¢I asvnchi.inc?
{$1 Calllsr.inc?
(€1 I0S12eAhl.inc)
{$17 RaChAl.inc?
{37 RUFtAl . 1nc)
(2] WriStAl.inc?
{2] WrtChAl.inc?)
{$] CtriMem,inc?
{$] ToHexStr.inc?
{s] InitAl.inc?
(%] Open~l.inc?
(%] c+lagal.inc?
TH] SetrViar ., inc)
(2l RetViesr.inc)
(3] Inglar, ing? -
(¢ Crjisourtt.inc?
{22! Teimsisr.inc?
{¢1 sizemem,inc?

(2] ExitRPgm.inc?

{$] commdet.inc’ { QUR DATA TYPE DEFINITIONS 2

{ Glooal variables and data tyneso inesn e s e e s e e i 2

4,877,940
179 180

procedure CRreakHandler:

beain
Registers. AX := S:
Registers. BX 1= 1 {check/set the LispBusy Flag)
IntriT4d . Registers);
1¥ (Recaisters. DX = 2) then {(LispBusy was idle, now Busy?
begin
Caller_Flag := $8001: {For lLisp to know Pascal invoked?
Intr(si1R.Reqgisters); {invoke control break?
end;
end:

procedure sysint(intnumber,ax,bx,cx,dx : 1integer;
oneshot : Boolean):

beqgin
Reagisters. DX := dx; ExElt 1= FALSE:
while (Registers. DX = dx) do ’
negin
Feaglieters., AX 1= av;
kegisters. BX 1= bxi
Registers. CX := dx3
Case intnumbher of
]
Intr (363 ,Registers)
LT 2 T -
intriisal Reqlsters) g
v aneshat thern exit:
ond:
1f (Registers. _Dx = 1) then ExElt := TRUE:
[Slalni
nrorecure ReadFartt o Integer):
var

InGCire.PStatus NumRevad: integer:
i.TevtToGet. ErCode : i1Inteaer:
Byvte : char:

e {1nterrunts OFF}
1f (mnt CeombBusvIiP1) then
begin
ComBusyiPl = TRUE;:
inline(%FB)Y {interrupts ON>
if HeaderinProoressIiPl then
booan {Ck +for hdr availbility?
ErCorm = _ 1QSizeAl(P,In0lSize,PStatus):
14 (InQiSize > Header_Length) then -
begim {S0T + full header is available)
treodes 1= _ RdChAl(RP,Byte,InBSize,PStatus):
i¥ (Byte = Chr(S07)) then {(iff 50T, thenm...>
begin {capture header?
Erfode := __RdStAl (P.Header_Length,
Ptr(Seqg(ComBu+flP,21),0fs(ComBufiP.21)),
NumRead, In(GSi1ze,PStatus)
TextLengthlPl 1= (Integer(ComBu4(P,01) =hl &) +
Integer(ComBufiP,11);
MsalDILiP] := Inteqger(ComBuflP,23); {parsing header...?
MsgIDZ2IP] := Integer(ComBufliP,31):
MsgID3I{P] := Integer (ComBuflP,41);

HeaderinProgress(Pl := FALSE; {Change state of routi
ne’
TextInProgressiPl := TRUE;
" TextToGolPR] := TextLength(Pl + 1 {+1 to catch CS at
end?.
COMIndexI[P]l := @; {Start +1illing buf at frntl
Start_offsetlP]J := Next_Offset{PIl; {save for enqueue?’
end
else

writeln('invalid SOT ' ,Byte);
end: { No else. Exit if full header not available?
end; { end of capturing header. No else.

4,877,940 '

181

182

if TextInProgressiPl then

begin

if (TextToGolPl > Text_Increment)
1= Text_Tncrement

TextTobet
else

TextTobet
ErCode :=

if (InQSize >=
begin

ErCode :=

Cfs(ComBuflP, Q1) +

1= TextToGolPl;
__IGSizeAl (P,INn0OSize,PStatus);

TextToGet)

then {how much to grab?}
{max block permitted or..

{..rest of msg?
{how much avail?}

then {capture SOME text?>

_RAStA1(P,TextToGet,Ptr(Seg(ComButlP,01),

COMIndex(P]),NumRead,1In@Size,PStatus):

if (TextToGolPl = NumRead) then {If last portion then..?}
begin
MeaClomplete(P] := TRUE: {indicate completeness and.
Numr-ead := NumRead - 1: {prevent storing CS byte?l
end:
for 1 := @ to NumRead - 1 do (store this portion of msg?

beagin

Mem{ InBuff_Segi:Next (Offset(Pl] :=

Integer(ComBuflP.i + COMIndex[P3]):
CheckSumiPl :=

I+ (Next Offset{P] =
Next_O+fsetiP]

else

Next OffsetlP3

end;

{chsum on msa ©

CheckSum{Pl xor Integer (ComBuf(P.i+Com

Buffer_End{PJ) then

= Buffer BeginiP] {wrap arou

t= Next OffsetiP] + 1
{end storage of this msg portion?

if MgalompletelPl them

begin
Caze MsglDZ{P]
@:
Svalnt (6.0
((P =hl 13X)

o4

Start_QffsetiP],

or TextLenath[P1) B.FALSE) :

{ 1: black board read >

r

{ blact board write 3

N

Syelnt(63.5108C,Start_OffsetlP],

((P shl 13) or TextLengthiPl).0,FALSE);
else
writeln(invalid processing level on COM *, P, °,
MsgID2CPJ)
end: { end of the CASE ?

TextlnProgressiPl :=
HeaderinProgress(P]l :=

MsgCompletelP]
end
else
beagin
TextToGalR)
COMIndex[P]

end;

end:

{end of capture some text.

FALSE:
TRUE ;
:= FALSE:

{msg is NOT complete?
{capture more text next
:= TextToGolP]l - Numread;
t= COMIndex[PJ + Numread;

time?

{end of if msgcomplete processing?

No else.?

{ Exit if enough text not available)

2nd g
inline($FA):
ComBusvyP] :
inline($FR):

end {if not ComBusy?
elae

writeln(busy Read
inline($FB);

= False;

{if TextinProgress?

{Interrupts OFF?>»

{Interrupts ON?

{Interrupts ON?

4,877,940
183 184

end: (ReadPort)

procedu-e RitePortg

var
Portrnum,Dffset,Lenath,.Roomlett : 1nteger:

heoin {RiteFort?

Renjeters. A 1= 5132 {attempt a dequeue?
Recieters. X 1= @2

Intri3el Reaisters)

Fortnum = fRagisters. X shr 133

Of+aot 1= Renisters, BX:

[.2msth 1= Fegilsters. AX + 73

foomieft := OutBuffer_end - Offset + 1; {# of bytes till end of buf?
if (l.emgth > Ranmleft) then {wrap needed 7>

12 WrtStAl (PortNum,Roomlett ,Ptr(QutBuff Seq,0ffset) ,Numlrit);

£] WrtStAal (PortNum.lencth-Ronmleft,
PtriNutBu+f+_Sen.OutBufter Beqgin) , NumWrit): =
ennr
glexs {deal with the tuffer reading wrapl
Erlode 1= WrtStAl(PortNum, Length,Ptr(QutButf_Seq.0ffset) ,Numlrit);
ano: {RiteFort)
nrocecure Managel(var Reg: _RegPack):

Non-Reentrant Software Interrupt Service Routine Performs
Queue Management
To Perform
Unon Input:

_AH = 2200 Direct Processing to CBrk Queue
_AH = 2@1 Direct Processing to Non (CBrk Queue
_AH = %GZ Direct processing to Output Queue

Option Select: _AL = B
Data Input: _BX Bufier Offset to be Enaueued
(bits 13-15) _CX = Port Msg Received On
(bits ©-12) _CX = Message Length (bytes)
Data Output: _AX = Input Msg Length
_CL = # msgs in Q

I

Error Code Output: _DXx = s000® = Busy
-DX = @01 = Success
_DX = %0002 = Failed
VEQUEVE &
Option Select: _AL = 1|
Data Input: nothing
Data COutput: _AX = Msg Length

_BX = Denueued Element (offset)
(bits 13-15) _CX = Port Msg Received On

(bits 2-12) _CX = % msgs remaining in Q
Error Code Tutput: Dy = 30832 = Busy
_Dx = 20001 = valid Element
_DX = 32002 = Empty—-Q error
EMPTY-CHECH :
Ontion Select: AL = 2
Data Input: nothing
Data Qutput: LCX = # msgs 1in @
Error Code Uutput: DX = $@TAr = Busy

DX = s0e: G is Empty (true)
DX = 30022 = Q 1s not empty

4,877,940
185 186

CLEAR _Q:
Ontion Seiect: _AlL = 3
“ Data lrput: nothing
Data Qutput: _CX = # m=egs in Q
Error Code Output: _DXx = 3000® = Busy
_DX = 32001 = Successful initialization
DX = [lrror (not implemented)
S . 57TATS: Ontion Select: _AL = 4 B
Gata input: nothing
Data Qutput: nothina (display agenerated)
Error Code Output: _DXx = s280@ = Busy

DX = 0001 = Successful

—— x)
lapel busvexit:
var
Datum.NMNum_Elts. BCase : integer;:
QUEUE : G:
Optr : celloointer:
Funx 1 integer;
begin {(Managel?
inline($FA): {turn OFF interrupts, check flags?
Funx := Reg._ AX:
BCase := —-1:
Case Funx of {Determine which O te manipulate 2
s0C0. . 004 :
begin
if ChreaxBusy then goto busyexit;j
ChoreakBusy := TRUE;: :
inline($FB): {interrupts ON2
OCase := @:
QUEUE := CBreak0; {point to CBreakQ@d)
Num_ Elts := CBreakQ_Elts;
end «
102, .14
beain
if NormalBusy then goto busyexit;
NormalBusy := TRUE;
inline(sFB): {interrupts ON}
Glase 1= |3
QUEUR = NormallQy {point to NormalQ?>
t := NormalG Elts; '
Funmny - 100: {remap Funx to @-&Y
LT
nea1n
14 OutputBusy then goto busyexit:
JutputBusey := TRUE:
relims (EFBY {interrunts 0N}
Oilaee 1= 23
GuUEWY = OutoutQ:s
Num Fits 1= Outputl Elte:
Faumy := Funs - $200; {remap funx to 0-6>
it
and: ’ {end of type screening case?
{perform specific function casel
{EnQueue?’
.element 1= Reg. BX: { store offset data ?
Jlepcth = Reqg. CX and $1FFF: { store length data
“Luport t= Ren. CX shr 132 {store port recvd on?

Lta1l Jnext):
1= DUEUR . ta1)l . next:

4,877,940

187

R
Heo, D=
oo, X 1=
Reo, T o=

enc:
necn
1 (Oir UL o
begin
Reg._ DX
Reqg. CX
end
Plse
beain
Reg. BX
Poog. AX
Fea. X
frre

GuzUr . head =
Num_ Elts

Rey. CX
Reg. DX
end:
end;}
2:
beain
if (QUEUE.
beain

Numr Elte + 13
CXx and $0OOFF:

NAres
3
{Delusue?
GUEUZ . tail»

t hen

= 002!
Num_Elts;

QUEUE . head” .element ;

QUEUE .head”™.length;

AUEUE .head” .port shl 1

QUEUE . head”™.next;
:= Num_Elts - 13

:= Rena._CX or Num_Elts:

1= $@E021

1l

[

{Empty-Check?

head = QUEUE.tail) then

Reg._ DX := $0001

e
else
hecin

Rea. DX

Req._CX
end;
end:

W

Begin

new ! JUFUE .
(Ut Uk .neac” .nea.t 1=
OUEUE . tall

Num Elts
Dx

=0
Ter).

WL

Telnd
while

Heagin

writeln

Qotr
end:
Rea. DX

Bogrn

CBreak =
Chrepaltl; Elts :=
1nlinsteFA)

CBreat*Bucy, =

(Gotr

1= SR002:
1= Num_Elts:

{Imitialize
neAard)
nals
= QUEWUE .head:
HEN
:= 30

(Frint

Flemen

-+
n

"Contente of Q1)
do

<

nal

Optr~.element . T
:= Optro.next:

HEI AUt B

=tate and contents aof Q.

Optr~.length,’

188

{ update to new length >
{return in AX the lenath of mea:
{return in CX the new Q length ?
{success)

{Empty @2
{ should be @ at this point! >

{ msg offset >

{msg length)

{store in hi 3 bits?

{ point to nmext elt >

{ update to new length ?

{ remaining elements after DQ ?
{success?

{yes, it is empty?

{no, it is not empty?>

the Q3

{success?
(debugaging))

{ point to first elt of QO 2

" Num_Elts);

Ly Optro.port);

{success?

‘tend of Manageli cases?

‘

{ Case

QUEUE:
Num_Elteg:

FALSE ¢

inline(sFB) ¢

end;
1:

{(Cleamnup:
-1

Which QO was maninulated?)
mesns o manipulations 2

{ Save variablegs changsd ?

189
Begin
Normall := QUEUE:
NormalQ_Elts := Num_Elts:
imline($FAY :
NormalBusy := FALSE:
inline($FB) ;.

end:
egin
Outputl := QUEUE:
Outputl Elts := Num_Elts;
inline($FA);
OutputBusy := FALSE:
inline(%FB):
end:
end:
exits
busvexit:
Tea, DY 1T SR2DPOG: {husvy

Laline{FFR)Y;
wriliteln(

{interrupts ON

“Flacbusy)

ent §

{END

procedare ManageFlags(var Reaq _RegPack)

4,877,940

190

{end of OQCase Cleanup?

{Finishing up for exit?
{(finished up now leave?

of MANAGEQ?Y

(% Non-resntrant routine to handle flags (semaphores) used by both Pascal
and Laiso,
PROCOLS LISPBUSY FLAG: }
Ontion Select: _AXx = §
Data lnput: _BX = 1 Checksset the Flag (Recults in DX)
BX = 2 Clear the Flag (DX irrelevant)
Error Code Outout: DX = $GACB = No Set: Alreadv Busy
DX = 2220l = Gond Set: Now Busv
FROTCESS CBRK-CALLER FLAG:
Cotion Select: _AX = 6
Dsts input: _BX = @ Read the Flag Value
_BX = 1 Set the Flag as Defined 1n Cx
Oy = 1.2 Value to which the Flag is
to be set (1 = pascal set 1t)
(2 = Lisn set it)
Deta Quteut: _Cx = New (current) value ot the Flag
Error Ccce Outnut: _DX = %0800 = Manager Busy
_bx = sl = Good operation
DERLS - HKeturn omm Variables _AX = 7
%3
labe!
busve~xit:
begin
inltine(sFA):
I+ FlagsBusy then coto busyewxit:
FlagsBusv 1= TRUE:
inline(%FB);
case Req._ AX of
Tt {LispBusy Flag?
hegin .
Case Reg._BX of
1 {try to set the +flag?’
begin
if (LispBusy = $1111) then
Reg._DX := %2861 {already busy. No set?

4,877,940
191 192

eize
hegin]
Rég.mﬂx 1= $0002; {good set. Now busy’
LispBusy := $1111;
end:

{clear the flag?.

1= Q000 - -
1= $0002;
{end ot BX case?
: {end of case 5?
[3] {Caller_Flag?
peain
Case Reg._BX of
[{read the flag. return in CX>
hegin
Reo, TX := Caller Flao:
fice, DX = 11 {ok operation?
eryl
i {zet the caller flagd

beain
Caller Flag = Reg._ CX:

Fea. DX 1= {1
ene e
enc {end of BX case)
latel
7
begin

ey te 0 CCOM STATISTICS) ;

'NG“mathEltS = " NormalQ Elts, Chreakl _Elts = " ,ChreatQ_Elts,
Outoutd Elts):

! to Total Ports do -
writelnl PORT: =y
Writeln(ComBusy = " .ComBusylpl, HeaderlInProgress = ' .,Header InPrpare

D)l
n
-
(8]
.

Writeln(TextInProoress = ' ,TextlnProgressinpl, MsqComplete = ' ,Msglc
moleteinis:e

.\lw-1 F@]

TExtl.ength = ' (textlengthinl, ' texttogo = " .texttogelpl):
Lf\‘ﬂln"Ccmi0dew = ',comindex{n]. ' Start_offset = ', start_offsetip:
. Next ofiset = next_offsetipl):
writp]n;
end:
Reqg._DX := 30001
endg: {end of case 77
end: {end of casel

inline(sFA):
FlaosRBusy := FALSE:
1nlinetFFEY

{finishup for exit}

evit:
busy=nit: {EXIT QUICK!'>
Ren. DX := s0000: : {siagnals busy. nothimg processed?
inline(sFB) {interrupts ON?>
end: {end of manageflags)
(X e s i e e .
The CLOCK TICK SCHEDULER
& Non- Rncntrant Time-of-Day interrupt based Scheduler/Executar
%)

orocedure ClockService(var Registers : _RegPack):

4,877,940
193 194
begxﬁ’ {Cloch&arvioe)
_____ CallisriTomBiart . _IsrPrevvector,Registers); {filter the old clock tick}

intine(dFA) ;g {interrupts OFF>

ClockCount := (ClockCount + §) mod Clocklnterval;
145 (ClocwCount <> @) then
hegin
inline(srB): {interrupts ONY
exits
ends

if¥ (npt ClockBusy) then
feagan

ClockBusy 1= TRUIF
inline{sFRY {interrunts ON?

