

IPRO 308

Developing the Artificial Pancreas

BACKGROUND

Insulin: Regulates glucose absorption into tissues for metabolic needs

- Type 1 Diabetes
- Type 2 Diabetes

All of these forms of Diabetes have one thing in common Insulin deficiency

COMMERCIALIZATION

- 24 million Americans currently have diabetes while 6 million of them are undiagnosed*
- Total annual economic cost of diabetes in 2007 \$174 billion*
- Fastest growing disease in the country*
- Fifth deadliest disease in the United States*

^{*} Courtesy American Diabetics Association

ADVANTAGES OF OUR TECHNOLOGY

Current Technology

- Causes pain
- Needles discarded after single use
- Requires supervision for use in kids
- Manual testing required to detect any unsafe situation
- Monthly expense for needles and strips

Our Technology

- No pain
- Multi use disposable containers
- Easy to use for all age groups
- Automatic testing alerts user of possible dangers
- One time expense for the machine

TEAM ORGANIZATION

SUB-GROUPS

TEAM LEADER: Bill Wakeman (Sr. ME)

SECRETARY: Anju Naveenan (Sr. EE)

Closed-Loop:

Bill Wakeman (Sr. ME)

Olufemi Sonoiki (Sr. ME)

Anju Naveenan (Sr. EE)

In Seok Sin (Sr. Bio)

Adam Kuuspalu (Jr. Bio Chem)

Measurement:

Allen Klug (Sr. EE)

Adam Kuuspalu (Jr. Bio Chem)

Adam Smith (Sr. Arch)

Bill Wakeman (Sr. ME)

Research:

Adam Smith (5th yr. Arch)

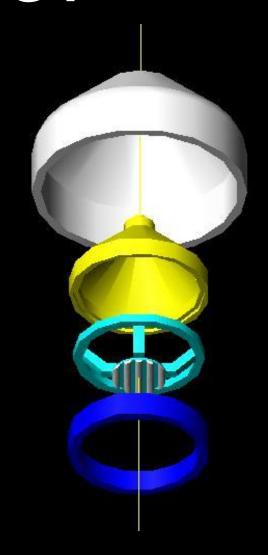
In Seok Sin (Sr. Bio)

Olufemi Sonoiki (Sr. ME)

What is "Closed-Loop"?

```
D:\Java_Dev\WEB\java2s\java LabeledWhile
Outer while loop
i = 1
continue
i = 2
i = 3
continue outer
Outer while loop
i = 4
i = 5
break
Outer while loop

Chicago
Grand
Clark
State
Outer while loop
```



THE PROCESS

Spring '08 Proposal

- Vacuum
- Sonophoresis
- Reverse Iontophoresis

Current Prototypes:

Vacuum

Sonophoresis

Experimental Procedure:

Solution of Green dye and D.I. water

Porcine skin

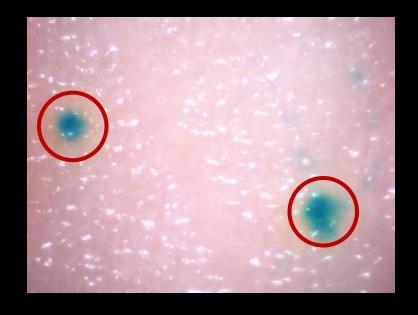
Testing Results:

Focused on ISF extraction requirements

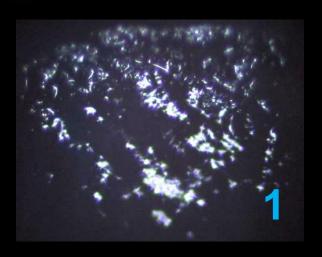
Maximum test times included:

- 4 hours Vacuum
- 1 hour Sonophoresis, 3 hours Vacuum

Visible spots on pores sites


Splatter spots (micro droplets) on skin due to vibration of speaker and movement of skin sample

Applied Sonophoresis and Vacuum Results:


No Sonophoresis and Vacuum

After Sonophoresis and Vacuum

Applied Sonophoresis and Vacuum Results:

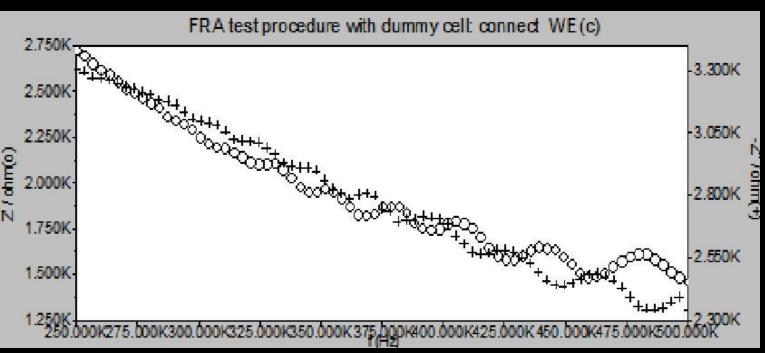
- 1: Random splatter outside of affected areas
- 2: Saturation of green dye into pig skin
- **3: Porcine Samples from extended Sonophoresis and Vacuum**

Analysis of Porcine Skin Samples from Test Results:

- Porcine skin was not fresh
- Scything the skin may have blocked pore holes and reduced the oils causing it to contract
- Dead skin created a static system
- Internal pressures needed to achieve optimal flow rate
- Skin produced translucent appearance causing green bleed through
- Projected time period proved inaccurate for extraction

Future Options

- Mechanical Sieves
- Operating Prototype at Optimal parameters and specifications
- Animal (rat) Testing
- Comparative Patent Design Analysis
- Focus on Administration of Insulin



GLUCOSE MEASUREMENT

- Spring 2008 Measurement using glucose oxidase reaction
- Current Semester Impedance Spectroscopy
 - Using the resonant frequency of glucose, measure its concentration
 - Look for a predictable difference in the impedance graph due to a chance in the concentration of glucose.
 - The advantage of impedance spectroscopy is that there are no chemicals needed to do the measurement.
 - Previous semester's IPRO scanned from 1-100 KHz. This semester we scanned up to 1Mhz

MEASUREMENT RESULTS

- Above 500Khz the results became erratic.
- We could not find a significant difference in the impedance graphs for the four different concentrations we tested.

FUTURE OPTIONS

Further testing with Impedance Spectroscopy

 The inconsistent measurements could have been caused by the way we set up our capacitor.

Nuclear Magnetic Resonance

Might have problems with accuracy on a small NMR device.

RESEARCH

- Researched existing patents
 - Echo Therapeutics
 - Pendra
- Alternate methods
 - Micro needles
 - Photoacoustic measurement
- Submitted deliverables
 - Project plan, Final report
 - Poster, Brochure

- In class discussion held in free format
- Ethics statement was prepared with every class members input and participation.
- Issues raised include:
 - Animal testing
 - Tampering with results
 - Lab conduct
 - Respectful interaction

SUMMARY

- Deconstructed closed loop prototype elements
- Exhausted the current medium for testing
 - Calibrate prototype to match existing parameters set by research
- Focus on Impedance Spectroscopy for glucose measurement
- Found existing patents for non-invasive glucose measurement
- Implication of successful development of the closed loop technology for the lifestyle of diabetic patients
- Commercialization potential of the technology

SPECIAL THANKS TO

- -Dr Dhar
- -Dr Derwent
- -Dr Gottlieb
- -Mr Jacobius
- -Mr DeBoth
- -Dr Opara
- -Ms Patel
- -Dr Rousche
- -Mr Kubisco

QUESTIONS?