IPRO 325: Affordable and Sustainable Quality of Life Improvements for the World's Poor

Innovative Roof Design

The Team

Lulu Al-Awadhi	4th Year Architecture
Louis Fernandez	4th Year Architecture
Dan Rankin	5th Year Architecture
Jacob Williams	5th Year Architecture
Richard Rokita	3rd Year Mechanical Engineer
Maruja Yoshimura	4th Year Chemical Engineer

The Problem: Friaje

Winter of 2009

- State of emergency declared due to extreme cold
- Temperatures reached -22 C (-7.6 F)
- Death of approximately 250 children
- Thousands more suffered from acute respiratory infections and pneumonia
- Malnutrition intensifies due to poor crop yield
- Mass death and sickness of livestock

Improve extant housing through an innovative roof alteration

- Add insulating materials to the roof
- Create a more robust roof structure
- Reduce overall air infiltration
- Prevent roof leakage

Last Semester's Project

- Conceptually design an adobe house to withstand the friaje
- Utilize locally available materials
- Lacked detail
- Project scale too large to practically implement beyond a prototype

Location: High Altitude & Cold Weather

- Model location: Mountain Highlands (i.e. Langui, Peru)
- May through October Dry season Hot days, cold nights
- November through April Wet season Mild temperatures Heavy rain

Action Being Taken

- Adventist Development and Relief Agency (ADRA)
- United Nations Children's Fund (UNICEF)
- Practical Action

Current Roofing Construction

- Single sheet of corrugated metal
- Sometimes secondary structural beams are included
- No insulation
- Poor connection between materials

Ethics and Design Constraints

- Inexpensive
- Utilizes exclusively locally available materials
- Can easily be communicated to locals
- Can be built relatively quickly using unskilled labor
- Requires no special tools to construct
- Must have a long lifespan

Structural Concerns

- Heavy snow loads (uniformly distributed live loads)
- Heavy wind loads (somewhat erratic lateral loads)
- Roof must be supported on an existing adobe wall (basic load-bearing structure)

Materials

Materials that are locally available:

- Framing Materials: Bamboo or Eucalyptus
- Fasteners: Rope, Leather Strips, Nails
- Roof Covering: Corrugated Sheet Metal, Fired Clay Tiles
- Insulation Materials: Straw with Clay Binding
- Waterproof Patching: Tree Sap, Bitumen (tar-like with a petroleum base), Animal Fat

Sandwich Panel System

- Straw Bale Good insulator Flammable
- Adobe Clay Serves as a binder Somewhat fire resistant
- Corrugated Sheet Metal Water proof Fire proof

- Utilize all materials in a novel assembly

Thermal Testing

- Graph showing percent decrease in heat loss vs. inches of infill.

- Diminishing returns after four inches of infill

Final Design

Full Scale Roof Model

- The model tests the strength and durability of the design as a whole

- The model also portrays all of the details as designed by the team

Benefits of the Design

- 40% decrease in heat loss
- Reduces moisture and air infiltration considerably
- Extremely low cost; sheet metal is the most expensive component: .83 x 1.8m for \$4.10; quote from company in Lima
- Simple construction method; uses no tools
- Does not depart significantly from the vernacular aesthetic

Problems & Obstacles

- Team was not able to perform strength tests on the roof design

- Thermal test of insulation not completed; but calculations have been done

- Graphic construction manual still needs to be completed

Next Steps

-Test the design on site in Langui, Peru

- Inform Peruvians about the design
- Assess whether or not Peruvians would realistically use the design
- If the project is a success in Peru then a graphic-driven design manual should be created

Questions

Sources

- 1. "Surviving the Friaje". Practical Action. 03 Oct 2009 <http://practicalaction.org/climatechange_friaje>.
- 2. Collyns, Dan. "Children Die in Harsh Peru Winter". BBC News, Lima. 03 Oct 2009 http://news.bbc.co.uk/2/hi/8146995.stm.
- 3. "Peru Declares State of Emergency Due to Record- Breaking Cold Spell". Andean Air Mail and Peruvian Times . 03 Oct 2009 <http://www.peruviantimes.com/peru-declares-state-of-emergency-due-torecord-breaking-cold-spell/>.
- 4. "Puno Regional President Accused of Negligence in Child Deaths From Cold ". Andean Air Mail and Peruvian Times . 03 Oct 2009 <http://www.peruviantimes.com/puno-regional-president-accused-ofnegligence-in-child-deaths-from-cold/> .
- 5. "Deadly Cold Wave Brings Misery to Southern Peru". Adventist Development and Relief Agency (ADRA) International. 03 Oct 2009 http://www.adra.org/site/News2?page=NewsArticle&id=10259.
- 6. "Peru: Cold Weather Deadly for Children". UNICEF. 03 Oct 2009 <http://www.unicef.org/infobycountry/peru_27539.html>.
- 7. "Climate change: intense cold front has killed 20,000 alpaca in Puno ". Andean Mail and Peruvian Times. 08 Oct 2009 <http://www.peruviantimes.com/climate-change-intense-cold-front-haskilled-20000-alpaca-in-puno-so-far-this-year/>.
- 8. <http://www.andeantravelweb.com/peru/tips/weather.html>.

Sources

- 9. "Code of Ethics and Bylaws". American Institute of Architecture. 01 December 2009. http://www.aia.org/about/ethicsandbylaws/index.htm
- 10. "Adobe Houses: Peru". World Encyclopedia. 01 December 2009. http://www.eeri.org/lfe/pdf/peru_adobe_house.pdf