AsynchlicsBusy := B
for 1 := 1 to TOTAL PORTS do
Asynchlisbfusy 1= AsynchlsBusy or __ CritFlaglil”:

i+ (PeyvnchicBusy 2% B then

becin
inline(TFA) ¢ {interrunts OFF?> -
CloctFaaey 1= FALSE: {restore ClockBusy: code is mow accessible?
imiinei(sFB); {interrupts ONJ
exit;
end
else

for 1 1= 1 to TOTAL _PORTS do ReadPort(i:

i+ (Outputiy.nead <> Qutputl.tail) then {check for empty OutputQ?
RitePort: { no else 3
if (ChreskO.hbead <> CbreakB.tail) then {check for empty CBrk Q)
CBreakHandler; { no else ?}
inline(sFAY {interrupts OFF?>
CloctBusv = FALSE: :
inline(sFR): {interrupts ON)
end
else
inline($FB): {interrupts ON3>
end: :

{ Mainline INSTALLATION amng INITIALIZATION PROCEDURE 3
" hegin

i+ (Paramcount > @) then
begin
Val(Paramstr(1),Result,Code):
Case Result of
1ig: Baud_Rate :
25%: Baud_Rate =
IBM: Baud_Rate
600: Baud_Rate
T 170@: Baud_Rate

2am Raud Rate
4z Eaud Rate
FLL Baud_Rate
(=R
ang
elap
beain
Bsud_Rate := 4: { 1208 c=ems=

reasonable for now
Rezult 1= 1200:
end:

195

1% (Paramcount > 1) then
benin

4,877,940

Val(fParametr () Result,Code)

.
Tlochyinterval 1= Result:
sn
elap

Cloctirterval =

n

We iteln o
Writeln:
writelnd’

Writeln:t

wroy e 1t fClook Tack
S,

Writein:

APFRATING
Wrosdta i Total Number of Ports is
Faud Rate is

PARAMETERS: ") ;

",Total_Ports); -
" WResult):
Interval 1ig

196

{ every © / 18 ths of a second? >

Accessing The Frowledge Based Communication Protocol ..."):

(ClockInterval 7/ 1B.2), "seconc

if (__lslnslsr (63, MANR' .PSPPtrI . EnvPtr3,Prevector3)) then
Writeln(' x Queye Manacing Interrupt Routines are Already installed at ',

__ToHexStr{Seqg(PSPPtr3I™)), "1

els=
beain
CBresakliuey = F :
Normal Busy := FALSE:
OutputBusy = F
NormalQ_Elts :=
ChreakG Elts 1= @
Outoutd_Elts = @:

y___ToHexStr(0fs(ManageQ)))

_Nineisr(CQmBlDtkS,sbS,_JsrPrevVector,1@24.4@96,045(Manag50),'MANO');

Writeln (" INSTALLING: Queue Managing Routines');

end:

if (_ Isinslsr($b4, FLAGS' ,PSPPtrd ,EnvPtr4,Prevectord)) then
Writeln(¥ Flags Manmacing Interrupt Routines are Already installed at °,

_ _ToHexStr(Seg(PSPPtrd~)) ' ¢

else
beain
FlaosBusy := FALSE;
LispBusy := $20080;
Caller _Flag := $@@2¢37:

y___ToHexStr(Ofs(ManagefFlags)))

inslsr<ComBlock4,$64, _IsrPrevVector,S12,6144,0fs(ManageFlags), "FLAGS);

Writeln(INSTALLING: Flag Managing Routines’);

end:

SysInt(63,$003,0,0,0,TRUE) ;

L SvsInt(63.$103.0,0,0.TRUE) :

T SyelntiLT.2707,0,0,0, TRUED ;

{CBrk Queue Initialization?

(Normal Queue Init 3
{Output Queue Init 2

v Telnsis ey, " CLy T \PEFPtr EnvPtr ,Prevector)) then
hecin -
Weitaln(x The Clock-Tic Based Communication Port Service Routines are’)
Wraytelnt’ Alreadv anstalled at . ToHexStr(Seg(PSPPEr~)), ", ToHexStr (O
el btervice)))y .
lse
heorm

for 1 1= 1 to TOTAL _PORTS do

[aT>Ye RNl

Status = _ Im:tAl (] ,Baud_Rate,2,0.2,LStat.Mstat): {480G.e,7,.1)

tr{rmiis o=

OnenAl1 (i 1002.1000.0.0.

FPtr{Geaq(AayachRyd [y 1) OfstAevnehBnd4 (1. 21)))

face FrCoce of
L
Y openec.)i
PORT QOPEN ALREADY:

CINV RORT:
NCUFORT FOUND:

Writeln(’

Writelnt(-

Writeln(”
Writeln(”’

Port " ,i, is surcessfull

Port " ,1i, is already ope

INVALTD FPORT NIIMBER: © 1)
CAN NOT LOFATE PORT: " ,i):

4,877,940
197 198

{ Boolepan varyarle, of4eet and Flaq address inmitialization 3@

Combuevii] 1= FALSE
TestinFrogressiil = FALS
Heauer InfPronoressliil 1= TR
Feglompletelil 1= FALSE;
‘Buffer Beointild = (1 = 1) % 1000:
Newt Offsetfi] := Buffer_Beginlil:
Bufifer Endlil := Buf{fer Becinlil + Buffer_Length:
FrCode 1= _ [CflagAl(i.Flag);

end;

ClockBusy := False:
ClockCount := @: {Execute the Clock Handlers modulo-n 2}

writeln(INSTALLING: Clock-Tic Baced Communication Port Service Routines’

Writelng
Writeln(Finished Loading RAM Resident Interrupt Service Routines and Sch
eduler ")

Insisr(ComBlock.$08,_ lsrPrevVector,1024,8192,0fs(ClockService), 'CLKTIK'

end:
_ ExitRPgm(@,0’:

end.
(% COMMOIF [TND INCLUDE FILE FOR CLMSCHED.PAS
Y e e e ————_ et —————— - P e v e e =

*)

{ Glicbal variables and data types for knowledoe based communications)

canet
VO LL PORYTS = 2
SO = 2%
s = %09 {Gummy value {for mnowl
Header Length = 53
Tewt _Increment = T720: {(How many texichars can be read from Asvncoch. .
{buffer 1Into readport's buffer at each invocatior
>
Buffer Lenpth = 957, ©
Outicaifer Becin = @:
CutRud+mr End = 1999
type
cellpointer = “celltype:
celltvoe = record
element : integer:
lennth 1 integer:
Port : intener:
nevt : celloointer;
@nds -

head.tail @ cellpointer:

ExElt,Flag : Boclean:

counter ,AsynchleBusy. ErlCode.Baud_Rate : Integer;s

AllocSize, Status, Lstat, Mstat, i,Result,Code, NumWrit : integer;
ClockCount, ClockInterval : integer;

AsynehBuf @ array[@..TOTAL_PORTS] ot arrayl®..20803] of char; {lcom buffers?
ComBlock .Cam?Block @ _JsrCtrlg

ComBlock4d ,ComBlock3 : _IsrCtrlsg

CtriBlock : _MemCtrl: -

4,877,940
190 200

FParameter : _Lstring:

MornalB Elts CRBreak@ _Flts OutputQ Elts.p @ integer;
NormalQ, CBreakl, Qutputl : 03

ICAPtr DosPtr PSPPtr.EnvPtr ,Prevector. _IsrPrevVector : _BytePtry
PSPPtr4 ,EnvPtr4 . .Prevectord, lsrPrevVectorsd, _Isr2PrevVector : _BytePtrj
POPPtrZ EnvPir3 . Prevector3, IsrPrevVector3 : _BytePtr:

Feg Registers ,Reg2,RegM 3 _RegPackg

Tevtlength, TextToGo, ComlIndex,
MsolD1, MsglID2., MsglD3,
SentCSum,CheckSum.,
Next_Offset. Start_Dffset, .
Buffer_Begin, Buffer_End : arrayl1..TOTAL_PORTS] of Integer:
Comfuir 3 arvavil..T(T4l _PORTS] of arrayi@..99%1 of char;

Heacer InProgress. TextlInProgress,
MgoComplete,ComBusy : arrayll..TUTAL_PORTS] of Boolean;

CBreakBusy, NormalBusv. OutputBusy. FlacsBusy, ClockBusy : Booleanj
Vectores : arravli!l..Bl of BytePtr:

Ver rored : _BytePtr;g
RunFarm H SiyzeReq:s

Caller _Flag @ inteyger absclute $0BZE:3044A:
LisnBusv : rnteger absolute $RGHA7%:304F8:

ImBodd Sen 1 intener absolute $GCBR:SRAFG:
TnEG+4 044 intener absnlute TQAB0:304F 0

Gutraff_Sea : integer absolute $QMPR:%Q04F4,
GutBu++_OfF 1 integer absolute $Q000:%04F 63

Appendix VIII

/% IMaEe L C SUURCE FOR PROCESSING OF IMFRA-RED SPOT Awne FUSION WELDING IMABLES
AND FOR SOME GENERALIZED IMAGE PROCESSING.
* ;i
#ooo mn cergiTL
EE Te Tomnain kY
Bino i oos dpes.h>
Hincluns “=tctyp.h> /%X Type definiltions providesd by Imagirng Technology *»/
#incluce iiex108.h>
7% (Our tvee definitions for image procescsing applications. */
#1ifnde+ TRuF
dgefime TRE
7
#]fndef MAXTMUFM
=ossane MALTMIIMCA b (ta)e=(h) " {a):{b))
#ondy f
2oo- o M4y DLUE
tonlIfsT The l:i:zts oFf poanters to structures. the index == 1id# {for ret+erencex/

/¥ rrdicas into cpmannhare array 3 ks

#oefine Al

IRD @ /% Are {rames bDeing read into board® »/
#aefine E5IF 1 /% Ts the processing sequence engagecs? X/

/% bkevworcs 4o cemanhores %/
#detine GO TRUE

#defime ST0P FALGE
#define CONITINUJUS -1

n

201

4,877,940

202

/% indices into parameter array are: %/

#detine AVINT @ /iHow many frames are analysed before values updated.x/
#Hoefine CX0G 1 /*Center zone min xX%/

#define CVYE 2 /A A min y*/

#define CX1 3 VR SN max %%/

#deiine CVYI 4 IR S max y%/

#define EDGEVAL O /%Thresh value indicating pool edgex/

fidefine EDGEDX 6 /¥Thresh value indicating center to edoe pool diff.*x/
#dedine PW 7 /%Current value of Puddle Widthk/

Howfine PUMIN =3 /E¥Min width in pixels of possible pool. Screens blobs.x
Bdefine PWDX 9 /¥Max width a Pool’'s width may change in 1 frame. %/
#aoefine SCANINC 108 /¥Increment in x/y during various scanning algos,. %/

/% indices into point_list are: %/

#define CA @ /% Center of Area ¥/

Bdeiine M 1 /% Center of Mass %/

#define PWL 2 /¥ Point of left edge of puddle %/

#define FWR 3 /x right edge "" X/

/% indices into line_list are: x/ <

#define PY i} /% Center horizontal line between PWL and PWR %/

tvpre v Y GReicned 1DV METHOD. "8HADE. COORD: ™~

C SEIVIH
SHADE color:

T_ohistl1@1 3

#=<5r0g PT struct POINT
= Ral =
:

PT dstart

T herd

SHet color:
Yolane LietltEd

/*

#define CV struct curve
tvpoeds{ =tr-urt

{

strust FUAE
{
Fiokcgorage:
A\nE iengthg
SHADE color:
> Edeos_List[lW;
#detine ED struct EDGE
struct TONE
{
PT xul:
PT A lr;y
SeALE colors
 Zome Lastiiwls
Hoefine 7iv etruct 7ONE

struct PARAMETER

{

char ¥pame:
int value:

; Parameter_List{i11)dy

4,877,940

203 204

struct SEMAFHORE

{
char iname:
1int value;

y Semaonev e castli®@l

/% alobal variables %/)
[Ea RS SRR ETRT e I

Loamt o auliine conrdsiSaBiIi?l:

¢ it sutline_roords ledtIMAX _EDSE_POINTSII?]:
v it ontline _coorde rwinhtiHAX EDGE FOINTSIN21
1t o1nt outline_coerde_toplMax EDGE FOINTSIL2]:
i int outline_coords_hottom{MAX_EDGE _FUINTSII2):

/% funcTion declarations 3/
voZ Pefioe Pount(COCKRD, CONRD. SHADE, ID)
vnid Defime tane(PT %, PT x, SHADE, 15

Iomel PT %, PT %, GHaADE, ID):

vorco Define Ednediart x, SHADE, D)
vord Draw Fornti PT x):

vaid Draw _Line(LN ¥)

P

voisn Draw Zomes IN 33

vord Do

Frint Eoo=c 5D x)y

float seval (int, ficat %x,float *,flocat d.float %,float *.float x):
Defire Foint(x.v.colo name)
1Nt v, v.cohor . .mame:
¢ Formt i ame] 0w = v
o melLy = oy
= tinsmel.color = color:
4
Defins_{line(plti.ptZ.color ,.name)
struct POINT *ptl,*xpt2;
int coicor.name:
{ Lirne Laistlinamel.start = ptl:
Line Listinamel.end = pt2:
Line_tistlinamel.color = colar;
J
De+in=s Edamel{coord_array,color,name)
int cglur .name.coord arrayl 1023
{ int 1, coord.,max_o+f.start = 2:
Edge_Listlnamel.coords = (int X)coord_arrays
Edne | ictlinamel.length = coord_arravi®liol: /% number of pt PAIRS %/

o

Letine Yopefotl,pt2,color,name)
s LS INT %ptl xpt2y

TG
it color,name;:
{ Ione_Listinamel.ul = pti:
ione_Listinamel.lr = Dt2;
ione _tastinamel.color = color;
)
e e
P :
{ woaselin-l e, peov. D-Ydcolar)g
H
nDrav Larmet)
[ERAVEE S A

{ lineri-rstart.x,l->start.y.l->end.x.l->end.y,l1~>color);

4,877,940
205 206
Pirimt Edoecpd) 7
struct EDGE ker:
{ 1nt . %coord.max off.start = 23
coord = eg-rcudrcE:
may ot = ed-rlsrotn % 2 + gtart;

for (1 = start 1 o1 < max_otf 1 = 1 o+ 2Z)
{
nrintd ("\ncpords ¢ A1 A1Y, kicoord =+ iy,
xicoord + 1 + 1))3
3

/% USTR QUERY FUNCTIONS %/
oot yinams., 1ngr)

char xmame;

imt $iptr g -

{

a=tuiname, uoty)
char ¥mame;
unsignec 1INt ruptr:
{

printf(“"%s (hex): ", name);

scanf ("Yxhco", uptr):

“

1

getiiname, loptr)
char ¥mame;:

long %xlptrg

{

primcilitis wnex): ", nama);
scant{"ZX%c", lptr); /% was “lx X/

getpornt(name, iptrx, i1ptry)
char Xxname:

int % iptrx,¥xiptry:

hY

prantt("Y%s ".name)’

seand ("hd %okcl.iptrx,iptry)g

m-oantd{Anfrecs return Lo continue V)
while (getchar{) '= "\n’)
Sa Avan pending CR %/

b
while t(agetchar() = "\n’)
I8 sm7 wairt for am explicit one */

/% rinsg 1 = v, @ = n. Nothing else accepterd %/

printi("ie

printf (" (v/n) 2 ")

while:reoly = gelichari(), getchar(), (reply 's 'v' && reply !'= 'n’"))
orintfC"Nm oL /)Y 2 Y

name) 3

4,377,540
207 :

14 (replv == v Y return(l:
Tex

208

EEAE =R AUl o B S
3
il f¥ odornoary chars 1n bhuffer x/
{
wh2] vy
oet
v .

{ -
wneianed base = @x3I00Q; 4
inng mem = GrA2200L

ror o 4lan = @, block = 1:

primtfi"\aHardware 1nitialization being performed...'");
orimt s {"\nMemary .. "y

sethdwibase., mem., flag. block):

printf("mapping...");

setdim SIT,.S12.12)

orimt+{"tarle initialization..."):

1nitialize()y i

clear_imace()g

primt+ ("DONE.\nReady'!'\n");

s

clear _image:)

{

nritiis . SUreen clearing... ')
ston _atoulre(WATT)
=Clear(D,WATIT)

} .

/¥ SEMAPHQORE FICTIONS %/

timovai) /¥ always returns true %/

b2
0
P
m
<
T

1

<
n

PR

whnile {(get s2maohore(n) '= wval):

retoer s THUIE)

et comapiharalin)

refturr Semantore (istinl->value:
st val)

e Ligtinl—-Svalues
]

Li
z1inl->value = val;

/% return previous value %/

/% LUTLIEE FUNDITIONS %/
Lan:
mhore (ACCIITRFE ,BTNR)Y == (30
(+1ag):
¥
start_scawirein,.flaaqg) /% np = @ snan. n=1 grab with wait flag %/
int n,.flag:
{ et phoe 2 ADGU
e
crantflacl,
else srmaoiflagl;

w

209

4,877,940

210

/% CUBIC SPLINE INTERPOLATION AND cVALUATION FUNCTIONS x/

statir int interval = 13

spliretn,x,y.b.c,d)

int e
float »L3,y{3.003.cl),alis
{ int rmi,1b,4i
float t;
nml = n - 1;
14 (n <« 29
return:
SR -XE)
i€«)
= (y[21 - y013) /7 (x[2]1 -
= @.,0:
= @.0:
= bl17s
= 0.0:
= 2.0
]
dl13 = =772 — %({1l:
clli = vi23 = vI[11Y) /7 dl173:
fFor 1 0= 2 1 1 < n o i++)
diil = w{a+td —~ ~xT1l:
hiil = SL0ox (g01-11 + dfid o
ci1+1 3 o= wia+ld - w1271y / dlzxls
L= cfi+413 - (3]
bi1l =
birml = :
ci:i? =
cinI =
if (m !
= c{33 7 (20471 - %I21) -
= rin=13 / (xnl]l = »xn=-21) -
= z{1} ¥ (gl 17 % di1 /
- clnl ¥ (din-17 % girmr-112
4oy ¢ 3 = A LI RIE]
“ L = alx-t3 / bli-11;
bii1d = bii) — t % dli-13]:
clil = clid - ¢t % rL2-112:
J
clnl = cfinl 7/ 2lnl:
for ib = ! ib < n 3 ib++)
{ 1 = n ib:
cfil = ¢ ¢lil) - d0i3 % cli+13 Y /
3 .
Bind = ¢ vInd - vinmid) /7 dlnmld 4+ dlnml1] % «
for (1 = 1 1 n o3 144+)
{ bl1Y = ¢ v{21+1] - yCil » / dfil -
dlid = ¢ cli+1] - clild » 7/ dlil;
clil = 3.8 % clil:
N
cinl = 3.0 & cinl;
glnl = din-11;

013)3

cl21 7/
clin-21
(4] -
/ {=x{n]

blil;s

dlil %

(w0727 = »{11):
/ Axin=1] - win=-"1):
w0173y

(

clnmil + 2.8 % cln]

win=-31);

)

cli+!1]l + 2.0 % c(i]

