

IPRO 312: Unmanned Aerial Systems

Bernie Mendez, Lidens Cheng, Kay Traylor, Artemio Perez

What is a UAS?

Unmanned Aerial System

UAS encompasses the entire operational platform, not just the aircraft (UAV)

UAS components: Vehicle (UAV) Payload Ground Station

Benefits

- Lightweight
- Inexpensive
- Low emissions
- Stealthy
- Fast
- Low maintenance
- No launcher device necessary

Potential Markets

- Military
- Law Enforcement
- Agriculture
- Construction
- Maps
- Customs and Border
 Protection
- Wildlife and conservation
- Communications

The major graded items/events are:

- Final Journal Paper
- Oral Presentation
- Flight Readiness Review
- Flight Mission

Take off

- Waypoint Navigation
- En Route Search
- Targets
- Area Search
- Landing

Ethical and Legal Considerations

In order to fly, operators must complete **ONE** of the following:

 Obtain an FAA issued Airworthiness Certificate for UAS and a Program Letter of Restriction

 Obtain an FAA issued Certificate of Authorization or Waiver (COA)

- Fly in Special Use Airspace
- Fly as a Model Aircraft

Team Structure

Team Members: Lidens Cheng, Nishanth Samala, Matt Simpson

Leader: Lidens Cheng

Team Members: Kay Traylor, Yaofu Zhou, Jiang Lan, Bernie Mendez

Leader: Kay Traylor

Team Members: Artemio Perez, Tushar Nair, Brian Schubert Leader: Artemio Perez

Problem

The ArduPilot Mega autopilot software from last semester must be modified in order to achieve autonomous flight

Goals

Modify software for:

- Autonomous takeoff and landing
- Navigation through waypoints
- A fail-safe feature (Return to Launch mode) if loses radio or video transmission
- Perform a series of test flights

Tasks Completed

•All modes recognized by radio:

Manual (hardware) Manual (software) Autopilot Fly-by-wire A Fly-by-wire B Return to Launch

- Changed to a bigger airframe
- Manual modes tested in flight
- Connection to Ground
 Control Station

Challenges

- Fail-safe feature not included in the old version of code
- Autopilot mode not tuned for new airframe/new code
- Autopilot hardware short circuit
- Uncooperative weather conditions

Future Tasks

•Need to perform more test flights to test the other 4 modes

Autopilot mode tests:

 Autonomous takeoff
 Navigation to waypoints
 Autonomous landing
 Fail-safe feature

- Develop a system that can:
 - Acquire and send images from UAV to ground station
 - Autonomously detect and identify targets
 Shape
 Overlaying alphanumeric character
 - Color of shape and alphanumeric character

Complete image detection and identification code

- Acquire and install camera
- Acquire and install image transmission system

Software

- OpenCV: Open-source
 Vision Library
- Two Parts
 - 1. Target Detection
 - 2. Target Identification

Target Detection

Shape Identification

Alphanumeric Identification

Camera

Last Semester: SN777
 20 grams
 480x640 Resolution

Current: GoPro Surf Hero
 94 grams
 HD Quality
 Eye-Fi Transmission

Image Transmission

Challenges

Image Quality

Integration with other systems

Time Constraints
 Ordering parts, installing

Test System

Background

- Point of integration of all subsystems
- Data extraction port
- Mission objectives injection port

Software

▼ QGroundControl v. 0.7.7 (Beta) (w7: 192.1	68.1.107)				_ 🗆 X
File Network Select System Unmanned System Wi	indow Help				
Control			Ophoard Parame	terc	
contor			Vahisla	Mayaa	· 5
Connected to MAV 220			Onboard Parameters		rs 🔤
Activate Engine			Parameter	Value	3
		Concernance of the second			
Select		Martin and			
Horizontal Situation Indicator	A Start Asia	Stern -			P
			Refresh	Transmit	Write (ROM)
		the start of the start			
				save nie	Read (ROM)
		S-EREAL C	RAW Sensor	Data RC V	alues
0.10	1		Attitude	🗍 Send	d Extral
Battery 10.65 V 54%		AL AND	Position set	ooint 🗌 Send	i Extra2 Extra3
Recv. Loss 0.00 % 0%					
Send Loss 63.50 % 63%				Calibration Wizards	
MCU Load 0.00 % 0%	Map	Vehicle	RC Calibra	tion Ma	g. Calibration
CPU Load 0 % 24%			Pressure Cali	bration Gy	ro Calibration
- Simulated Systems	Waypoint List	Communication	onsole		2 A
MAV 220 LOCKED MODE		Simulation: dem	io- 🗾 04.4 kB/s 🗌 N	o MAVLINK [_] H	EX Muto hold
Calculating 00:02:55 5247273.00 465555.00 - 5254.65E 3.00	NH 474.50	(MAV220:0) DEB (MAV220:0) DEB	UG MESSAGE TEXT		Ŀ
474.503 m 0.43 m/s 0%		(MAV220:0) DEB (MAV220:0) DEB	JG MESSAGE TEXT		_
UNKNOWN UNKNOWN System state		(MAV220:0) DEB	UG MESSAGE TEXT		
		+ 🙆 🗍 🕡 Enter data/text b	Enter data/text below to send		
				Send H	lold Clear

Challenges

• Data transmission

Future Tasks

Aircraft tracking

Characteristics

Durabiliity. Survivabiliity. Portabiliity. Reliabiliity

What's Next?

- Integration of Systems
- Test Flights
- Data AUVSI UAV Competition

Questions?

Thank you