- •IPRO 325 Introduction
- •Location Selection
- Cooling Subgroup
- •Individual Roles
- Methodology
- •Research
- •Design
- •Construction
- •Testing
- Analysis
- •Obstacles
- •Conclusions
- •Continuation Plan
- Acknowledgements
- •Questions/Comments

# IPRO 325 Designing Affordable Water, Energy, and Shelter Solutions for the World's Poor

- •Cooling Subgroup
- •Individual Roles
- Methodology
- •Research
- •Design
- Construction
- •Testing
- Analysis
- •Conclusions
- •Obstacles
- •Continuation Plan
- •Acknowledgements
- •Questions/Comments

## **EVAPORATIVE COOLING SUBGROUP**

#### Problem

- •3 million people live on less than \$3 a day worldwide.
- •Malnutrition affects 792 million people in the world.
- •5 million children die from malnutrition in rural poor regions.

#### •*Micronutrient malnutrition (MNM):*

A medical condition resulting from an insufficient consumption of nutrients



- •Cooling Subgroup
- •Individual Roles
- Methodology
- •Research
- •Design
- •Construction
- •Testing
- Analysis
- •Conclusions
- •Obstacles
- •Continuation Plan
- Acknowledgements
- •Questions/Comments

# **EVAPORATIVE COOLING SUBGROUP**

## Background

- •1 out of 5 people (158 million) suffering from MNM has access to needed fruits and vegetables, but are unable to store them.
- •20% of fruit and vegetable losses occurs during storage.
- •Loses are primarily temperature and humidity related



- •IPRO 325 Introduction
- •Cooling Subgroup
- •Individual Roles
- Methodology
- •Research
- •Design
- •Construction
- •Testing
- Analysis
- •Conclusions
- •Obstacles
- •Continuation Plan
- Acknowledgements
- •Questions/Comments

## **EVAPORATIVE COOLING SUBGROUP**

## REFRIGERATION FOR THE WORLD'S RURAL POOR

#### Goal

- Help combat Micro-Nutrient Malnutrition (MNM)
  - •Provide better way to store food for extended periods of time

#### **Objectives**

- •Improve on previous evaporative cooling designs
  - Continue research on effective prototype
  - Design prototype
  - Construct prototype
  - Test prototype
  - Provide plan for field implementation

# INDIVIDUAL ROLES

•Cooling Cubanous

•IPRO 325 Introduction

- •Individual Roles
- •Methodology
- •Research
- •Design
- Construction
- •Testing
- Analysis
- Conclusions
- •Obstacles
- •Continuation Plan
- Acknowledgements
- •Questions/Comments



Sara Wilde
Team Leader/
Research Manager/
Field Implementation

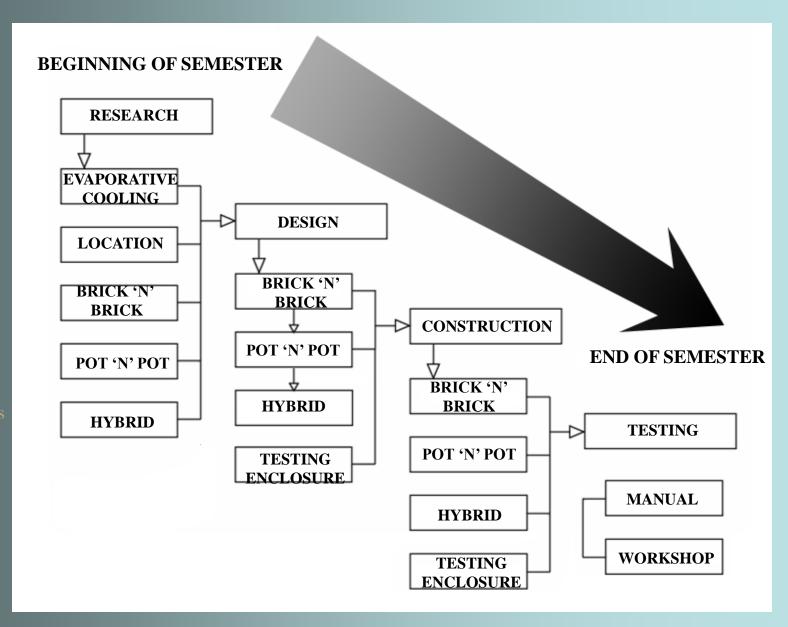


Young Ju Jo
Design Manager/
Project Plan/
Testing



Narciso Corral Jr.
Team Co-Leader/
Construction Manager/
Field Manual/
Testing




Abraham Akutagawa Location Selection/ Lab Maintenance/ Field Manual



Andrew Rust
Engineering Notebook/
Field Workshop Lead

## **METHODOLOGY**

- •Cooling Subgroup
- •Individual Roles
- Methodology
- Research
- •Design
- Construction
- •Testing
- Analysis
- Conclusions
- •Obstacles
- •Continuation Plan
- Acknowledgements
- •Questions/Comments