)3

4,877,940

211 212

float sevalin,u.x,y.b.c,d)

ift one

float u.«03,yl3,b02.,c01,d07;
S 1A A I
+ioat ey - S =
i< T e = n Y dinterval = 1;
i revvally by a3 xl[interval+11))
Lalo= o1y /% himary ceearch far interval X/
1= on o+ 1
T
{ k = (1nterval+y) / I
U S G W G U S N 1= b
elee interval = H
3
Wiy le 7 Cinterval+i) g
Gy = p o= wiimrervall
ety O B O N e R RS
C hignrervaill + ax % { clintervall + dx % dlintervall)) g
1)

“
I
@]
]
jw]
I
T
T
ot}

NTS, FInND A SPLINE THROUGH THEM AND PLOT IT.%/

Ln1tC maxx,soline_count.ytemp;

Floar 00 TEr 0 ~r S0 o inb Y atsy T
fimzs =,
cieas imacen

Drint sy nlNgmier oFf datae asimts DL.7@ 7))
SCAnT ‘

Dri;midt snStartice XY coorde o)

scarnf LT iU L hetar bt hstartv)

crimtfi’ "nHa-izcntal space between data

scant ("ni" &xinc):

points: ")

mavy = c¢larte. .+ ((n - 1) * x1nc):
soline count = mavy = startw:

relative Y offsets from these coords : (%Zi,%Zil\n",startx,starty.

tor 1 = 1 1 1 4 0+l oy-ie+)
{ primtf{"\nPoint %i :",1i}:

scant ("%1" ,&ytemp);

SOl iNeLn,

viil = (float)ivtemp:s

«[1i] = (Ffloat)((i = 1) % xinc);

circieletartx + (int)x[i1l], starty + (intdylil, 18, S, 6. 255);
oiild 2.0;

=S 3.G:

dlil B.6:

YD, C)

4,877,940
- 213 214

7%
orir “("\n? Rarray Carray Darrary")
For (i o= b 1< o n+l o i+4)

or el FONA YA A " blid,cl1d,d0id):
%/ ’
far (1= 1 1 i < spline_count { i++)

{ = = seval(n,(+loat)i,x,y.b,c.d):

woixel(startx + i,starty + (int)s, 755

>

/% PLOT Thi SPLINE OF AN EXISTING ARRAY OF DATA POINTS x/

spline _outline arravioutline? 2
int cutlanel JLID:

int i.n.startx,starty,xinc.maxx,maxy;
tinoat wlDid.vinll.pid11,cl513,dl213:

float s.u:

n o= outiineldiTET:

printf{"\nilumper of data points is Zi",n):

starty = cutlinel13LE87:
atartv = outrlimel 13013
pri

rint4("\nStarting X.Y coords are : [7Z1.%41]",startx.starty):
maxx = cutiireinl{3]:

maxy = outlinelnldli1]:

printf (" \nEnding X.Y coords are s L7 ,%13" ymaxx.maxy);
xinc = outlinelZl[@) - outlineltl{E];

primtf{"\nHorizontal space between data points is : %Zi',xinc)
for (i = 1 3 i < n+1 3 i++) ’
 print+("\mrPoint %i is (Z4i.%iJ"i.outlinel1]IB).ocutlinelill1d):
yiil = (flpatloutiinelidl11;,
*x[iJ = (+loat)outlinel 11(B871;
circle(outlinelil(@l,outlinelill1l, S. 5, &, @);
tiil = @.0:
clfi] 0.9:
dgli1l = 0.0:
Y

il

splineln.x.y.b,c.d)
for (i = startx § 1 < maxx + 1 3 1i++)
{ 8 = seval(n.(float)i,x.y,b,c,d);
wpixel(i, (int)s, 255);
s

/v UBES HORTZIONTAL SCANN. w5 LINES. */ o g

fine 1] coject _outiaines hi(startx.starty.,endx,endy,interval.thresh)

Ink etariu,startv,endx.,endy, interval (thereshs
<
int arcday = B, found.found this_line.,poffset.y.maxlen;

m2xlen = endx — starix:
v = ctartvy

4,877,940
215 216

rivitine{starliy v.maxlen+! . .pi-line);
+ound thie line = FALSE:
fonund = TRUE:
whiile tictarty + oftget < ends:) && found)
voFourne = tand all_edaes{8offsel ,maxlen.thresh,.pixline,1):
found _this_line = found_this_line ! {found:
if (Ffound)
{oandex++s
outline coordslindexl[@]
mirliine coordelindexd()]

A e m@t

offecet + startx:
v -

i}

14 (!Find _all _edges(&ocffset.maxlen,.thresh,pixiine,@i) break;
indesi++
outling coordslindexl{@] = offset + startu;

outline _coordslindexll1] = y;
v
R V
4o
v oy o intervelg /% Next row X%/
1+ 4 v > oendyv o
(!foumc_this line && (index > @))) /% Limits of window reached x/
{ outline_comrdel@1MA] = index:
return{index); /¥ or below the blob now 7
*/
\
ks
glse
Qoto next row: N /% try to find more cocrds %/
N
3

/% UBES VERTICAL SCANNING LINES %/
find _all ohjiect outlines_vistartx,starty,endx.endy.interval,thresh)

int startx,starty.endx.endy.interval.thresnh;

{
int ingex = @, found,found_this_line.otfset,y,maxlen;

maxlen = endy - starty:
v = starty:

next_row:

ci+ert = @: B
rvlinetstarty,y,maxlen+! .gixline);
Trang thrs lime = FALSE:
Trumd o= T

ffset < endv) && found)

wWwhrie fistartx 4+ o 5
o all_edoes(ficifcet,mar len
2 '

o founa = b2

found_this _lime = found_thais_lin
1f (found)
{ index+~+:
cutline coordslinde=l[@] = offset + stariv:
ouvtllrs cogrdelinnes 31013 v
Offcet++y

hresh,pixline, 1)
I

—

-
il

i i fingd all eduss(&offeset.maxlen,threch.oixline.0)) break:
indew++

culline coordslinde=]lQ] = cffset + startw:
outiine ocrdsiinde 1011 = v
h
voE v e anTerval /¥ Next row =/

if ¢ (y > endy) i

CTFewnd this iine && (index > @)1)) /% Limits of window reached %/
Cutiite_coordel@1(0] = incdev:
TrTUre s lmes

/% or below the blob now 7

14,877,940
217 218

elos

Dot Nnest Cow: /¥ try to find more coords

/% USES HORIZONTAL SCANNING LINES. */

fimd 1 object _outlaine_h(startx,starty.endx,endy,interval,threcsh)

int

{
int

etartx.startv.endx.,endy.interval (thresh;

index, 4oundfb*%set,y,maxlen,x_*rom_le%t,x_+rDm_right;

indev = @:

mawxl
y:

whil

ifos
;

rety

/A ISR Vet

er = endxr — startx;
startys

[G G G N = A T AV

('Ffound && (index > @¥1i

o+fset = @y
rhline{startx,v.maxlen+i,pixline)s

/% Limits of window reached *

found = find_i_edge(&otfset.maxlen,thresh,pixline,1): /% 1ft to rt %/

i+ (found)
{ »_+rom_left = startx + offset;
index++;

outline coords_leftlindexl{d]

x_from_left;

wutline coorde_leftlindex]{1] = v;
offset = maxlen;
+ind 1 _rdge(foftset.B,thresh,pixline,d); /% rt to 14t %/

w_from_right = startx + offset;
it ix from_left "& ¥ _from_riaht) /% same pt? x/
{ outline coords rightlindexll@] = x_+from_right;
ocutline _roords_rightiinde»](1] = vi

1.
A

Y

< v o+ dimtervalid /% Next row %/

indes @)
it line coords_letti@1001 = inddsvgy
ontline coords_ri1ght{Z1L@T = 1ndesx:

R Rt R e e /¥ total # of point

TITAL STATNING LINES., %/

t_oniect_outline _vistartx,starty,endx,endy,.interval, thresh)

wtaer s ,starty,enor endy . interval L threch:

T8 + rt %/

{
1Pt oo Hognl,ofrzet oy maxlen,y from_too.v_Ffrom bottom:
index = [
mavien = ey - glartye
% = starta =
while DN erncgs ;o
i dming A& Cindey v G)))) /% LLimits N+ window reached *
{
o fegt =

rvlicrety ctarty maxlen+l,.pixlaine?:

219 4,51 /,940
cund = F:hdnlAedge(&o‘+ser.mavlen.thrpsh.pixllne;1); /% 1+t to rt X/
14 {4nund)
{ v_from_top = starty + offset;

indew+ +

nutiine coords_toplindexllBI = >

aoutiine coords_toplindexldl1l]l = y_from_top:

otieet = maylen:

fimdd_1_edoe(&oftset,B,.thresh,.pixline,d): /% rt to 14t %/
v trom_htottom = starty + oftset; ™~

14 (v from_top != y_from_bottom) /% same pt? %/
{ outline_coords_bottomlindex][@] = x:

outline coords bottom{indexl[1] = y_from_bottoms
K
>
= = + interval: /% Next row %/
i+ > 7

: ~cords_topl@1L{B]1 = index;
iine_coords_bottoml@IL@) = index;

Y.
4o

returntinrdesy + 1index);

Sw o STANS L INEARLY ACROSS PIXEL LINE LOOKING FOR ALLL THRESHROLDS. */

+ing all rdops(pffset . .mavlen,thresh,.pixarray,dir)
int xnffaet . maxlen,trhresh . oixarray il dir:

{ EEaR T O

1 = dofieet:

1 oegin) /% dir = 1 14 going in--Lookinag +for leading edae, ¥/
while {((pixarravil]l < thresh) &8 (1 < maxlen)) 1++:

ele=m
whirie (tmisarmavit 1l Y= thresb) && (1 < maxlean)) i++:

1t ¢ 1 =

roffset = 1

SHCEC LS Tee e BINEL LINS FOSWAND OF BACKWARD LUGF TNG FOR A& THRESREOLL %/

dinme 1 o ednefmdidicgt,endinogthresn,.pixarrav.dir)

1nt ¥ofdan pnding, threch.nixarravil. dir:

{ nt 13

1 = ipttsen:

14 (gir /% dir = 1 14 gning in--Leooking for leadina edae, %/
whyle ({pivarravl1] < thresh) A& (1 < ending)) 1++;

pleca

while tipixarravlil < thresh) && (1 > ending)) i-=:

if {1 == ending)
return(FALLSE)
elem ¢
Aofteet = g
return{ TRUE) &

~

/¥ USING BOTTOM EDSE OF PUDDLE., FIND ARRAY INDICES INDICATING PUDDLE
WIDTH Maximul RgL 1ABLE CO-0ORDINATES
X/ :

*int xbottom_left_index,
{ int

n:

i

1ndex = 1;

4,877,940

21

d?termineupuddle(thtbﬁ_le%t;index,bottom_rightﬂindex)

outline_coords_bottomliB®l{d]:

c.elit,lindex,rindex:

¥bottom_right_indexs:

222

/% length of array data %/

while (search_array_column(l,outline_coords_toplBl(@1,&elt,
outline_coords_bottomllindex3(131,

"Tontlime coords_top,.ii Y

[apslw)

rag

FfonfR1Lgd, &ely,

outlime_coorde_bottomlvrindex3{1],

[atelw = r
while (mearch_array_columni nutiine
nutline_co
i- -irmmiev == 1)
reemurn (FALGE vy
slaes ~angdEo——1
it rhmes = lindes:
! 1ot 1ngdoy = v I1pn0ex:
return YRR
R
S S iR T W OF 4 CO-0RDINATE

search arrav _columni{min,m

orde _top.1)?

OERaY FOR A

COLIMN

ax,index,thresh,array,colnumber)
colnumber:

&

= SOME VAl U,

i e sy, s In e threst,array 102D
{ MEa R 1
For (i = min 3 1 (= mawx 1 1++)
it (arraviillicolioumber] "= Ln-=s
{ *inces = 5
return{ TRUE
I A U ol *TR
Y
- USTFR INTERACZTION

RAUTINES FOR IMAGE ANALYSIS

int x.y.color.option,index!. . 1ndex2,Pwidth,Px@,Pxl ,Pyd,Pyl Py

[i

{ print+("\nEnter QOption:"
print+("\nd:
orintf("\nl:
printf("\n2:
printf("\n3:
printf("\nd:

printfl
Srintf(
primntf(

"\né:
“\n7:
printf("\ng:
printf£("\n%:

b5
Clear image"’;

Smap a frame")
\nS:

Draw a point")

Draw a line"):

-~

.
s

Determine Puddle Width");
Define a point");

Define a line");

Interactive spline display"):
Display a spline cf boundary points"):
Get boundary points'}:

* /

4,877,940
223 224

printfi"\n1@: Treshhold Window Detection™):
prainty(*\nil: Fand objects')y

1tTanCncice: ", Roption)d s

w1 {ontion)

{ cAacse B : clesr _1magel)s break;
X

cese 1 : splime_interactivel); break;
case 2
. print4{("\n@® = left, | = right. 2 = top, 3 = bottom"):

geti("\nWhich ? " Roption):
switoch t(ontion)
{ case @ : =pline outline_arravioutline_coorde_left);

Lrealb:
case 1 : splinme outline_array(outline_coords right):
break:
case 2 : soline outline_array(outline_coords_too);
break:
case T : soline outiine_array(outline_coords_bottom):
brear;
preal
case 5 1 get object_boundary(); break;
case 4 : snap(WAIT); breal;
case S : i+ (rdetermine_puddleff&index! . &index2))
{ PxB = oputline coords bottomiindex11007;
P = outline coords bottomlindext]i1d:
Fxl = nutline_coords _bottomiinder2Z1{@3: -
Pyl = outline_coords_ bottomlindexZl{11:
Py = (Py{ + Pvl)y / 2:
Purwidts = Pxtl ~ Pu?:
nrintf ("\nPuddle edges at: [%i.%1] -- [%i.%13 giving v

Pl Pv@.Px1,Pvl,Pwidth);
nrintf("n.,..Horizontal center line at y = 1" ,Py):
circle/cutline_coorde_bottomlindex110@7,
outline roords_bottomlindex)2011.5,5,6.255):
circle(outline coords_bottom{index230@1,
cutline_coords_bottoml{index21[11,5.5,6.283):
ine(Px@.Py,Px1,Py,d);

—

3
else printf(*\nCould not determine 1t.");
break:

1
oY
!

Y
o>

Foint Coumt+w;

aetpoimt("\nEnter coords: " ,&x,8&y):

grti("\nColor : " &color’:
Define_Pointi(x.y,color,Point_Count):
breaks

case 7 : printf("\npPoint # 1..%i *,Point_Count);
geti(" 7 ", &x); ’
UDraw _Foint(Point_ Listix1);
breat;

case B8 : Line_Count++:
printf ("\nlhich Point #'s 1..%1i ",Point_Count);
getpoint ("\nWhich 2 2?2 ",&x.&y):
Define_Line(Point_Listi{x], Point_Listlyl,Line_Count);
break:

case & : printf("\nLipe # 1..%i ",Line_Count);
geti("” 72 ",&x); :
Draw_Line(Line_Listix]);
bhreak;

case 10 : Threshhold_Window_Detection();

Drécde wr s 7
case 11 : get_obiect_boundarv():
breat :

3

saeqt e ZDRECUTOFF 160G s% 14 oiv < cutoff 1t g nmot part of pool X/

Rt Pl T CHANGE 70 /% define brightness chanae indicating puddle edae ¥/
fdefirne DIAM 1@

#cefine UMinterval 22 /% how manv frames between recalculating CM X/

4,877,940 '
225 226

JEag N2 I S IS VRN o RV
int menul _saved_+f1ag:

N

Uil
4 et
~t

P
-
- -
!

sratic int 7Jone Count=id, Edoe_Count=¢, Line_Counit=&, Foint_Count =0
get object_boundary()
¢
int 1wl w1 vl snace thresh,cnlor,.point_count.algocase:
thre=n = Farameiter L1ct[EDGEVALI->valums: /% by defauit. urless changed
oxtnoint("veloords of ubper left of region: " &xB.&v@):
aetpointi"\nllnords of lower richt of reaion: ".&xl . &vl):
oet1i"\nSnacing between scan lines (rows) : U, &space) s
printfCUNnEdos thresnhold currently %2 "Lthresn):
14 (v oo nor o orhanne 111
ot (" vmisw threshhold value for edges : "J&thresh):

Qﬁflf”\hSN;de tee plnt bourncary peints : "L&color)e
printstiAnAatao to use: @ = horiz (all). U = boriz converging'):
printfeU\n 2 = vert (all)., 3 = vert convercing');
ety ("\nWnichk 7 " &algocase);
switcn (aigorase)

{

case @0 @ point count = find_all_objiect outlines h(x@,v0.»1.yl,snace.

threah);
if lomyint_count)
for (1 = 1 : i <= point_count ; i++)
wpixel (outline_coordslilin],
outline_coords(il{1],color)
else
printf("\nNo object found.):
break:

case 1 : point_count =
find_1_object_outline_h(x@,y0,x1,yl.space,.thresh) / 2;
it (point_rcount)
for (1 = 1 3 1 <= polint_count : i++)
{ wpixel(outline_ccords_leftl[i3[0],
outline_coords_leftlill1],color);
wpixel(outline_coords_rightlilL@1,

ocutline_coords_rightfillil,color);

MR
breat
caze - : printf("N\ANot implemented yet ")
4 break;
Cac=- . ; point count =

tind 1 _object outline vixQ,yB.xl.vl.space,thresh) / 2;
4o ipnint count)
for (1 = 1 ¢ 1 <= point _count 1 1++)
{ wpnixel(outline_coords_toplilLlO1,
outline_coords_toplillil,.color);
woilxel (nutline_coords_hottom{il{01],
outline _coords bottoml[illiJ.cclor):
¥
break s

w

/% DETERMIME PUDDLE WIDTH BY SCANMING IMABE HORIZONTALLY STARTING FROM AN
X7 LOCATION OUTWARDS UNTIL A& THRESHHOLD PIXEL VALUE IS FOUND.
*/

Pungle Widthicol,row.min.max.threch)
unsi1oned col, row, *min, xmav,tnresn:

L

4,877,940
227) 228

static 3Pt pix)ine{512]

rRline G, T ow, St T . DI x1ine)

: {x] > thresh) &R
torxtinelix=11 > thresh) &
(% < 9lZ)) w=++;

b3

T

Ve

m

oo
¢

3

T

-

while ((nixlinelx] > thresh) & & /% ck 2 pixels to screen noise %/

(ravlinelx+11 > thresh) &R
(x > @)) w=—-—2
i = v
>
Jh 0 US FOR FPRINTING ARRAYS OF DATA POINTS. %/

—

print array_tablaryptr,mincol ,minrow,maxcol ,maxrow)

int *aryntr,minrow,maxrow,mincol ,maxcol:

{ int row,col,colength,%ptr:

colencth = maxcol - mincol + 1:
erintfd"Nn The Aarray from left to rt, top to.bot. x= horiz, y= vert");
TOr (row = MInrow § row <= maxrow § rowtt)

4 ool = omimcol §oo . <= maxcol 1 col++)
{ ni- = arvptr + (row X colength + col);
L nrintdian Arravix=%i.y=%iJ= %1 ",col.row,xptr

SR e THRESHHOLD WINDOw DETECTION CODE —=-—-——m—=w- X/

int ocntion;g

imt threza, ylower,xupprr, viower.yunper:

1nt hipourntton.hroundbot.vifoundleft.vfoundrioghty

int =howlime., hillaolennath, viinelength, limevalue. 1. actinng

men.l _saved {lac = -1 /% used bv draw_box %/
graht-1): 2 Brab whilie serticg un and until moment of scamning %/
/% Gt thiresntoin value to detect in the array. The occurence of a value

thaT the treshholao triggers function DETECTED.
%/)
thregh =
xupner =
yuopier =
xlower =
viower =

hlinelength =
vlinelencth =
showline

linevalue

229

4,877,940

»lower - xupper:
vipwer - vupoer:
= LINE_ON:
= 253

prantd ("NnXxokkkx WINDOW THRESHHOLD DETECTION XXxXxXxXx\n');

to main menu")

threshhold value from:
coords of threshhold window from:

.
b

%it.

