IPRO 302-Synthetic Biology: Engineering Novel Organisms

Goals

Overall Goal

The overall objective of this IPRO is to develop the tools to produce synthetic, designed organisms. This is a huge goal, so we have a more modest short-term goal: we wish to insert synthetic metabolic pathway into a microorganism that implements a biological oscillator. This should produce blinking bacteria - microbial fireflies.

Cloning

The goal of this group is to implement the actual engineered organism.

Modeling

The goal of the modeling group is to produce and implement a computational to simulate the proposed behavior of the target organisms through mathematical models.

Obstacles

There were several obstacles. There was a limited amount of time and resources. We need to canvas existing elements here at IIT (genetic elements, computational platforms and tools) There also was a learning curve that calls for a need to develop and maintain expertise with technical aspects of each team.

Results

- Effective progress has been made to set the groundwork for the next team.

Cloning

- A detailed cloning plan developed and all elements obtained for *Modeling*
- The platform MATLAB has been chosen. The deterministic and stochastic models have been implemented. Also, a GUI and FFT analysis model have been developed.

Future Plans

Overall

Design innovations to develop more sophisticated systems

Cloning

Assembly of parts to functional system

Testing and assessment of organisms

Modeling

- -Improvement of analysis tools.
- -Correlation, automated parameter output values, parameter search algorithm.
- -GUI: improved parameter entry, more biologically relevant Units method to enter connections in terms of genetic elements, and map the appropriate equations.

Personnel

Faculty AdvisorNick Menhart

Team Members

James Anderson
Phuong Bui
Ahren Ceisel
Jason Fessel
Anthony Gaddini
Sheryl Lau
Khiem Nguyen
Anthony Vu
Elizabeth Young

Presentation

James Anderson Anthony Gaddini Ahren Ceisel