#### Cooling Subgroup

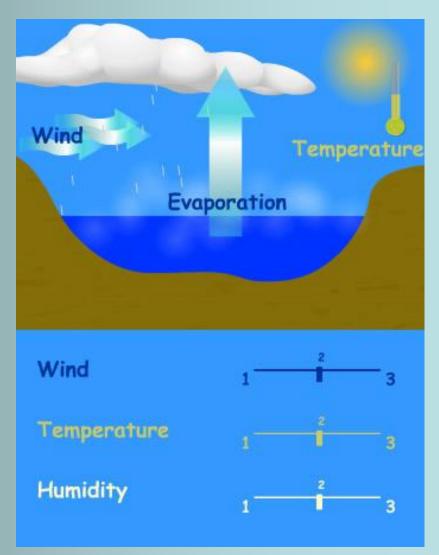
- •Individual Roles
- Methodology
- •Research
- •Design
- •Construction
- •Testing
- Analysis
- •Conclusions
- •Obstacles
- •Continuation Plan
- Acknowledgements
- •Questions/Comments

# RESEARCH LOCATION SELECTION

#### **Location Requirements**

- Access to surface water
- •Sand and Clay in the soil
- •High Temperature, Mid-Low Humidity Season
- •Population with pottery skills

#### **Chosen Sites**




Sincape, Peru

- Cooling Subgroup
- •Individual Roles
- Methodology
- •Research
- •Design
- Construction
- •Testing
- Analysis
- Conclusions
- •Obstacles
- •Continuation Plan
- Acknowledgements
- •Questions/Comments

# **RESEARCH** *EVAPORATIVE COOLING*

- •Reduction in air temperature that occurs when water evaporates
- •Cool an object or a liquid in contact
- •Higher
  Temperature, More
  Wind, and Lower
  Humidity = more
  evaporation

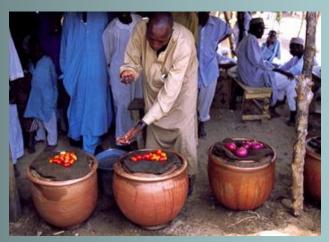


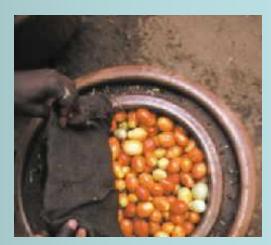
http://techalive.mtu.edu/meec/module01/EvaporationandTranspiration.htr

- •IPRO 325 Introduction
- Cooling Subgroup
- Individual Roles
- Methodology
- •Research
- •Design
- •Construction
- •Testing
- Analysis
- •Conclusions
- •Obstacles
- •Continuation Plan
- Acknowledgements
- •Questions/Comments

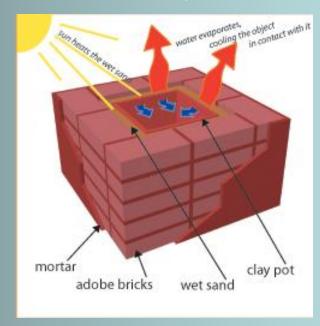
# RESEARCH MATERIAL SELECTION

#### **Adobe Bricks**





#### Terra Cotta Pots

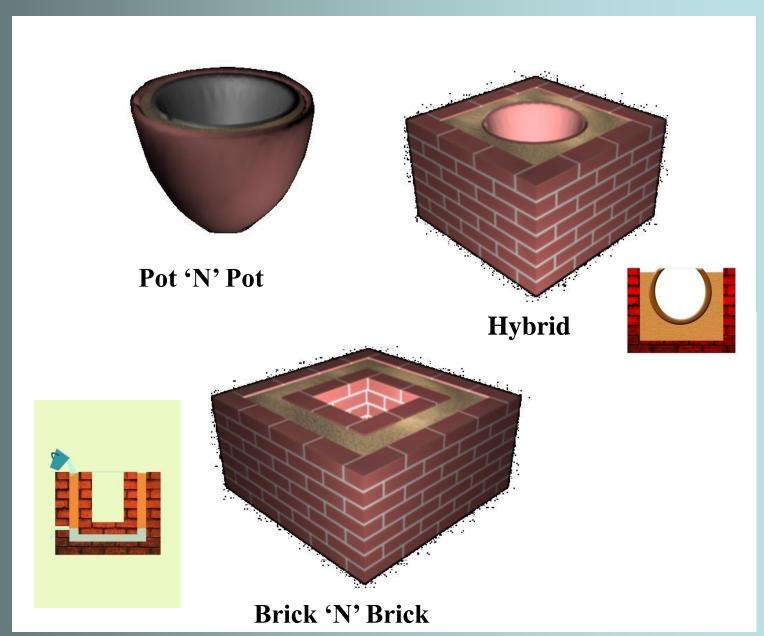



- Cooling Subgroup
- •Individual Roles
- Methodology
- •Research
- •Design
- •Construction
- •Testing
- Analysis
- •Conclusions
- •Obstacles
- •Continuation Plan
- Acknowledgements
- •Questions/Comments