Txupper,yupper.xlower,ylower);

printf("\n @ireturn
orintf("\n 1:Change
nrint+("\n 2:Change
printf{"\n

printf("\n
nrintf("\n
priontd {"\n
Viil_buf()g

thresh):
(%i,%1)

(21,410,

3:Change size of threshiold window with keyboard");
4:Changs window display features");
S:Threshhold detection”);
6:Center of Mass Determination');

14
"

geti("\nFunction .

cEtchar ()
=wltch
case @:

case 6
" Dienlavlenter(™ .ass(xupper + 1,yupper =+
hlimnelength -

Lo

bre

2
case 1
N

simtE(va e M, "Input threshhold value: ")
cranf("i1", &threch) :
getchar();
break:
cass It
or coordinatee of unper left and lowsr right of box that will act as
rancular border threzstniolid. Calculate the 4 component lines. to use
1o vdetect and hdetect.
print+s ("N Y%e", "Coordinaiegs of upper left of box: ™)
soantt”wi v, &wupner, &Svunperis
nstchAar) e
neintd (A0 Vet "Coordinates of lower rinht of bov: "
coantd (MR WY, Axlower, &viower):
netcharol
hlinelength = xlower - xupper;
viinelength = vlower - yupper:
draw hov(xupper.yupper . hlinelength,vlinelength,linevalue):
hreatl s
cases
nomitinn o (&vunper Jhyuoper,&xlowsr (Aylowe~ ,250)

{opt
getchar();

ion) {

&option)

return;

getcTari
hliymelencth
viitrnelenath

i

hireab g

v lower
viower

XUDDer:
vupper:

just

1.

l,vliinelength -

prior to a

Shap |

1,255

needs to be displaved on screen as the snapoing

in

orintfi"\nWindew display is ON with brightness of “Zi".linevalue)

(yv_no_pt"De yon want your box displayed during detection?")

"Brightness value of box border from @ to 235:

draw_box{(xupper,yupper.hlinelength,vliinelength,linevalue);

the chasen line
=, 144 then SHOWLINE 1= disnlayed
14 tennwline == LINE_0ON)
P4
{ showiline = LINE_ON:
printf("\n %s",
acanf ("1, Rlinevalue):
astohar ().
3
elam
showline = LINE OFF;
bresak
case D@
/% Per{torm sequential 4$rame snapping.

and pctial pixel array examination

{

“y

4,877,940
231 - 232
using ITEK brhiine, and brvline functions to read
nortions of frame memory. The threshhold detection is coded as subroutines
called HDETECT and VDETECT, which return X,Y coords or dummy X,Y coords.

X/
hfoundtop = DUMMY;
hfoundbot = DUMMY;
vioundle+t = DUMMY}:
vioundright = DUMMY;
T o rrantd (PARTUSTT TPress return when ready to . gin scannino...'):
gt ohar {0 g
praontfi"\nPress any kev to stoo scanning..."):
slongrsh (ND WATT)
o o3t 14
Sivnelengioovianegiength, linevalue)
snan(WATT)
hfoundton = hdetert(xupne- ,vunner hlinelength.threshn)y
o ~thot = hoistert (vupper L viower hlinglenntn,thresh);
vEicpndiedft = ovdetesst(wypoer .vupbes . viicelergth, thresh)
vrioundriont = vortectixlower ,vupper,viinelength, threah);
win: T BRIt O)Y == @ &R /% Kev precsed 7 or/
h4pnndfnn == DMMY AR
4 DUIMMY RR
vinumigliedt DUMMY &4
vAnunee gt == Dy)t
IfF (bbpit () == @) (
it uNRDE TS TEL Y) s
T4 R munaton = DONMMY)
ComeaneH AR oo oar (L1 L7) xupper + hfoundtop.yubper)
S etspnner 4 hdogndton.vunper (DIaM S 60 onevalue)
R t= DT .
¢ merntF0NA0n bot at (G ks oxunper + hfoundbotovioweryg
circlei{xupper + hfgundbot.vlower DIAM.D,&,1inevalue)l;
14 e toanataedt c= DUMMY)
prinkEdd nDa et oAt (R, W)Y o xupper yunper + vioundlieft):
~irclelxynner ,yupner + vioundleft ,DIAM, S, 4. 11r2valus);
14% {vinungdriant = DUMMY)
O orintf("\nln right At (Z1.%1)".wlower.yupner + vioundright):
circle(xlower. . .vupper + vioundright,DIAM, 5,6 1inevalue);
Y
3 e
PR
if (showlinme == LINE_ON)
recteanaleixupper,yupper hlinelength.vlinelength,linevalue):
bill bading :
break:
i /% end of switch %/
B T /% eond of for x/
3 Ax EMD OF WINDOW THRESHHOLD DETECTION »/

DisnmiavlenterQftass(xi.vl.xlen.ylen.color)
1en

1eet w1 ol

vien,color: -—

int row.col,.ptr,pixval,area;
10t rowcent,colcent:
0N maes!

4,877,940
233 234

if 0@ = = -
center _of massixl,vl,xlen,ylen,&colcent,&rowcent [EDBECUTOFF, ! ,&mass))
{ arintf{"\n Maes of: %11 has center at: (x=%i,y=%i)",
mans.tolcent + xl.rowcent + yi1)g
circlel colcent + xt, rowcenrnt + y1 ,DIAM [5,é6,c0lnr);
3

el

0

%3

n-int4{"\n No object {found."):

/R e */
/R mmmmem - UTTLITIES FOR DISPLAYING VALUES IN A PIXEL ARRAY —w--m—me—— e — e %/
F K e e e e e e e e e e — X/

prafi Aarrav_screentaryptr.mincol (minrow.maxcol.maxrow)

16T Mrnrow. . MmAaNrow.mincol ,maxcol (rarvote:

-~

int row.col,colength,%ptr;

colrnath = maxcol - mincol + 1@
“An The Arrav dram left to rt, top to bot. x= horiz, v= vert\n ")
maxcol : col++) . -

rrint+
oy Al = mancol 3 cold

prantd{Kar Mool

for (row = minraw @ Fow <5 maMrow § rowt k)
{ primt4("\n%dir " ,rowd;
for (col = mincol ¢ col <= maxcol {1 col++)
{ octr = arvotr + (row % colength + coll:
pDrimt+ ("Y41 " oxptr) g
h
R
J
R
7
S e e X/

/% CALCULATE CENTER OF MASS OF A BOUNDED RECTANLE.
FASS PACK COCRDS AND MASS OF RECTANGLE.
* /

K e e e X/
center_ot mass(mincol .minrow,numcol ,numrow,c®,.r@,thresh, increment,mass)

int minrow,mincol.numrow,numcol, thresh,increment;
lang dmass;
int *rd . xch;

{ static BYTE pixlinelS1273; x
int row,col}
BYTE Xpixptr:
long sum_r = @,sum_c = @,sum = @;

row = @;
while (row < numrow)

{ /% read a row from memory X/
pralanetmincol .minr... + row,.numcol . pixline);
rolo= @
tiale (sol < numcol) /% Examinme each column elt. %/
{ prxpte = pixiine + cols
i (¥Fpixpie 2 thresh)
{ sum = zum + Xpixptr:
sum_r = sum_r + (Xpixpitr X row):
sum_c = Ssum c + (¥pixptr * col);
3
col = cal + increment;

i~

Fow v increment

4,8
235

*mAacs T ozum ¥ Increment X increment:
1F 4 su == 0
retuarnovd s
PR
o = (e iAo euny
Arld = (int) (({loatlsum r / sumdi
xc@ = (int)((floatisum_c / sum);
feturniio

/%

/% F POSITION A RECTANSILE
(Uim, (Drown, (eft, (Flightr,
(¥yaimerslon increase-expand
(¥idimersion decreasz—shrint i
[N telon increase—eviard 1
vvidimenzsion decresse-shoint i
tamythnineg else) quit. leaving

%/

/X

position_box

(»l,yl,%2,y2,pixval)

77,940
236

/¥ mass habperns to be sum... ¥/
/% timee assumed mass o0f plate %/

/¥ No ouoiect {found %/

center X/
center x/
found %/

/% row of
/% col of
‘% Object

/K

%/
ON THE IMAGE USING KEYBOARD.
t horizontally,
t horizontally,
t vertically,
t vertically,
rectangle positioned as is.
X/

int kel AV L ¥xT L AavZ2, Dixval:
{
int key;
/% stoograb(NC _WAIT): %/
printd i \nuUse Y. D.L,R kevs to maove box location, x/X and y/Y to change size");
pDraintd s Uanany obher key to quit...')s
kill_pbuf()g /% dump awailting input %/
for (1) { -
prifntf("\n upper left=(%i , %i) lower rijht=¢ %i , %i)",
Xxl, ¥yl , ¥u2.%y2)
Craw _ox(kxl,kyl, ¥x2 - Xxl, ¥y2 - Xyl,pixval);
ey = getch()g
switch (key) { -
: ¥xy2 = %yI - 13 break: /¥ (Uyp %/
=Tai Xy2 = ky2 + 13 break: /% (D)own X/
Fane Teaat
- e T kwlo= okl - b Hx2 = kw2 - 13 break: /¥ et x/
" 114
nzee Z2Zr okxl = kxl o+ L wxI = ¥x2 + 13 hreatb: /¥ (R)ight %/
caes 120 %xx2 = kxZ - 1 break: /X% o« ghrink horizontal x/
o B8: k%I o= kxD o+ 1 breakb /% % eypand horizontal %/
Cas 121 A2 o= kD - 1 nrEsl fh oy shrink vertical &/
I GO ¥y2 = ky2 + 1% breal: /% Y expand vertical */
1 retarn;: /% done X/
3
Ay
FK e e e ¥/
I 4 RECiaui-LE OVER TMABE AND SAVE THE PIXELS UNDER THE RECTANGLE THAT
WERE L UBBFRE D, S0 THEY TAN BE RESTORED IF DESIRFED.
»/
SR e e e e e e %/
graw boo- vl v wlen,vien,color)
1T TErnavien.color:

-~

4,877,940
237 238

static Fyit save_toplS512i,save_botl(312],save_leftl{Si2l.save_righll312]3;

crainz ani tool3d, botlfZl, leftl31. right(31:
14 tmenyl saver flaa == ~1) /% true {first time used when
/% called by menut onlv,
{ tool®) = %11 tool1) = vyl topl2] = xlen:
hnt[@] = =1 botl(1] = vl + ylen; boti2] = xlen:
le<tl@2 = i T oleftl1l = vl leftl23 = vlen:
rightIlZ3 = X1 + xlemn; right{1] = vyl rightf2) = ylen:

store line(tobp.save_ _top.0.0):
store lins(bot.cave _bot.0.0);
store_line(left,save_left,0,1);
store_line(right,save_right,0,1);
menui_saved_flag = 13

/% Restore the orevious hox of 1mage pixels to the screen %/
stnre Jime(tan.save top.1.0);

atore jinelhni,.save_bot.1.8):

store_line(left,.save_ left.1,1);

store_linel{right,save _right,1,1);

/% store the current pixels where a box will be written over them.
topl@®l = %13 topl11] = vyl topl2] = xlen:
boti®l = x1lj botfli] =yl + ylen; botf2] = xleng
leftl&2 = x1; lestl1l = yl Jeftl2] = vieng
rigntif®l = x1 + xlen: rightf1] = yi: rightlf2] = ylen;

store tinettop,.save_ton,0,.0);

st e_s1neihot.save_vot,2,.8)

store_line(lerft.save_left.0,1);

ctore_line(riaoht,save_right,?,1);

/% draw tos har over LR Lsired pixels finallv, or jusi™ sturn.
Thie allows 40r simply erasing a box. without writing a new one.

x 7
14 ~oioy ‘= ~10 rectancigtsl,yl,xlen,vien,color);
etm- o Jinel(tunle,ary,rd write,di1rection)

1mt dro~ie xarv,rd_write.direction;

/¥ horizomtal »/

%/

%/
%/

@) /% arrav <-- screen %X/
e, ¥x(tuple +1), *x(tuple + 2).ary);
: /% array ~—> screen %/
bwhilme s tuple, *Ctunle + 1), Xxttunle + 20, ary):
elee ' /% vertical x/
1t trd write == @)
peviicedrlunle, ®(tuple 4 1), x(tuple + 20, ary);
eleas
bwvline (xtuple, *(tuple + 1), *(tuple + 2), ary);
3 .
/’)‘! ___
/W THF EXISTENCE OF A PIXEL VALUE > THRESHHIDLD
¥ FOUND, ELSF A DUMMY VALUE
»/
J F e e e e e e
hasten Loy oy len nhresing

1Nt w,v.len, thresh;:

1nt 1. vals

statuic BYit pirelinel31Z23:

239

4,877,940

brhlims(v vy, len.pixeline)
1= @
do
{ val = nivelinelid;
34+
¥
while (1 < len && tnresh »>= val)g
it o fval threan)
returmil)
else
rFeEtuImn L DLMMY Y e
7
i ARt X/
/v URECE A VERTICAL LINE FOR THE EXISTENCE OF A PIXEL VALUE > THRESHHOLD
i iTRIG THAT Y COORDINATE IF FQUND, ELSE A DUMMY VALUE
Ny
Uy Uy SOV S S S PR REPEPSIE S ST X/
veaetecrt (v .y len, thresh) <
i ow.v.ler, thresh: K
{
inrt L. o vals
statir BYTE pixelinelDHi?]:
e cameiy v.len.pixelinet s
1=
co
val = pixelinmel1d:
M
whtie () lemy && thresh »= val):
1F (wval o othroann)
return(l;
elees
retor ooy gy
/% TELL USER WHERE A WINDUW CROSSING WAS FOUND %/
QLec TS0 07 v,y (whorad /% where i relative to either ~x or v %/
/% denenging on directinn kx/ -
it g DY YalalalH
{
1f tdirm == M
printfi"\n %s %1 %i"., "Horilzontal detection at: ", where. y):
=lea
nrantfotn Ye Wi WY "Vertical detection at: ". », where);
by
/b e %/
F R ettt END OF USFR INTERACTION CODE ~—=—————mmmmo o e % /
J R e e e %/
/% MATNLINE ROQUTINE (THE CONTROL LOODOP)Y.

IMAGE PROCESSING CONTRGL LOOP 7O PERFORM IR WELDING ANAYSIS.

IR

mescaae fr
.. Arguire single
a Counter.
Tf The # of

images acquired is

BASIC STEPS:

Imiti1alization ot hardware parameters.
Recention of software parameters specific to the process via

om other node(s).
image from video source

(IR camera).

calculate the Center of Area of existing weld pool.

reset this

counter.

Increment

to a received parameter then

Then

4,877,940
241 242

. 1f there is an incoming goa! messaae, then read and assert it.

Calculate maximum pool width (4or puddle or nugget).

. Calculate partial pixel zones reiative to the center of area, and

optionally display them over acgquired image.]

G. Calculate the features present in the zones, (which means process
goals., 1.e. feature set) and perform weighted averaging with
the last set of calculated features.

1@, 1+ a counter has reached the averaging interval received during

{(Z). then transmit the averaged feature set as the answer to
the goals (eceived at (S5). ’

i, Go to 3.

W~ U

*

mainfaroT . arav)

1t oAran:

char xarcoviJ;

{

1nt debhodt

unes oned hase = B»300:

long mem = UxABOUAL ;

int {lag = @, bleock = 1:
int Foount:

unzjoned PEriant:
static BYTE pixiinelDlZl:
sreyarad Cheacice,CMshade:

Lung

uns

une

uns

une

umsinnen foxd, mud e

s

il inm

i '
long mass

/%

10007 COw
igned CMe«
1cneg Cx@.CvR.Clsizex,Clcerzeyy

inred W@ Ws ! Wvl (PWidth:

taomed LD v Li?sivex.Listzeyv: =

pt,colecent,Pmink PnaxX,rl,cl, r?,c?;

- e
PN

it
T
<
Py
TN
"
o
N
iy

[T R VUV S i o

remeont = 1B0,.cuto++ = EDGRECUTOFFE;

Frone minw.miny,sizex.sircey defining box on Front of puddle.

Rzone and Lzone same " " Right and Let+t " ¢

Center x.,y.diameter and color of circle to draw.

Widtih left » and y, richt x and y of line passing thru center and
terminating at puddle edges.

printf("\nImage Processing Computer Online:")j

I+ Carge ¥ 1)
{ debug = TRUE:
primt+ ("> DEBUG MOEDE <<y
hY
el
elese debug = FALSE:

o~

initialize_hardware(i; /% Sets up tables, clears screen, sets addresses ¥/

SVeE

tam("clrecheg”) /% Gtart Pascal communications and scheduler %/

c=2ti ("\nCM Increment (1-28) ?".,&increment);
aeti("\nEdge cutoff (¥-235) 7", &cutoff);

while (!ITnQOsize()) /% 1s there a message waiting to be read? %/

If ocWbhit ()
User () /% Go to user interactive mode %/

ProcessMsg(); /% Process the received message %/

t!

4,877,940
243 244

Cilr artyue = DLAN,

Chiahare = @) /% black circle for center %/
T o= 1T

Cvil = 100

Ci=.0=. = 5E0:

Uisizev = 3@00:

cl o= Ox@:

-7 o= Cx0o+ Drsiues:

1 = Oy

T = Cvl + [7Teryzevy

Fcount = Cthinterval —13

/%
cimpasail 1.5,
etatic Jutel):
setlutl{l@. 1)

%/

et Imago /% acqulre new image X/
start acculrei{t o

Fcoumnt = Foeount + 11

printfc"infFrare # %l of Zi”.Fcount.CMinterval):
i { Fcounmt >= CMinterval)
{ Foount = 2y
14 0 d2nue == TRUE
{ merutl saved flag = -1:

reciargle(Cx@-1.Cv@-1,
Clsizex+1 . (ls1zev+] . P93
start acquire(l.—-1);

"1 = CxB:
c2 = Cx@ + CZsizex:
rt = Cy@;

rz = Cv@ + Clsizev:
poeltion_box{&cl &rl ,&c? &r2.255)
stun_acquiretWAlT)

3
Cx@ = rf:
Oyl = ri:
Clsi7ex = c2 - cl: .
CiZsiray = rzZ2 - rl;

center_ o+f_maces(Cx®,Cy®,Clsizex,Cisizey,
&colcent, &rowcent.cutoff,increment,&mass)

17 (mass == @)

{ print$("\nNo Puddle Present...")}

goto get__image:

>
CMx@ = colcent + CxB;
Myl = rowcent + Cy0@:

/% Determine Maximum Ppol Width %/
PBright = rpixel(CMx@,CMy@):
printfi"\nCenter « [%u.%ul has mass of %Zli wity.r.enter brightness 74"
CM»C.CMy@,.mass ,PBright)

14 tmasz == @) goro get _i1mage:

Poimet o g th(CM-0 Ty,
E&Pminx, &Pmaxx, FBright - EDGZCHANGE) ;

= Smink:

= FEma v,

circier CM=@ , TMvy , CHMradius .5.6.CMehade’;

4,877,940
245 246

printfi“snFw coorgs: [Yu.wnl) ——— {Zu,7Zul",
ChiyviE . W

W@ T Wyl (CHMvi@) g
Pwicth = Wel - *: /¥ Ppopol widin is dist hetween endpoints */
iy 1 = CMyQ + PWidth / 2.0;
L2sizer = Puidth / .03 /% Zones are 1/3 PWidth in size X/
LZeizey = Lisrren:
Ricsizew = BWicti, /7 7.7
Risicey = izizex:
Flzizew = PiWioth / 2.6:
Fleizey = Fisizewx:
“primtf (" nPoel Width = %u giving (horiz) L.R.F zone sizes of %u %u %u",

PWidth,l.7aizex Rlsizer . Flsizex);

/% Coorde of upperleft corner of zones %/
Rx2 = Wri = Risizex / /% the right zone %/

Ry@ = Thv@d - Klsizey /

LS N}

LxB = W« - LZsirex / 2% /% the left zone.. %/
Ly® = CMy@- LZsizey / 2

Fxl = CMxd - Fisizex / 2% /% and the front zone. %/
Fyl@d = Wyl - F7sizey / 2

/% Draw the zones over the image %/

rectanole(F»@,Fv@. . Misizex,Flsizey,233);
rectangle(kx8,RyB.Risi1zex ,Risizey ,255)
rectarnole(lx@,Ly@.LZsizex,Llsizey,.235);

/% Draw lime ended by circles showing the %/
/% pool width %/

line(Wxd, CMyD,Wx1,CMy2,0) 3

circle(vi=2,CMy2,5,5.6,0)
circle(Wx1.CMVD.S5,5,6,0@)

/% Go to top of }Dop */

coi7 et Imace:

3 /x DLT OF mMalw RODUTING ¥/

Appendix IX

T WTDEMS. LGP EXAMPILE FRAMES CREATED FOR THE HIERARCHY OF WELD PROCESSES.

17 Theeer establicsh a static knowledge base referenced by various inference
;! processes. The slots typically include metalurgical and design info.

13 This Hnowledge base would be developed in interaction with the engineers,
t 1deally using a graphical interface.

13 Thie hierarchy looks like:

HH WeidFrocess

HE] / H \

HH / H \

H FusionWeld SpotWeld LaserWeld [
HIH / H \

P

4,877,940
247 248

(+orm weldprocess nrototype a thing with
(prerequicites include ((powersupply on)
(personel not-present)))
{materiale-list = (stainless aluminum xyz))
trcritical~variables include (current)))

(form fusipnwe

T
g
furereqgquis

prototype a weldprocess with -
tes include ((robot on)
(torch on}
) (shieldgas on)))
(critical-variables include (speed puddle~-width SGTemp))

(enaineeres 1nclude (Smith Jomes)))

1

(form spotweld prototype a weldprocess with
(prereaulisites include ((station on)
7 (gqun on)))
(critical-variables include (cycles nugget-size)))

(form GTA prototyoe a fusionweld with
(electrode = Tungsten)
(Heatinputfunction = (liep (weldmodel YO
{enginevers include (Bangs))
(dewpoint-temp = —-60))

(form BTA-1 individual a GTA with
(engineers include (Joe))
{last—-cnhange = 1-21-87)
(max-error-rate = .01}
(g = 272)
(s = 21.@ 3
(wminp = 35.865)
(wiming 5.237)
(WQ 5.41)
Camaxce = 5.580)
(wmaxp = 5.750)
(DELTA-1-HIGH =)
(DELTA-T1-L0CW 2.5)
(DELTA-S-HIGH 1)
(DELTA-S-L0OW 2.5
(D-HIGH Q.25
(D=1 0w B3.89))

PN

[t}

[t

i}

MO, DGR ROUGH MODEL OF FUSION WELDING PUDDLE.

;: USEDR A% FRONT END SIMULATOR AS INCUT T WELDING EXPERT SYSTEM,

(DEFN CALL-WIDTH (1T 9
(LET vl @.2&6) (B 2.05) (SILAOPE AND QOFFSET TO GET WO
(+ B (¥ K1 4/ 1 S))))) :FROM 1 AND SPEED, AS PER
(EMPIRICAL DATA SET.

(DEFUN PUDDLE-MODEL (PARM VAL) sGIVEN CURRENT OR SPEED.
(LET (WIDTH) sUPDATE WIDTH..AS PER MODEL.
STATS-WINDCW PARM VAL
LT-WIDTH (GETF PVYS 1) (GETF PVS "SPEED)))

(DEEMACRD NET-MFOSARE (RREST mMSE)
(LET ¢ (M3B=-5TRING (SECOND MSG)) (VAL (THIRD MSG)))
(EVvAL (PPRINT ~ .MSGC MESSAGE-WINDOW))
(COND ((STRINGP MSG-STRING)
(COND ((STRING~-SEARCHX* "CURRENT" MSG-STRING)
(PUDDLE-MODEL "1 VAL))
({STRING-SEARCHX "SPEED" MSG-STRING) .
(PUDDLE-MODEL "SPEED vAL)))) -
NIL) S
(DEFCOMRT aNT WELDING " ((UPDATE-PARAMETER

("wHICH PARAMETER 2 (WIDTH. 1, SPESD, SHIELD-GAS-TEMP) "

VRoUE Ty UROGDIF Y & FAR&METER™T)

4,877,940
249 250
(PARAMETER ¢ “WHI1H PARAMETER ? (WIDTH., 1, SPEED. SHIELD-GAS-TEMP)")
"VIFW A FARAMETER'™)
(CONSTANT ("WHICH CONSTANT 7 (WELD-ABORTED)® "VALUE ?")
CMODIFY/VIEW A CONSTANT™)Y))

(DEFCONSTANT BACKGROUND (MAKE-~WINDOW-STREAM
LEFT O
:TOP @
tHEIGHT 24
:WIDTH 79
:STATHIS 4
tATTRIBUTE 7)

(defconstant puddle-window (make-window-stream
ttop 2
tleft 1
theight S
twidth 77
setlatus 4
rattribute 7))

(defconatant stats~window (make-window-stream
ttop 16
tlefe 2
theight 7
twidth 32
istatus 4
cattribute 7))

(DEFCONSTANT OPTIONS (MAKE-WINDOW-STREAM
tLEFT 3

(DEFCONSTANT INPUT-KEY (MAKE-WINDOW-STREAM
LEFT 1
:TOP 6
tHEIGHT @
tWIDTH &
:STATULS 4
R TIRIBUTE 7))
(DEFCONSTANT QUTER—r Y CPMARE = I NDUW-STRE AN
tLEFT

>

THEIGHT 15
(WIDTH 4
:STATUS 4
:ATTRIBUTE 7)

(DEFCONSTANT LARBFi. -OPTIONS (MAKE-WINDOW-STREAM
sLEFT 1
:TOP
sHEIOHT 1
tWIDTH 4F
Te TS 4

TIRIBUTE 7)

Ha

(DEFCONSTANT RESFONSES (MARE-WINDOW-STREAM
THEIGHT 15

TWIDTH =3

tBTATUS 4

(ATTRIBUTE 7) '

4,877,940
251 252
(DEFCONSTANT DUTER-RESPONSES (MAKE-WINDOW-STREAM
$LETT 47
TR 3
THTTGHT 1S
sWIDTH T4
:S7ATUS 4
tATTRIBUTE 7))

(DEFCONSTANT LAREL-RESPONSES (MAKE-WINDOW~STREAM
tLEFT 42
sTOP 1
THEIGHT 1
SWIDTH 36
:3TATUS 4
:aTTRIBUTE 7) _
PTITITEOTANT UDER-INPUT (MAKE~WINDOW-STREAM
LEFT 1A
:TOP 20
tHEIGHT 2
iWIDTH 77
:STATUS 4 S
. :ATTRIBUTE 7))

DT ECTIINGTANT LABREL-USER (MAKE-WINDOW-STREAM
tLEFT
tTOF 19
tHETGHT
tWIDTH 77
(STATUS 4
TATTRIBUTE 7 00

CLEFOONSTANT REGRDUND (MarE-WiRkDDW-STHEAN
(TR @
LEFT @
tHETGRT 7a

tWILTA w7
BUTE 70

(DIFCONSTANT LRBEL-WINDOW (MAKE-WINDOW-STREAM

MESSAGE-WINDOW (MAKE-WINDOW-STREAM

(DEFUN GRAPH ()
(DRAWBORDER BKGROUND 43)
(SEND PUDDLE-WINDOW :CLEAR-SCREEN)
(&f STRYS-WINDOW CLEAR-SCREEN)
LABE L —w INDDW 1 CLEAR-SCREEN)
(SEND MESSABE-WINDOW :CLEAR-SCREEN)
(SEND LABEL-WINDOW :SET-CURSORPOS 8 4)
(SEND LAREL-WINDOW :WRITE-STRING "SYSTEM PARAMETERS")
(SEND LABEL-WINDOW :SET-CURSORPOS 45 4)
(SEND LAREL-WINDOW :WRITE-STRING "EXPERT'S MESSAGES")
(SEND LARZL-WINDOW :SET-CURSORFPOS 25 1)
(SEMD LABEL-WINDOW :WRITE-STRING "PUDDLE WIDTH")
(SEND LABEL-WINDOW :SET-CURSORPOS 31 @)
(SENMD LABEL-WINDOW :WRITE-STRING "MIN")

4,877,940

253 254
{SEND BKGROUND :SET-CURSORPUS 34 7)
(SEND BKGROUND :WRITE-CHAR 124)
(SEND LABEL-WINDOW :SET-CURSORPOS 39 2)
(SEND LAREL-WINDOW :WRITESSTRING "NOM')
I2TNT BYGRCUND :SET-CURSORPOS 42 7)
SEND BRGBROUND :WRITE-CHAR 124)
(SEND LABEL~WINDOW :SET-CURSORPOS 50 @)
(SEND LABEL-WINDOW :WRITE-STRING "MAX'™)
(SEND BRGROUND :SET-CURSORPOS 52 7)
(SEND BKGROUND :WRITE-CHAR 124)
ZTEND T STATSSWINDOW SET-CURSARPOS 1 2)
{SEND STATS-WINDOW :WRITE-~STRING " SPEED:")
(SEND STATS-WINDOW :SET-CURSORPOS 1 4)
(SEND STATS~-WINDOW :WRITE-STRING "CURRENT:")
(SEND STATS-WINDOW :SET-CURSORROS 1 6)
(SEND STATS-WINDOW :WRITE-STRING " WIDTH:")
(UPDATE STATS-WINDUW °“SPEED (GETF PVS *SPEED))
(dotimes (i 1@@@))
(UPDATE STATS-WINDOW "I - (GETF PVS "1))
(dotimes (i 1000))
CURPDATE STATS-WINDOW "WIDTH (GETF PVS "WIDTH)Y)
(SETE *STANDSRD-QUTRPUTH messaoge-window)

(DO ((CHR (SEND STATS-WINDOW :READ-CHAR)
(SEND STATS-WINDOW :(READ~CHAR)) (GUTIT 113
(INC=-5 2.5 ¢INC-1 2)(INC-W B.23))
FED THR QUTT)
(CASE CHR (115 (UPDATE STATS-WINDOW "SPEED
(- (BETF PVS "SPEED) INC-5)))
(B3 (UPDATE STATS-WINDOW 'SPEED
(+ (BETF PVS "SPEED) INC-S)))
(185 (UPDATE STATS-WINDOW 1
(— (GETF PVS 1) INC-1I)))
(73 (UPBDATE STATS~WINDOW "I
(+ (GFTF PVYS " 1) INC-I)M)
(119 (UPDATE STATS-WINDOW "WIDTH
(= (GETF PVS "WIDTH) INC-W)))
(87 (UPDATE STATS-WINDOW "WIDTH
(+ (GETF PVS "WIDTH) INC-W))))))

(DEFUN UPDATE-PUDDLE-DISPLAY (VAL)
(SEND PUDDLE-WINDOW :SET-CURSORPOS 22 3)

(SEND FUDDLE-WINDOW :CLEAR-EDL)

(DOTIMES (1 (= (x VAL 3@) 144))
(SEND PUDDLE-WINDOW :WRITE-CHAR 42)))

(DEFUN CALC-WIDTH (I S)

(LET ((K1 @®.26) (B 2.@83)) . sSLOPE AND QFFSET TO GET W@
(+ B (x K1 (/ 1 S))»))»)

(DEFUN PUDDLE-MODEL (PARM VAL) :G1IVEN CURRENT OR SPEED,
(LET (WIDTH) sUPDATE WIDTH..AS PER MODEL.
(LIPDATE STATS-WINDOW PARM VAL)
(SETL WIDTH (CALC-WIDIH (GETF FVYS "1) (GETF PVS 'SPEED)))
(UPDATE STATS-WINDOW "WIDTH WIDTH))

(DEFUN BUMP-CURSOR (STRM-NAME DIRECTION ‘COUNT)
(LET (XPOS YPOS)
(MULTIPLE-VALUE-SETO (XPQS YPOS)
(SEND STRM-MAME :CURSORPOS))

¢CASE DIRECTION
(UP (SEND STRM-NAME :SET-CURSORFOS XPOS (- YPOS COUNT))
(DOWN (SEND STRA-NAME :1SET-CURSDRPDS XPOS (+ YPOS COUNT))
(RIGHT (SEND STRM~NAME :SET-CURSORPOS (+ XPOS COUNT) YPOS))
(LEFT (SEND STRM-NAME :SET-CURSORPOS (~ XPOS COUNT) YPGOS)))))

(DEFUN WINDOW-BACKSPACE (STRM)
(LET ¢ X-P0OS Y-PDS
(MULTIPLE-VALUE-SETO (X-P0OS Y-POS)

4,877,940
255 256
. (SFND STRM :CURSORPOS))
VBEND STRM :SET-CURSORPOS (= X=POS 1) Y=POS)))

(DEY e LHTDATE (STRM PARM VAL
FOGGETE PVYS PARM) VALD
FPARM (SPEED (SEND STRM :SET-CURSORPOS 12 2)
(SEND STRM :CLEAR-EQL)
(SEND STRM :WRITE-STRING (LIST-TO-STRING VAL))Y)
(1 (SEND STRM ::SET-CURSORPOS 12 4)
(SEND STRM :CLEAR-EQL)
(GEND STRHM WRITE-STRING (LIST-TO-STRING VAL))
(WIDTH (SEND &TRM :SET-CURSORPOS 12 6)
(SEND STRM :CLEAR-FOL)
(SEND STRM :WRITE-STRING (LIST-TO-STRING VAL))
(UPDATE-PUDDLE-DISPLAY VAL))

s A= TRING
(ECHD- Ui " {UFDATE-PARAME TER JPARM , VAL
T TMESSAGE-WINDOW)) 1 @ 1 1))

21 WIDTH S.41))

11 WE RLS WeilD PROCESS RIMESET VERSION 1.0

:1 A top level ruleset to perform a welding process.
i Thie one simdly invokes puddle width based control and displaye timing.

(BT RTI1CS C AR08 0T . NIWY (ETIME |, NTu)
(STIME . NIL) (POWER-SUPPLY . NIL) Y
(1.0CAILS C (2 (ETIME . NILY)Y)
CTAGRS ((WELDER{CESS (STATIC ROBST) (STATIC POWER-SUPFLY)Y)))
(SR HODE RIC00
(CRET 0 20 : Try to fire these 2 in seouence.