# RESEARCH PRECEDENTS





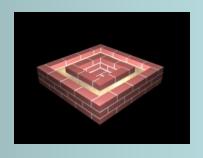

**Zeer Pot System** 

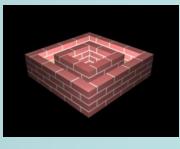


**Static Cooling System** 

# **DESIGNS**

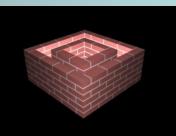
- Cooling Subgroup
- •Individual Roles
- Methodology
- Research
- •Design
- •Construction
- •Testing
- Analysis
- Conclusions
- •Obstacles
- •Continuation Plan
- Acknowledgements
- •Questions/Comments

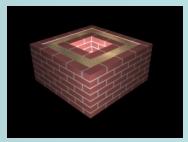




# CONSTRUCTING THE BRICK 'N' BRICK

- •Cooling Subgroup
- •Individual Roles
- Methodology
- •Research
- •Design
- •Construction
- •Testing
- Analysis
- Conclusions
- •Obstacles
- Continuation Plan
- Acknowledgements
- •Questions/Comments













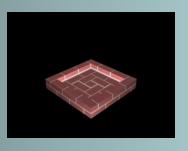


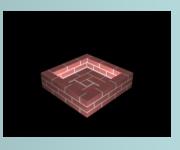




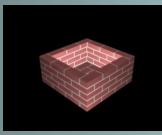


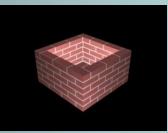


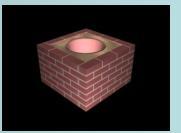





#### ntroduction

- Cooling Subgroup
- •Individual Roles
- Methodology
- •Research
- •Design
- •Construction
- •Testing
- Analysis
- •Conclusions
- •Obstacles
- •Continuation Plan
- •Acknowledgement
- •Questions/Comments


# **CONSTRUCTING THE HYBRID**


























- •Cooling Subgroup
- Individual Roles
- Methodology
- •Research
- •Design
- •Construction
- •Testing
- Analysis
- Conclusions
- •Obstacles
- Continuation Plan
- Acknowledgements
- •Questions/Comments

# CONSTRUCTING THE POT 'N' POT





# CONSTRUCTING TESTING ENCLOSURE







#### troduction

# **TESTING**

- Cooling Subgroup
- •Individual Roles
- Methodology
- •Research
- •Design
- •Construction
- •Testing
- Analysis
- •Conclusions
- •Obstacles
- •Continuation Plan
- Acknowledgement
- •Questions/Comments



















#### •IPRO 325 Introduction **TESTING**

- •Design
- •Testing
- •Obstacles

- •Questions/Comments

# TESTING MATERIALS

- Pot 'N' Pot Structure
- Brick 'N' Brick Structure
- Hybrid Structure
- •3 Thermometers
- •2 Indoor Conventional Heaters
  - •1 Humidifier
  - Sealed Testing Enclosure

Water Bucket

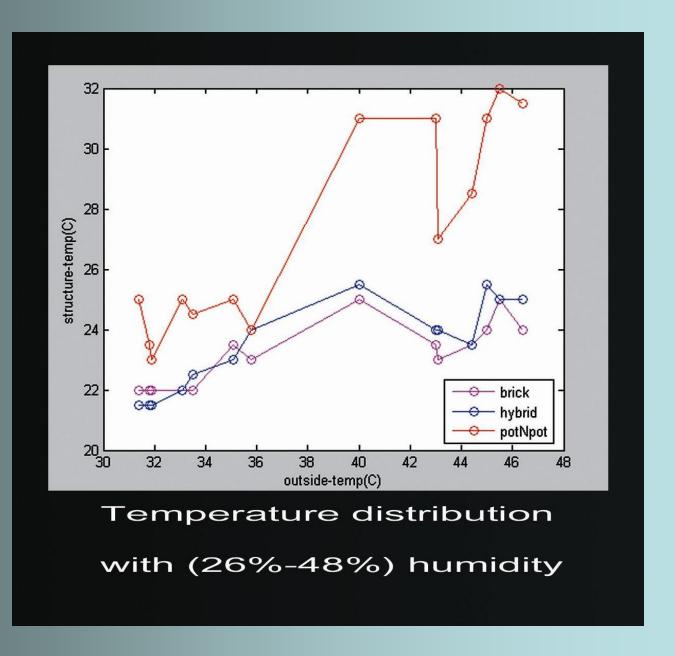
•3 wet Clothes

Barometer

# **TESTING**

- •5 days
  - •16 hours combined
  - Varying humidity

In heated environment


- Brick VS. Hybrid
- •Brick VS. Hybrid VS. Pot





## **ANALYSIS**

- Cooling Subgroup
- •Individual Dalas
- Methodology
- •Research
- •Design
- •Construction
- •Testing
- Analysis
- •Conclusions
- •Obstacles
- •Continuation Plan
- Acknowledgements
- •Questions/Comments