CINPUTS NTL)
(MG MIL)
(PRERFEGUISITE NTIL)
(RiJI_EC {

Remember starting time.
1 7

LWINDOW=-PRINT “TIME-WINDOW "START (:= " (STATIC STIME) (GETTIME)))

: Invoke another ruleset...
(PCRFORM CPUDDLE "WIRTH "CONTROL (STATIC "ROBOT) (STATIC ‘POWER-SUPFLY)))

v Netify user of total duration.

e CWINDNW -2 INT O TIME-WINDOW "DURATION (TIME~-DIFFERENCE -
(STATIC "STIME) (GETTIME)Y)Y)
Y)
)
s = wlDfﬁ E&NfROL RULESET VERSION 1.1
: _Haw to monitor And reoulate current snd speed based on puddlie widih trends.
(FWl3R7 : Internal name of this ruleart.

; Variable declaraticns (svmbol . init-value)
(STRTINS ((ROBOT . NIL) (FOWER-SUSPLY . NI
({GLOBALS ((DT . NiL) (DELTA-1 . NIL) (DELTA-S . NIL)))

E Which are the applicable taskg?
T L P T WIDTH CONTROL (STATIC RCBOT)
(STATIC PUWER-SUPPLY)))

i How are the rules to be scanned/selected?

4,877,940
257 258

(SELM3DE FL

: No pre-determined firings.
(CSET NIy

: Can this ruleset be used at this moment?
oo (CUNSTANT "WELD-ABORTED))))

(PRERRGITSTTFE (Al

v Imitialization before usino scanning rules,
(ERTRY (= T (BLUOBRL DT (W-TIME-DERIV (FARAMETER "WIDIH "GET "ALL)Y))Y)

: Relevant process variables
CILEUTS o FaramMETER "WIDTHY (PARAGMETER " 1)
(PARAMETER "SPEED) (PARAMETER 'SHIELD-GAS-TEMP)))

: The rules themselves...
(RLES

: A quick check on shielding gas dewnt temp.
1 (., (PARAMETER SHIELD-GAS-TEMP)
(CONSTANT " DEWPOINT-TEMP))

(ABORT "ABOVE "DEWRPJINT (STATIC "ROBOT)))

{ Check if puddle has exceeded controllable
i limits, i.e. too big or small to correct?
(2 (< (PARAMETER "WIDTH)
(CONSTANT " WMINP))
(ABORT " TOO '"SMALL "PUDDLE (STATIC "ROBOT)Y))

(3 (> (PARAMETER "WIDTH)
(CONSTANT " WHMAXP))
(ABORT "TOO "WIDE "PUDDLE (STATIC "ROBCT)))

1 Assuming now that the puddle is within

; controllable limits.

s These rules decide how to change current,
; or speed to maintain desired heat input.

: Puddle small. Adjust current only?
(4 (AND (< (PARAMETER "1
(¥2@.95 (CONSTANT “1IQ@)))
(< (PARAMETER "WIDTH)
(CONSTANT “WMAXC)))
(PERFORM “TOO ‘'LOW "CURRENT (STATIC 'POWER-SUPPLY)))
TooTTTTmTmT T s pPuddle small. Adiust speed and current?
(S (&iDh (< {PARAMETER " I)
(% .95 (CONSTANT " 102
(> (PARAMETER "WIDTHY
(CONSTANT "WMAXCHY)
"(LOBAL "DELTA-S)
(CONSTANT "DELTA-S-HIGH)))
(PERFQRM ‘CHANGE "SFEED (STATIC "ROBOT)
(GLOBAL "DELTA-S))
(PERFORM " TQO "LOW 'CURRENT (STATIC ‘POWER-SUPPLY)))

Iy

: Puddle large. Adjust current oniv”
e (AND (7 (PARAMETFR " 1)

(x 1.35% (CONSTANT “iQ)))
Cr (FaxkamsTER "WIDTH)
(COLSTANT “WMINC)Y 3

(ZESTGORM CTO0 CHIGH CCURRENT (STATIC POWER-SUPPLY)))

: Current too high but puddle too small?
(7 (AND (> (PARAMETER ' 1D .
¢ ¥ 1.25 (CONSTANT " 1G)Y))
(< {PLROMETER "WIDTH)
(CONSTANT "WMINZ))
t:= "~ (GLORBAL "DELTA-%)
(= (CONSTANT "DELTA-S5-HIGH)Y)))
(PERFORM ‘CHANGE “SPEED (STATIC "ROBOT)
(GL.OBAL "DELTA-G))
SERFORM O TOD HIGH CCURRENT (STATIC "FOWER~SUPPLY)))

4,877,940
259 260

: Last puddle width ok. but new one too big
and the rate of increase not too areat?
Then 1If current can be decreased, do it.
(o CaND (= " (GLOBAL "DELTA-1) (- (CONSTANT "DELTA-I-HIGH)Y))
(% (FARAMETER "WIDTH)
(CONSTANT ~WMA&XT))
(<= (FPARAMETER "WIDTH "'GET -1)
CCONSTANT “WMAXC))
(>= (GLOBAL DT
(CONSTANT "D-HIGH))
(> (+ (PARAMETER "I}
(GLOGBAL "DELTA-I))
(% @.95 (CONSTANT " 1Q)3))
(PERFORM "CHANGE °CURRENT (STATIC 'POWER-SUPPLY)
(GLOBAL "DELTA-1)))

; Same as (B) but change speed instead.
(9 (AND (> (PARAMETER "WIDTH)
(CONSTANT ~WMAXC)Y)
(<= (PARAMETER "WIDTH "'GET -1)
(CONSTANT “WMAXC))
(GLOBAL "DT)
(CONSTANT " D-HIGH))
(<= (+ (PARAMETER 1)
' (GLOBAL "DELTA-I))
¢ % 0.95 (CONSTANT "1GQ)))
"{GLOBAL ‘DELTA-S)
(CONSTANT "DELTA-S-HIGH)Y))
(FERFORM "CHANGE ‘'SPEED (STATIC "ROBOT)
(GLOBAL "DELTA-G)))
: Rules (1@) toc (15) similar to (B) anc (9
: decide how much to change speed or current
based omn rate of puddle width chaenge.

N
1)

(:

3}

WD (r= A BLUBAL CELTe-1)
(= (CONSTAMT "DELTA-I-LGW))
(> (PRRAMETER "WIDTH)
(CONSTEANT WMAXC)
£/R CWIDTH "GET -1
(CONSTANT "uMaxTi
(- (GLORAL DT
(TOMNETANT D-wT1EH)
(* ¢ + (PARAMETER "I
(GLOBAL "DMELTA-1))
* @LOD (COMSTANT " 10
TCHANRGE T CURRENT (STATIC "PORER-SUSPLY)
(LGLABAL "DELTA-1))

5
n
n
N
n

Similar to (9.
(11 (ARD (> (PARAMETER "WIDTH)
’ (CONSTANT " WMAXC))
(<= (PARAMETER "WIDTH "BET -1)
(CONSTANT WM& YC)Y)

i D-HIGH)) -
o + (PARGMETER 1)
(GLOSAL "DELTA-1))
¢ * .93 (CONSTENT 1311
{ i DRI TA-S)

S "DELTA-S-L0OW)Y)
B OHANGE T SPEED (STATIC "ROBOT)
(GLCBAL "DELTA-S)Y)?

f12 oty s (PARGMETER CWIDTH)
{CONSTANT “WMRXC))
(> (PARAMETER "WIDTH "GET -1)
(CONSTANT " WHMAXCH)
(GLOBAL "'DT)
(CONSTANT "D-LOW))
(> (+ (PARAMETER " 1)
(GLOBAL "DELTA-1))
(x @.935 (CONSTANT "1Q))))

~
i

Eut

4,877,940
261 ' 262

(PERFG?M "CHANGE °"CURRENT (STATIC ‘POWER-SUPPLY)
(GLOBAL "DELTA-I)3)

(13 (AND (> (PARAMETER "WIDTH)
(CONSTANT "WMAXC))
(> (PARAMETER "WIDRTH "GET -1)
(CONSTANT " WMAXC))
(>= (GLOBAL 'DT)
(CONSTANT “D-L0OW))
(<= (+ (PARAMETER 1)
(GLOBAL "DELTA-I1))
(¥ ©.935 (CONSTANT "13)))
(1= '(GLOBAL DELTA-5)
CCONSTANT "DELTA-S-HIGH)))
(PERFORM THANGE "SPEED (STATIC 'ROBOT)
(GLOBAL "DELTA-S5)))

(14 (AND (:= " (GLOBAL 'DELTA-1)

(- (CONSTANT "DELTA-I1-LOW:)
(> (PARAMETER "WIDTH)
(CONSTANT “WMAXCH)
(> (PARGMETER "WIDIH GET -1)
(CONSTANT " WMaxTy)
(< (ABS (GLOBAL DT
(CONSTANT "D-LQOW)Y)

(> (+ (PARAMETER '1) (GLOBAL 'DELTA-1))
(* @.93 (CONSTANT " IG))))
(PERFDRM ' CHANBE “CURRENT (STATIC ' POWER-SUPPLY)

(GLOBAL "DELTA-1)))

(1S (AND (> (PARAMETER "WIDTH)Y
(CONSTANT " WmaxTh)
(> (PARAMITER "WIDTH "GET -1
(CORNSTANT " WMaXx())
(< (ARS (GLOBAL DT
(CONGTAMNT " D-L0W)
(+= (+ (PARAMETER 1)
(GLOBAL "DELTA-1))
(% @.99 (CONSTANT ~1G)3))
(:= " (GLOBAL "DELTA-S)
(CONSTONT T DELTA~-S-L 0k))
P RPESEQRM CCHANET CGPEED (STATIC CROROTH
(GLOEXL "DELTA-S))

: Like (%) but for shrimking pudgdle.
(1o (&3 (0 (PARAMETER "WIDTH)
(CONSTANT "WMINZ))
(2= (FARGMETCR "WIDTH "GET ~1)
(CONSTANT "WMINC)H)

(¢= (GBLGBAL LT
(~ (CONSTANT "D-HIGHI))
(:= "(GLOBAL 'DELTA-%5)

(- (CONSTANT "DELTA-S-RIGH)))
(PERFORM " CHANGE “SPEED (STATIC "ROBOT)
(GLOBAL "DELTA-S)))

: Similar to (1é&).
(17 (AND (< (FARAMETER "WIDTH)
(CONSTANT "WMINC)Y)
(3= (PARAMETER "WIDTH "'GET -1)
(CONSTANT "WMINC))
(x» (GLOBAL DT
(~— (CONSTANMNT "‘D-HIGH)))
(:= ' (GLOBAL ""DELTHA-S)
(= (CONSTANT "DELTA-S-LOW)))
 (PERFORM "CHANGE ' SPEED (STATIC "ROBOT)
(GLOBAL 'DELTA-S)))

: Last puddle - too small as well as this one?
(18 (AND (< (PARAMETER ~WIDTH)
(CONSTANT "WHMINC))

4,877,940
263 264

(< (PARAMETER "WIDTH "GET -1)
(CONSTANT "WMINC))
(< (ARS (GLOBAL "DTH)
(CONSTANT "D-LOW))
(:= " (GLORAL "DELTA-5)
(— (CONSTANT "DELTA-S-LOW)I))

(PERFORM "CHANGE 'SPEED (STATIC "ROBOT)
(GLCORAL "DELTA-S)))

Similar to (18).
(16 (ARD (¢ (PARGMETER "WIDTH)
(OPNSTANT WMIMCT))
(¢ (PRAREAMETER "WIDTH "GET -1)
(COHSTANT WMINT)
(<= (BLOBAL DT
(- (CONSTANT “D-L0OW)))
(:= "{GLOBaL DELTA-S
t= (CONSTANT "DELTA-S-HIGH) 1))
(HERTORM CHANGE SPEED (STATIC "RORST)Y (GLOBAL "DELTA-S)))

i RDPRS.RLS ARNVE DEWPOTINT RULESET VERSION 1.0

11 what to ga 14 Shielding gas dewpoint temperature exceeds limits.

et
V21 ATICS ((RGRGT o NILYW)
(TASKS ((ARBOVE DEWPOINT (STATIC ROBOTY)I M)
({SELMTODE FD)
(CSET NIL)
= = ¢
: Simply shut down rabot.
(1 T
(WIiNDWw—FrINT M%b—WINDDW
' ield Gas Temp > Dewpoint. ABORTING 01
(PFREARM NET-MESSAGE (STATIC “ROBOT)
"HALT ROBHT IMMEDTATELY"))
1)
)
TR=R5.RLS TOO SMALL PUDDLE RULESET VERSION 1.0

{STATICS ((ROBOT . NIiL))

CTASKS ((700 SMALL PUDDLE (STATIC ROBOT)Y))
(SELMODE FD)

(CSET NIL)

(RULES (

; Simply halt robot,
[T
(WINDGW=-PRINT "MSG~WINDOW
""Puddle Too Small. ABORTING 't)
(PERFORM "NET-MESSALE (STATIC "ROBOT)
TUHALT ROBOT IMMEDIATELY"))

= ToO WIDE anLE RULESET VERSION 1.0

ATICS ¢ (ROBOT . NIL))
SRS ((700 WIDE PUDDLE (STATIC ROBOT)))

(SELMODE

265

FD)

(CEET NIL)

VRULES ¢

T
(Wi NDOW=-PRINT

TMEG-WINDOW

""Pudadle Too Wide.

(PERFORM

)
)

THIRG,RLE

(STATICS
(TASKS «
{SELMODE
(USET NIL
(RULES ¢

TNET~

MESSAGE (STATIC

""HALT ROBOT IMMEDIATELY"

((POWER-S
(TOO HIGH CURRENT
FD)
)

4,877,940

ABORT ING

ROBOT)

TOO HIGH CURRENT RULESET.

UPPLY
(STATIC

266

Simply halt robot.

o

)

3y
;

)

NIL)Y)

‘POWER-SUPPLY)Y)))

VERSION 1.@

to best value.

AR

)

: Simply lower currenrt
(1 5
CWIHLDGOW=PRINT "MSG-WINDOW
"1 oie > 5% OF Ig...Derciding To Lower Current
(PERFORM "NET-MEGRANRE (STATIC "POWFR-SUPPLY)
"UMLOWER CURRENT TO" (CONSTANT 101
1)
11 THIORS RS TOO LDW CURRENT RULESET.
t: What to do 2 f the current 1s too low.
 TLLRS
{STATICS ((FUOWER-SUPPLY NIL)Y)
(1TASKS ((TOO LOW CURRENT (STATIC 'POWER-SUPPLY))))
(SELMODE FD)
(CSET NIL)
(RULES (
; simply raise current

€1 T
(WINDROW-PRINT

(PERFORM INET

"MSG-WINDQW

T is < 3% 0OF Iq
-MESSAGE (STATIC
TURAICGE

‘POWER-S
CURRENT

CHANGE SPEED RULESET

...Deciding To Raise Current

UPPL Y

T0O" (CONSTANT 10

VERSION .@&
to he=t value.
I!|")
)

VERSION 1.0

11 OHE LS
=
H What to oo 14 the travel speed needs
(Criaivg
(8TATICS ((RUBUT . NIL)
(TASKS ((CHANGE SPEED
(SELMODE FD)
(CYET NIL)
VRULES (
(1 T

CRIINDOW-PRINT

" "ESoeead neesds to be changed by:

TMSG-WINDOW

(DELTA-S

to be changed.

NTIL))

.

(STATIC ROBOT)

(STATIC DELTA-5))))

Snew Sold + Sdelta

(STATIC "DRELTA-%))

4,877,940 ‘

)

(RPERFORM TNET-MESSAGE (STATIC "ROBAOTH
CUUHANGE SPEED TO:t (+ (PARAMETER “SPEED) (STATIC "DLRITA-%)))
vy
)
1 CHERS.RLS CHANGE CURRENT RULESET VERSION .

(STATICS ((POWER-SUPPLY . NIL) (DELTA-TI . NIL))
(TASKS ((CHANGE CURRENT (STATIC POWER-SUPPLY)
(STATIC DELTA-I))Y

: Inew = Iold + Idelta.

WY MEG-WINDOW

ent nesde to be changed bv:” (STATIC "DELTA-1)Y)

T-MESRAGE (STATIC " PDWFR-SUPPLY)

CUHANGE CURRENT 10" (+ (PARAMETER 1) (STATIC "DELTA-I)YY 3y)

(FERFOSM 'K

[N

13 METALRLS EXAMPLE META RULES FOR USE BY THE CONSISTENCY CHECKER

t (AND (PARTS-EDQUAL™ "PREMISES RULE-CURFRENT NEW-RULE)
(PRARTS-EQUALT CONCLUSIONS RULE-CURRENT NEW-RULE))
(LIST "SIMPLE-REDUNDANCY))

((AT (FPARTS-EQUALTY "PREMISES RULE-CURRENT NFW-RULE)
(NQT (RPARTS-EQUaL T T CONCLUSIONS RULE-CURRENT NEW-RULE)))
(LUIST TSIMPLE-NEGATION))

((AND (CANDIDATES RULE-CURRENT NEW-RUILE)
CCOMMON-BPARM=-UA HES-CONFLICT RULE-CURRENT NEW-RULE)
(OR (SINGLE-VAL UED-PARM (CONFLICTING-COMMON~PARM
RULE-CURRENT NEW-RULE)}
(NUMERTC=-VALUED-PARM (CONFLICTING-COMMON-PARM
RULE~-CURRENT NEW-RULE))))

(LT1ST "CUOMPLEX-NEGATTION (CONFLICTING-COMMON-PARM RULE-CURRENT NEW-RULE)))
O (AND (CANDIDATES RULE-CURRENT NEW-RULLE)
(COMMON-PARMS~HAVE-SAME-VALUES RULE-CURRENT NEW-RULE)) -
(LIST COMPLEX-REDUNDANDIY (COMMON-PARMES-SAME (COMMON-PARMS

RULE~-CURRENT NEW-RULLE))))

((AND (CANDIDATES RULE-CURFENT NEW-RULE)
(COMMSN-PARM-VALUES-CONFLICT RULE-CURRENT NEW-RULE)
(MULTI-VALUED~PARM (CONFLICTING-COMMON-FPARM RULE-CURRENT NEW-RULE)))
(LIST "COMPLEX~-SUBSUMPTION (CONFLICTING-COMMON-PARM RULE-CURRENT NEW-RULE))
((and (not (incorrect-elt-number clause))

(INCORRECT-ELT-0RDER CLAUSE))

("Invalid ordering of elements in the clause"))

)

4,877,940
269 270

((and (not (incorrect-elt-number clause))
(INVRL ID-PARM~FUNCTION (FIRST CLAUSE) (SECOND CLAUSE)))

{"Atitempt to spply an invalid function to the given parameter"))
((and (not (incorrect-elt-number clause))
(INVALID-PARM=-VALUE (second CLAUSE) (THIRD CLAUSE)))

("Attempt to apply an invalid value to the given parameter"))

((INCDRRECT-ELT-NUMBER CLAUSE)

("Attempt to create a clause with an invalid number of elements (<> 3) "))

APPENDIX X

EXTENDED BACKUS-NAUR FORMAL DEFINITION OF
EXPERT ADVISABLE ADAPTIVE CONTROLLER

o
s

§
XADVAC ::= Expert Controller || fadvisor | Actory
Expert Controller © ::= Advisor || §§ﬁ§?ﬁca1 Layer.§ @@
Advisor := mIx || Know&edge Layer || %‘quTZH;
Logical Layer || Physical Layer ||
{Actor/i }'ﬂﬁ *@’Z{I’v
Actor ::= Aapplication Layer || Knowledge _.Layer ||
Logical Layer || Physical Layer
MIX ::= "Multi-Inferencing Expert System" || APCL
Application Layer ::= Layer || "Application Specific Knowledge"
Physical Layer ::= Layer || "Data Transmission Specific
Knowledge"
Logical Layer ::= Layer || "Logical Destination Knowledge"
Knowledge Layer ::= Layer || "Knowledge Translator"
Layer ::= Program H Programming Language
Program : ::= "Connected series of statements to solve
a problem”
Programming Language s:= APCL|"C" | "Pascal® | "assembler" | etc...
APCL v ::= Advisable Process Control Language
SYMBOL KEY: RS "is defined to be"
| "or" alternative
H "together with"
g} 0 or more occurences
{1 0 or 1 occurence
v defined elsewhere
Ruleset o ::= RulesetLabel {StaticDecl | GlobalDecl |

LocalDecl | TaskExp | Inputs| MaskExp
Prerequisites | CdnflictSet{H
SelectionMode || {Rules]

4,877,940

27N 272
RulesetLabel ::= Identifier
StaticDel ::= "Statics" || | var Decl]
GlobalDecl ::= "Globals"|| | var Decl|
LocalDecl ::= "Locals" || { Rule Label: || vVar Decl
TaskExp ::= "Tasks" || | lisp expressions]
Inputs ::= "Inputs" || ’ Parameter Names{
MaskExp ::= Boolean Expr.
Prereguisites ¢:= "Prerequisites" Il Boolean Expr
ConflictSet ::= “"Cset" || { Rule Labels}
Selection Mode ::= "Selmode" || "FL" | “FD"VI "TARD" |

other key words

Rule ::= Rule Label ll If Expr H iThen Expr]
RuleLabel ::= Identifier
IfExpr ::= Boolean Expr.
ThenExpr 1= .BOQL-};Segﬂ Expr. @W fﬁ ZR@
VarDecl ::= Identifier |l Initial vlue

II.

III.

VI.

VII(A).

VII(B).

VIII.

'APPENDIX XI
MER

INDEX TO APPENDICES %Kﬁ ﬂ,‘&
Files Automatically Loaded a&—aneﬁénéygt

Power-Up

a. Bootstrap File EorAAny Lisp Node
b. Bootstrap File for Image Processor Node
c. Additional Bootstrap File for Lisp Nodes
Utility Lisp Functions
Expert Knowledge Representation System
Semantic Net Knowledge Representation System
Consistency Checker System

Frames Knowledge Representation System

Lisp/Pascal Communication and Process Scheduler

Software Interface

Pascal Communication and Scheduling Interface
for Serial Ports, Hardware Clock and Lisp

et

C" Image Processing Code

4,877,940

274

273
IX. Example Knowledge Basis for Frames, Expert
System and Consistency Checker
%. Backus-Naur Formal Definition of Expert
Advisable Adaptive Controller
XI. Index to Appendices

What is claimed is:

1. A real time welding process for welding adjacent
materials with a weld puddle formed between the mate-
rials, said method comprising the steps of bringing a
welding apparatus and consumable and the materials
together to form a weld puddle at the interface of the
adjacent materials, producing relative motion between
the welding apparatus and the materials thereby defin-
ing a front edge of the weld puddle, thermographically
scanning the weld puddie and its adjacent heat affected
zone from the front and producing image signals repre-
sentative of a thermographic image of the weld, analyz-
ing said puddle image signals to extract therefrom data
indicative of irregularities in the welding procedure,
and adjusting the welding procedure to reduce said
irregularities.

2. A welding process in accordance with claim 1
wherein the step of adjusting the welding procedure
includes the steps of adjusting the electrical power pro-
vided and adjusting the position of the welding appara-
tus torch.

3. A welding process in accordance with claim 1 in
which the data extracted defines the size of the weld
puddle, and in which the step of adjusting the welding
procedure includes the steps of determining whether
adjustment of the electrical power provided to the
torch will modify the puddle shape to within a predeter-
mined range, and adjusting the travel speed of the torch
when adjustment of the current is not sufficient.

4. A welding process in accordance with claim 3
including the step of determining whether a predeter-
mined amperage change will adjust the width of the
puddle to within a predetermined puddle range and, if
not, then determining the speed adjustment necessary
for the torch to change the width of the puddle suffi-
ciently to cause it to fall within said predetermined
range, and then changing the speed of torch travel ac-
cordingly.

5. A welding process in accordance with claim 1
including the step of storing procedure variables in real
'time for later analysis.

6. A welding process in accordance with claim 1
including the step of inspecting the weld puddle for
defects in real time during the welding of the materials.

7. A welding process in accordance with claim 1 in
which the adjusting step includes adjustment of the
following:

(a) voltage or amperage,

(b) lateral and/or angular setting of the welding

torch,

(c) speed of torch travel, and

(d) angular adjustment to a track angle.

8. A welding process in accordance with claim 1
including the steps of taking isotherm line scans of the
weld puddle and relating the isotherms in real time to
weld size measurements.

9. A welding process in accordance with claim 1

25

40

45

60

65

including the analysis in real time of the isotherm scan:
of weld size as a function of weld current.

10. A welding process in accordance with claim 1 ir
which the width and depth of the weld puddle is deter-
mined in real time,

11. A welding process in accordance with claim 1
wherein the welding apparatus employs gas shielding tc
form and protect the weld puddle, and including the
steps of determining the dew point of the shield ga:
employed during welding, and aborting the welding
operation when selected irregularities appear and the
dew point of the gas indicates the shielding gas is toc
humid.

12. A welding process in accordance with claim 1 ir
which the forward tip of the image of the weld puddle
is analyzed for projections indicating deviation of the
weld path from the seam direction, and in which the
welding procedure is adjusted to more closely track the
weld seam.

13. A welding process in accordance with claim 1 in
which the data indicative of irregularities extracted
from the image signals include the width of the weld
puddle.

14. A welding process in accordance with claim 1 in
which the data indicative of irregularities extracted
from the image signals include the width of the weld
puddle measured perpendicular to the path of travel.

15. A welding process in accordance with claim 1 in
which the data indicative of irregularities extracted
from the image signals include the rate of heat flow out
of the puddie.

16. A welding process in accordance with claim 1 in
which the data indicative of irregularities extracted
from the image signals include a determination of the
difference in puddle brightness at points on the puddle
perimeter.

17. A welding process in accordance with claim 1 in
which the data indicative of irregularities extracted
from the image signals include the rate of heat flow out
of the puddle determined by taking the reciprocal of the
distance between two points at predetermined respec-
tive higher and lower brightness levels located on either
side of the puddle perimeter.

18. A welding process in accordance with claim 1 in
which the data indicative of irregularities extracted
from the image signals include the change in puddle
geometry at its perimeter at a point defined by the pe-
rimeter and a line perpendicular to the direction of
travel passing through the puddle center.

19. A welding process in accordance with claim 1 in
which the data indicative of irregularities extracted
from the image signals include the number of times the
actual puddle perimeter crosses over a theoretical
smooth puddie perimeter within a given zone.

20. A welding process in accordance with claim 1
wherein the zone encloses the leading edge of the pud-
dle.

21. A welding process in accordance with claim 1

4,877,940

275

wherein the zone encloses a portion of the puddle pe-
rimeter to the left or right of the puddle center.

22. A welding process in accordance with claim 1 in
which the data indicative of irregularities extracted
from the image signals include measurements of the area
of the puddle within a zone that overlaps its perimeter.

23. A welding process in accordance with claim 1 in
which the data indicative of irregularities extracted
from the image signals include a measurement of the
length of the puddle perimeter.

24. A welding process in accordance with claim 1 in
which the data indicative of irregularities extracted
from the image signals include measuring the length of
the puddle perimeter within a zone that overlaps its
perimeter.

25. A welding process in accordance with claim 1 in

which the data indicative of irregularities extracted.

from the image signals includes measuring the area of
the puddle within a zone that overlaps the perimeter.

26. A welding arrangement for controlling the weld-
ing of selected adjacent materials, said welding arrange-
ment comprising infra-red detection means for observ-
ing radiation from the vicinity of the weld, said detec-
tion means effective for producing weld signals indica-
tive of conditions detected with regard to welding oper-
ations, analysis means for receiving weld signals pro-
duced by said detection means, said analysis means
effective for analyzing said weld signals to establish an
analytical representation thereof, controller means for
receiving the results of analysis from said analysis
means, said controller means comprising memory
means for holding a plurality of knowledge bases in-
cluding a semantic network effective for defining the
interrelationship of predetermined goals and subgoals
descriptive of the accomplishment of welding opera-
tions, said memory means further including a rule base
including predetermined rules enabling the develop-
ment of inferences with respect to said analysis of said
weld signals, knowledge mechanism means distributed
over a plurality of nodes for implementing directions
provided by said respective knowledge bases, and
scheduling means for determining the performance of
inferencing operations according to the rules in said rule
base.

27. A welding arrangement according to claim 26
wherein said knowledge means is distributed over a
plurality of hardware nodes.

28. A welding arrangement according to claim 26,
said controller means further comprising knowledge
layer means for ascertaining the node location of partic-
ular knowledge bases.

29. A welding arrangement according to claim 26,
said controller means comprising means for communi-
cating knowledge between nodes in response to an in-
ference process.

30. A welding arrangement according to claim 26
wherein said scheduling means controls the transfer of
inference processes between running, ready and sus-
pended queues.

31. A welding arrangement according to claim 26
comprising running, ready and suspended queues to
enable inference processing.

32. A welding arrangement according to claim 26
wherein said detection means is effective for infrared
detection of said weld puddle.

33. A welding arrangement according to claim 26
wherein said analysis means provides an indication of
weld puddle width.

34. A welding arrangement according to claim 26

10

40

45

55

60

65

276

wherein said analysis means provides an indication of
weld puddle position.

35. A welding arrangement according to claim 26
wherein said rule base halts the operation of welding if
said welding arrangement detects irregularities and if
the shield gas dew point indicates the shield gas is drier
than a predetermined limit.

36. A method for welding selected adjacent materials
with a weld puddie along the edges at which the materi-
als abut and including a consumable, by producing rela-
tive motion between the materials and welding appara-
tus and observing radiation of heat from the leading
edge of said weld puddle, by analyzing the pattern of
said radiation, and by adjusting weld speed and current
in view of the results of said analysis.

37. The method according to claim 36, wherein said
analysis determines the width of said weld puddle.

38. The method according to claim 36, wherein said
analysis determines whether the dimensions of the weld
puddle fall within a predetermined range of values.

39. The method according to claim 36, wherein weld
speed is decreased, if said weld puddle is too small.

40. The method according to claim 36, wherein the
weld current is increased, if said weld puddle is too
small.

41. The method according to claim 36, wherein said
weld current is modified in response to the cooling rate
of said weld puddle.

42. The method according to claim 36, wherein said
weld speed is modified in response to the cooling rate of
said weld puddie.

43. The method of claim 36, wherein analysis of the
pattern of said radiation includes observation of protru-
sions in the leading edge of said weld puddle.

4. The method according to claim 43, including
making a determination of whether said protrusions are
indicative of mismatch, misalignment and root opening
defects.

45. The method of claim 36, wherein the analysis
determines the cooling rate of said weld puddle by by a
predetermined average of pixel values across the edge
of the weld puddle.

46. The method according to claim 45, wherein deter-
mining said cooling rate includes subtracting pixel val-
ues separated by a predetermined length across the edge
of the weld.

47. The method according to claim 45, wherein the
average is established by subtracting selected separated
pixel values straddling the edge of the weld puddle and
dividing by the amount of separation.

48. The welding method according to claim 1 or 36
wherein the welding is halted when said weld puddle
reaches a predetermined size.

49. The invention according to claims 1 or 36,
wherein the track of welding is adjusted in response to
establishment of an angle of deviation from the weld
seam.

50. The invention according to claim 49, wherein said
angle of deviation is established in response to misalign-
ment of said welding apparatus.

51. The invention according to claim 50, wherein said
misalignment is indicated by the direction of a protru-
sion along the leading edge of said weld puddle.

52. The invention according to claims 1 or 36,
wherein the angle of said welder from a perpendicular
to said welded surfaces is adjusted in response to the
appearance of a mismatch condition.

§3. The invention according to claim 52, wherein said
mismatch is indicated by the shape of a protrusion in the
leading edge of said weld puddle.

27T

54. A welding apparatus for controlling the welding
of selected materials and including an automated weld-
ing apparatus, said welding apparatus comprising:

image capturing means for capturing a heat image of

at least a single selected zone of the weld region
and producing a digital representation of said im-
age;

first high-speed information processing means con-

necting to said image capturing means to receive
said digital representation for extracting from said
representation at high speed a much smaller
amount of data indicative of irregularities in the
welding process, or the lack thereof;

second artificial intelligence information processing

means connecting to said first high-speed informa-
tion processing means to receive said data indica-
tive of irregularities in the welding process, or the
lack thereof, for analyzing said data using the prin-
ciples of artificial intelligence programming and
for generating process control data; and

third high-speed information processing means con-

necting to said second artificial intelligence infor-
mation processing means to receive said process
control data and connecting to said welding appa-
ratus for operating said welding apparatus under
the control of said process control data;

whereby real time control of welding under artificial

intelligence programming control is achieved.

55. A welding apparatus in accordance with claim 54
wherein the means for operating said welding apparatus
includes means for adjusting the electrical power pro-
vided and adjusting the position of the welding appara-
tus torch.

56. A welding apparatus in accordance with claim 54
in which the data extracted define the size of the weld
puddle, and in which the means for analyzing said data
includes means for determining whether adjustment of
the electrical power provided to the torch will modify
the puddle shape to within a predetermined range, and
means for adjusting the travel speed of the torch when
adjustment of the current is not sufficient.

57. A welding apparatus in accordance with claim 54
including means for determining whether a predeter-
mined amperage change will adjust the width of the
puddle to within a predetermined puddle range, and
means for determining the speed adjustment necessary
for the torch to change the width of the puddle suffi-
ciently to cause it to fall within said predetermined
range, and means for changing the speed of torch travel
accordingly.

58. A welding apparatus in accordance with claim 54
including means for storing data indicative of irregular-
ities in the welding process, or the lack thereof, in real
time during the welding of the materials for later analy-
sis. .

59. A welding apparatus in accordance with claim 54
including means for inspecting the weld puddie for
defects in real time during the welding of the materials.

60. A welding apparatus in accordance with claim 54
in which the means for operating said welding appara-
tus includes means for adjusting voltage or amperage;
means for adjusting lateral and/or anguiar adjustments
of the welding torch position; means for adjusting the
speed of torch travel; and means for adjusting angular
adjustment to a track angle.

61. A welding apparatus in accordance with claim 54
including means for taking isotherm line scans of the
weld puddle and means for relating the isotherms in real
time to weld size measurements.

20

45

60

65

4,877,940

278

62. A welding apparatus in accordance with claim 61
including means for analysis in real time of the isotherm
scans of weld size as a function of weld current.

63. A welding apparatus in accordance with claim 54
in which the width and depth of the weld puddle is
determined in real time.

64. A welding apparatus in accordance with claim 54
including means for monitoring shield gas dew point
during welding, and which further includes means for
aborting welding operations when the dew point indi-
cates the shielding gas is too humid.

65. A welding apparatus in accordance with claim 54
in which the forward tip of the image of the weld pud-
dle is analyzed for projections indicating deviation of
weld path from seam direction and adjusted to more
closely track the weld seam.

66. A welding apparatus in accordance with claim 54
in which the data indicative of irregularities extracted
from the image signals include the width of the weld
puddle.

67. A welding apparatus in accordance with claim 54
in which the data indicative of irregularities extracted
from the image signals include the width of the weld
puddle measured perpendicular to the path of travel
through the center of brightness of the puddle to points
on the puddle perimeter of lower brightness than the
brightness at the center of brightness.

68. A welding apparatus in accordance with claim 54
in which the data indicative of irregularities extracted
from the image signals include the rate of heat flow out
of the puddle.

69. A welding apparatus in accordance with claim 54
in which the data indicative of irregularities extracted
from the image signals include a measurement of the
change in puddle brightness at points adjacent to the
puddle perimeter.

70. A welding apparatus in accordance with claim 54
in which the datd indicative of irregularities extracted
from the image signals include the rate of heat flow out
of the puddle determined by taking the reciprocal of the
distance between two points at predetermined respec-
tive higher and lower brightness levels located on either
side of the puddle perimeter.

71. A welding apparatus in accordance with claim 54 ~
in which the data indicative of irregularities extracted
from the image signals include the rate of change in
puddle brightness at its perimeter at a point defined by
the perimeter and a line perpendicular to the direction
of travel passing through the puddle center of bright-
ness.

72. A welding apparatus in accordance with claim 54
in which the data indicative of irregularities extracted
from the image signals include the number of times the
actual puddle perimeter crosses over a theoretical
smooth puddle perimeter within a given zone.

73. A welding apparatus in accordance with claim 54
wherein at least one of said zones contains the leading
edge of the puddle.

74. A welding apparatus in accordance with claim 54
wherein at least one of said zones encloses a portion of
the puddle perimeter to the left or right of the puddle
center.

75. A welding apparatus in accordance with claim 54
in which the data indicative of irregularities extracted
from the image signals include measurements of the area
of the puddle within a zone that overlaps its perimeter.