- •Cooling Subgroup
- •Individual Roles
- Methodology
- •Research
- •Design
- •Construction
- •Testing
- Analysis
- •Conclusions
- •Obstacles
- •Continuation Plan
- Acknowledgements
- •Questions/Comments

# **RESULTS**

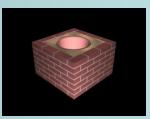
#### **Built working prototype**

Local materials
Sustainable

#### **Tested in third-world conditions**

#### **Testing Performed**

Average temperature decrease 10-14°F


Best result was a 17°F drop

Pot in pot test average decrease of 7°F

# **CONCLUSIONS**



VS.



- •Cooler
- Large structure
- More expensive
- •Hard to clean
- Hard to maintain

- •Near same results as brick
- Smaller to build
- •Same size storage chamber
- •1/3 the cost
- •Easier to clean & maintain

# RESULTS

- •Cooling Subgroup
- •Individual Roles
- Methodology
- •Research
- •Design
- •Construction
- •Testing
- Analysi
- •Conclusions
- •Obstacles
- Continuation Plan
- Acknowledgement
- •Questions/Comments

# **Budget:**

| Research   | Design | Bricks | Terra Cotta | Testing | Misc.       | Total |
|------------|--------|--------|-------------|---------|-------------|-------|
| <b>\$0</b> | \$0    | \$185  | \$43        | \$50    | <b>\$70</b> | \$348 |

## Hours:

|          | Research | Design | Construction | Testing | Admin | Total |
|----------|----------|--------|--------------|---------|-------|-------|
| Sara     | 15       | 5      | 20           | 20      | 15    | 75    |
| Narciso  | 20       | 15     | 30           | 20      | 30    | 115   |
| Young Ju | 20       | 20     | 30           | 30      | 20    | 120   |
| Abraham  | 20       | 5      | 15           | 15      | 20    | 75    |
| Andrew   | 20       | 10     | 15           | 15      | 20    | 80    |
| Total    | 95       | 55     | 110          | 80      | 105   | 465   |

# **OBSTACLES**

•Individual Roles

•IPRO 325 Introduction

- •Design
- •Obstacles
- •Continuation Plan

- •Questions/Comments

- Making Structures mobile Construction Site
- Transportation & Acquisition of Construction Materials
- Replicating target region environment for testing
- Equipment failure
- Testing equipment damage
- - Coordinating with team and varying schedules

• Updating Project Plan to meet Milestones & Objectives

- Fundraising

# **CONTINUATION PLAN**

- •IPRO 325 Introduction
- •Cooling Subgroup
- •Individual Roles
- Methodology
- •Research
- •Design
- •Construction
- •Testing
- •Analysi
- •Conclusions
- •Obstacles
- •Continuation Plan
- Acknowledgement
- •Questions/Comments

- •Additional testing
  - •FOCUS ON DESIGN IMPROVEMENTS
    - •Size and shape variations
    - •Varying water levels
    - •Different lid designs
    - •Long term testing
    - •Using food from the target region for storage tests
- •Create Construction Manual
- •Complete Educational Workshop
- •Field Research
  - •Can targeted region build our design, per our criteria?
  - •Does our design actually work in the field?
  - •How durable will it be in the field?
  - •How long will it last?

# **ACKNOWLEDGEMENTS**

•Political Science Department (Financial Contribution)

- •IPRO 325 Introduction
- •Cooling Subgroup
- •Individual Roles
- Methodology
- •Research
- •Design
- - . .. 4 . . . .
  - nalvei
  - nalysi
  - Conclusi
- •Obstacles
- •Obstacle
- •Continuation Plan
- •Acknowledgements
- •Questions/Comments

- Architecture Department (Bldg 3410)
- Chemistry Department Lab Resources (Wheishnick)
- Dr. Schug
  - Dr. Ferguson
- Dr. Jacobius
- Engineer Without Borders

- •IPRO 325 Introduction
- Cooling Subgroup
- •Individual Roles
- Methodology
- •Research
- •Design
- •Construction
- •Testing
- Analysi
- Conclusion
- •Obstacles
- Continuation Plan
- Acknowledgement
- •Questions/Comments

# **QUESTIONS / COMMENTS?**

Illinois Institute of Technology IPRO 325 Cooling Subgroup