76. A welding apparatus in accordance with claim 54
in which the data indicative of irregularities extracted

4,877,940

279

from the image signals include measuring the length of
the puddle perimeter.
77. A welding apparatus in accordance with claim 54
in which the data indicative of irregularities extracted
from the image signals include measuring the length of
the puddle perimeter within a zone that overlaps its
perimeter.
78. A welding apparatus in accordance with claim 54
in which the data indicative of irregularities extracted
from the image signals include measuring the area of the
puddle within a zone that overlaps the perimeter.
79. A welding apparatus for controlling the welding
of selected adjacent materials with a weld puddle along
their interface formed from adjacent materials and a
consumable comprising:
infrared detection means sensitive to thermal radia-
tion in the vicinity of 10 to 11 microns where the
puddle leading edge defects are visible attached to
said automatic welder for observing infrared radia-
tion from the leading edge of said weld puddle and
generating data representing an image of said pud-
- dle; and

information processing means connected to said in-
frared detection means for analyzing said data, and
effective for establishing control strategies there-
from, and for operating said automatic welder in
accordance with said control strategies.

80. A welding apparatus for welding with a weld
puddle using a controllable welder device, said appara-
tus comprising:

image detection means for observing radiation emit-

ted from said weld puddle and for generating data
representing an image of said puddle;

image data reduction means connected to said image

detection means to receive said data representing
an image, for analyzing said data to derive there-
from a reduced amount of data characterizing said
image;

image analysis means connecting to said image data

reduction means to receive said reduced amount of
data for analyzing said reduced amount of data to
derive therefrom data characterizing the welding
process and any irregularities therein;

control strategy determination means connecting to

said image analysis means to receive said data char-
acterizing the welding process and any irregular-
ities therein, for analyzing said data characterizing
the welding process to derive therefrom data char-
acterizing control strategies to govern the welding
process;

control implementation means connecting to said

contro! strategy determination means to receive
said data characterizing control strategies and also
connecting to said controllable welder device for
operating said welder, in accordance with said
control strategies; and

wherein said image data reduction means, image anal-

ysis means, control strategy determination means,
and control implementation means are imple-
mented as separate nodes, at least some of which
nodes reside on independent data processors.

81. An apparatus in accordance with claim 80
wherein said image analysis means and conirol strategy
determination means are implemented using artificial
intelligence programming techniques so that a knowl-
edge engineer working with experts in welding may
design the process control strategies that control the
welding process.

82. A welding method for welding materials along a

15

30

35

40

45

50

65

280

seam established therebetween by the progress of 2
weld puddle including a consumable, said method com-
prising the steps of beginning welding operation, in-
specting the geometry of said weld puddle in terms o
protrusions along its leading edge, determining whethe:
said inspection discloses any of a number of predeter-
mined weld defects, and modifying weld process pa-
rameters in response to said determination.

83. The method according to claim 82, wherein the
angle of the track of said weld puddle is adjusted if &
misalignment angle defect is determined.

84. The method according to claim 82, wherein the
angle of said welder is modified if a mismatch defect i¢
determined.

85. The method according to claim 82, wherein the
weld speed is reduced if an excessive root opening it
determined between the materials being welded.

86. The method according to claim 82, wherein saic
weld puddle geometry is interpreted in terms of iso-
therms indicative of weld puddle protrusions at selected
temperature levels.

87. The method according to claim 82, wherein weld-
ing is terminated if the temperature of said weld puddle
gets too hot.

88. The method according to claim 87, wherein weld
puddle temperature is determined by evaluating the
levels of predetermined isotherms in said weld puddle.

89. The method according to claim 82, wherein weld-
ing is terminated if the weld puddle gets too wide.

90. The method according to claim 82, wherein weld-
ing is terminated if the dew point level of the shield gas
employed in welding indicates that the shield gas ex-
ceeds a predetermined maximum humidity value.

91. A welder arrangement for welding a seam in
materials and a consumable to be joined with a weld
puddle traveling along said seam, said arrangement
effective for establishing an arc of current between the
arrangement and said weld puddle, said arc and said
weld puddle substantially enclosed in a shield gas dur-
ing welding operation to protect said weld from degra-
dation during its establishment, said welder arrange-
ment including detection means for detecting the infra-
red geometry of the leading edge of said weld puddle,
said geometry comprising the shape and separation of
isotherms characterizing the heat in said weld puddle at
the time of detection, said welder arrangement includ-
ing analysis means for analyzing the features detected
by said detection means, and including modifying
means for modifying weld process parameters in re-
sponse to said analysis.

92. The arrangement of claim 91, wherein said detec-
tion means is effective for detecting protrusions in the
leading edge of said weld puddle.

93. The arrangement of claim 92, wherein said analy-
sis is effective for classifying the kind of defect which
has caused said protrusion.

94. The arrangement of claim 91, wherein said modi-
fying means includes means for modifying the weld
speed in response to analysis by said analysis means.

95. The arrangement of claim 91, wherein said modi-
fying means includes means for modifying the weld
current in response to analysis by said analysis means.

96. The arrangement of claim 91, wherein said modi-
fying means includes means for modifying the track of
said welder in response to analysis by said analysis
means.

97. The arrangement of claim 91, wherein said modi-
fying means includes means for modifying the angle of

4,877,940

281

said welder from the perpendicular in response to analy-
sis by said analysis means.

98. The arrangement of claim 92, wherein the de-
tected protrusions are indicative of misalignment.

99. The arrangement of claim 92, wherein the de-
tected protrusions are indicative of mismatch.

100. The arrangement of claim 92, wherein the de-
tected protrusions are indicative of excessive root open-
ing.

101. A real time welding process for welding adja-
cent materials with a weld puddle formed between the
materials, said method comprising the steps of bringing
a welding apparatus that employs a gas shield to form
and protect the puddle and the materials together into
position to form the weld puddle at the interface of the
adjacent materials, thermographically scanning the
weld puddle and its adjacent heat affected zone and
producing image signals representative of a thermo-
graphic image of the weld, analyzing said puddle image
signals to extract therefrom data indicative of irregular-
ities in the welding process, adjusting the welding pro-
cedure to reduce said irregularities, determining the
dew point of the shield gas employed during welding,
and aborting the welding operation when selected ir-
regularities appear and the dew point of the gas indi-
cates the shield gas is too humid.

102. A welding arrangement for controlling the weld-
ing of selected adjacent materials with a weld puddle
along their interface, said welding arrangement com-
prising detection means for observing radiation from
said weld puddle, said detection means effective for
producing weld signals indicative of conditions de-
tected with regard to welding operations, analysis
means for receiving weld signals produced by said de-
tection means, said analysis means effective for analyz-
ing said weld signals to establish an analytical represen-
tation thereof, controller means for receiving the results
of analysis from said analysis means, said controller
means comprising memory means for holding a plural-
ity of knowledge bases including a semantic network
effective for defining the interrelationship of predeter-
mined goals and subgoals descriptive of the accomplish-
ment of the welding operation, said memory means
further including a rule base including predetermined
rules enabling the development of inferences with re-
spect to said analysis of said weld signals, and knowl-
edge mechanism means for implementing directions
provided to said respective knowledge bases; and
scheduling means for determining the performance of
inferencing operations according to the rules in said rule
base;

wherein said rule base halts the operation of welding,

if the shield gas dew point indicates the shield gas
is more humid than a predetermined limit.

103. A welding apparatus for controlling the welding
of selected adjacent materials with a weld puddle form-

w

—

0

40

45

50

60

65

282
ing at the point of welding and including an automated
welding apparatus, said welding apparatus comprising:
image capturing means for capturing an image of at
least a single selected zone of the weld puddle and
producing a digital representation of said image;
first high-speed information processing means con-
necting to said image capturing means to receive
said digital representation for extracting form said
representation at high speed a much smaller
amount of data indicative of irregularities in the
welding process, or the lack thereof;

second artificial intelligence information processing

means connecting to said first high-speed informa-
tion processing means to receive said data indica-
tive of irregularities in the welding process, or the
lack thereof, for analyzing said data using the prin-
ciples of artificial intelligence programming and
for generating process control data;

third high-speed information processing means con-

necting to said second artificial intelligence infor-
mation processing means to receive said process
control data and connecting to said welding appa-
ratus for operating said welding apparatus under
the control of said process control data;

means for monitoring shield gas dew point during

welding;

means for aborting the welding operation when the

dew point indicates the shielding gas is too humid,
whereby real time control of welding under artificial
intelligence programming control is achieved.

104. A welding method for welding materials along a
seam established therebetween by the progress of a
weld puddle, said method comprising the steps of begin-
ning the welding operation, inspecting the geometry of
said weld puddle in terms of protrusions along its lead-
ing edge, determining whether said inspection discloses
any of a number of predetermined weld defects, modi-
fying weld process parameters in response to said deter-
mination, and terminating welding if the dew point
level of the shield gas employed in welding indicates
that the shield gas humidity exceeds a predetermined
maximum value. .

105. A real time welding process for welding adja-
cent gnaterials, said method comprising the steps of
bringing a welding apparatus and the materials together
into position for welding, thermographically scanning
the heat affected zone, producing image signals repre-
sentative of the thermographic image of the weld, ana-
lyzing said puddle image signals to extract therefrom
data indicative of irregularities in the welding proce-
dure, adjusting the welding procedure to reduce said
irregularities, and storing the procedure variables in real
time for later analysis as a record of the quality of the

weld.
* * * * *

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

4,877,940 Page 1 of 9

PATENT NO. tob

DATED OZmo :r 31, 1989 ol
. R. Bangs et al.

INVENTOR(S) : Edmun ang

, It is certified that error appears in the ahave-identified patent and that said Letters Patent is herehy
corrected as shown below: '

IN THE DRAWINGS:

Sheet 1 of 16, FIG. 4, in the innermost circle,
after "USER" insert --400--.

Sheet 5 of 16, FIG. 3B, change "16(1)" to
-=16(3)--.
' Sheet 6 of 16, FIG. 5, change "CONTROLLED DEVICE"
to —--CONTROLS--,

Sheet 8 of 16, FIG. 9, after "BLACKBOARD" insert
--, QUEUES--; and after "742" insert --743, 734, 736--.

Sheet 10 of 16, FIG. 12, change "605" to
--218(1)--; change "601" to --218(2)--; and change "609" to
--218(3)--. .

Sheet 13 of 16, FIG. 16, change "737" to --734--.

Sheet 15 of 16, FIG. 19, change "IR 17 DETECTORY to
-~IR DETECTOR 17--; and change "742" to --743--.

Sheet 16 of 16, FiIG. 20, change "CONTROLLED
ELEMENTS" to --CONTROLS--.

Column 6, line 64, after "hardware" insert --and--.
Column 8, line 30, change "imaginary" to --image--.
Column 11, line 22, after "respectively" insert

——; are examined--.

UNITED STATES PATENT AND TR.ADVEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENTND. : 4,877,940 Page 2 of 9
DATED : October 31, 1989
INVENTOR(S) : Edmund R. Bangs et al.

. It is certified that error appears in the above-identified patent and that said Letters Patent is hereby
corrected as shown below: ‘ :

Column 11, line 59, change "coding" to =--cooling--.

Column 12, line 31, after "establish" insert
--the=-~.

Column 14, line 30, change "116(1) to --16(1)--.

Column 15, line 44, change "742" to --743--.

Column 16, line 21, change "115" to --115i--.

Column 16, line 23, change "166" to --16(1)--.

Column 16, line 63, after "152" insert --includes
an inference scheduler or processor 218 (FIGS. 19 and 10)
which--.

Column 16, line 64, delete "218".

Column 17, line 20, change "132" to =-=-152--.

Column 18, line 5, change "742" to =--743--.

Column 18, line 8, change "742" o --743--.

Column 18, line 11, change "742" to =-=743--.

Column 18, line 13, change "742" to =-=743--.,

Column 18, line 15, delete the comna.

Column 18, line 18, delete the comma.

Column 18, line 29, change "Lisp" to --image--.

Column 18, line 30, change "1152" to =--115i--.

Column 19, line 23, change "16(1)" to --16(3)--.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

DATED October 31, 1989
INVENTOR(S) :

Edmund R. Bangs et al.

It is certified that error appearsin the above-identified patent and that said Letters Patent is hereby .
corrected as shown below:

Column 19, line 32, change "16(1)" to --16(3)--.

Column 19, line 66, after "devices" insert --or
controls--.

Column 20, line 41, change "external control 117"
to --auxiliary controller 115x--. i

Column 20, line 49, change "13" to --16--.

Column 20, line 53, change "1i5ad" to --115i--.

Column 20, line 55, change "17" to =--116--.

Column 20, line 56, change "169" to --ll6a--.

Column 20, line 57, change "115x" to --115e--,

Column 20, line 64, change "117" to --116--.

Column 20, line 66, after "Knowledge layer" insert
-=151=--. '

Column 21, line 33, change "155p" to --115p--.

Column 21, line 48, change "6 and 9" to --9 and
13--. \ _

Column 21, line 49, change "FIGS. 6 and 9," to
--FIG. 9--. _

Column 23, line 19, change "60’".to -=601--.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 4,877,940 Page 4 of 9
DATED : October 31, 1989
INVENTOR(S) : Edmund R. Bangs et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby

carrected as shown below:

Column 23, line 22, change " (FIG. 8)" to --(FIG.

13)_—n

Column 23, line 33, change "215" to --601--.

Column
Column

26,

line
line

31, change "281(3)" to --218(3)--.
25, change "breakhandler" to

--break inference interrupt handler--.

Column
--(FIG. 19)--.
Column

Column

26,

26,
26,

line

line
line

--inference interrupt--.

Column

Column

Column

Column
--nmessage--.

Column
16)—-.

Column
17)--.

26,
26,
26,
26,

27,

27,

line
line
line
line

line

line

27, change " (FIG. la)" to

38, change "734" to --737--.
41, after "break!" insert

43, change "734" to --737--.

46, after "218" insert --(2)--.
52, change "219(1)" to --218(1)--.
62-63, after "port" insert ‘

6, after "739’" insert -~(FIG.

14, after "218"n ipgert --(FIG.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO.

4,877,940 Page 5 of 9
DATED : October 31, 1989
INVENTOR(S) : Edmund R. Bangs et al.

It is certified that error appears in the above-identified patent and tha_t said Letters Patent is hereby
corrected as shown below:

Column 27, line 37, change "152" to --153--.

Column 28, line 13, change "215" to =--601--.

Column 28, line 14, change'"representation" to
--base 215--,

Column 29, line 61, after "601" (second occurrence) insert
-—(FIG. 13)--

Column 30, line 38, change "procedure 718" to
--interrupt handler 717--.

Column 30, line 44, change "Control break" to --The
clock 719--.

Column 30, line 50, change "blackboard" to
--non-priority message queue--.]

Column 30, line 52, change "an important" to --a
priority--.

Column 31, line 13, change "blackboard" to
--message queue--.

Column 31, line 14, change "blackboard" to
--message--. '

Column 31, line 21, change "742" to --743--.

Column 31, line 34, change "742" to --743--.

'UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. 4,877,940 Page 6 of 9
DATED : October 31, 1989 '
INVENTOR(S) :

Edmund R. Bangs et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby
corrected as shown below: ’

Column 31, lines 39-40, after "break" (first
occurrence) insert --priority queue--.

Column 31, line 40, after "break" (second
occurrence) insert --non-priority gqueue--.

Column 31, line 54, change "rule base" to
--rules--.

Column 31, line 57, change "rule base" to
--rules--. ,

Column 32, line 17, change "508" to --970--.

Column 32, line 18, change "508" to --970--.

Column 32, line 30, change "741" to --743--.

Column 32, line 33, change "741" to --743--.

Column 32, line 36, change "741" to --743--.

Column 32, line 46, change "21" to --18--.

Column 32, line 48, change "711" to --152'--.

Column 32, line 52, change "709" to --152--.

Column 32, line 68, change "11" to =--10--.

Column 33, line 19, change "218(21)" to --218(2)--.

Column 33, line 39, change "rule set" to --rules--

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

4,877,940

PATENT NO.
DATED
" INVENTOR(S} :

October 31,
Edmund R. Bangs et al.

Page 7 of 9
1989

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby

corrected as shown below:

Column
Column
Column
--rules--.
Column

-—-maximum--.

Column
FIG. 20)--.

Column
-=115e--.

Column
8)--; and after

Colunn
20)--.

Column
6)--.

Column

or 20)--.

33,
34,
34,
34,
35,

35,

35,

line

line

line

line

line

line

line

"XADVACY

35,

35,

35,

line

line

line

68, delete ")" (last occurrence).
8, Before "." insert --)--.

11-12, change "rule set" to

42, change "minimum" to

44, after "including" insert --{(see
45, after "controller" insert

50, change "115" to --115x (FIG.
insert --(FIG. 5)--.

53, after "115ad" insert --(FIG.

54, after "124" insert --(FIG.

58, after "115a" insert --(FIGS. 8

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 4,877,940 Page 8 of 9
DATED October 31, 1989

INVENTQR(S) : Edmund R. Bangs et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby
_ corrected as shown below: :

Column 35, line 60, change "“controllable device" to
--controls--.

Column 35, line 62, after "130" insert --(FIG.
6)--.

Column 36, line 13, after "controller" insert
--115e--.

Column 36, line 14, change "115ad ad" to --115ad
and--.

Column 36, line 22, change "129" to --124--.

Column 37, line 20, after "elements" insert --or
controls--.

Column 37, line 24, change "rule" to --rules--.

Column 37, line 29, change "ccntroller" to
--controller--.

Column 39, line 7, change "742" to --743--.
Column 39, line 26, change "minimus" to
~-minimum--.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. 4,877,940 Page 9 of 9
DATED : October 31, 1989
INVENTOR(S) : Edmund R. Bangs et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby
corrected as shown below:

Column 41, line 10, after "message" insert -="--,

Column 41, line 10, after "))))" add --)--.

Column 41, line 18, after "))" insert --)--.

Column 42, line 28, delete ")" (last occurrence).

Column 274, line 22, after "welding" (first
occurrence) delete the comma.

Column 276, line 40, delete "by" (first
occurrence).

- Column 276, line 51, change "Claim" to =--Claims--.

Column 282, line 8, change "form" to --from--.

Signed and Sealed this
Twenty-third Day of July, 1991

Arntest:

HARRY F. MANBECK, JR.

Antesting Officer

Commissioner of Patents and Trademarks

