# **IPRO 325**

# <u>Developing extremely affordable products for the poor of the world</u>



# **Team Members:**

Nikola Baltadjiev Danny Kim Sara Miller Ricardo Gonzalez Jeremy Locquiao Tony Osborn L. Justin Harris Jaime McClain Brian Schiller

# **Advisors:**

Daniel Ferguson, Dr. Ken Schug, Ray DeBoth

# I. INTRODUCTION

- a. The Problem
- b. Objectives
- c. Campus Awareness

### II. Water Subteam

- a. The Problem
- b. Objective
- c. Prototype
- f. Implementation

# III. Energy Subteam

- a. The Problem
- c. Objective
- d. Prototype
- e. Testing
- f. Implementation

- a. Continuation
- b. Acknowledgements

# The Problem



3 Billion people live on less then \$2 a day.

# I. Introduction

# A. THE PROBLEM

- b. Objectives
- c. Campus Awareness

### II. Water Subteam

- a. The Problem
- b. Objective
- c. Prototype
- f. Implementation

# III. Energy Subteam

- a. The Problem
- c. Objective
- d. Prototype
- e. Testing
- f. Implementation

- a. Continuation
- b. Acknowledgements

- a. The Problem
- B. OBJECTIVES
- c. Campus Awareness
- II. Water Subteam
  - a. The Problem
  - b. Objective
  - c. Prototype
  - f. Implementation
- III. Energy Subteam
  - a. The Problem
  - c. Objective
  - d. Prototype
  - e. Testing
  - f. Implementation
- IV. Conclusion
  - a. Continuation
  - b. Acknowledgements

# **Semester Objectives**

# Fall 2006

- Identify problems facing the world's poor
- Identify what IIT can do

# Spring 2007

- Build a water and energy prototype
- Increase IIT awareness of global poverty

- a. The Problem
- b. Objectives
- C. CAMPUS AWARENESS

### II. Water Subteam

- a. The Problem
- b. Objective
- c. Prototype
- f. Implementation

# III. Energy Subteam

- a. The Problem
- c. Objective
- d. Prototype
- e. Testing
- f. Implementation

# IV. Conclusion

- a. Continuation
- b. Acknowledgements

# Increase IIT Awareness of Global Poverty



Dr. John Duffy - U. Mass Lowell, Peruvian Andies



**Zenia Tata** - International Development Enterprises

- a. The Problem
- b. Objectives
- c. Campus Awareness

# II. WATER SUBTEAM

- a. The Problem
- b. Objective
- c. Prototype
- f. Implementation

# III. Energy Subteam

- a. The Problem
- c. Objective
- d. Prototype
- e. Testing
- f. Implementation

### IV. Conclusion

- a. Continuation
- b. Acknowledgements

# Water Sub-Group

L. Justin Harris, 5<sup>th</sup> year Architecture Jaime McClain, 4<sup>th</sup> year Architecture Tony Osborn, 5<sup>th</sup> year Architecture Brian Schiller, 3<sup>rd</sup> year Chemistry

- a. The Problem
- b. Objectives
- c. Campus Awareness

# II. Water Subteam

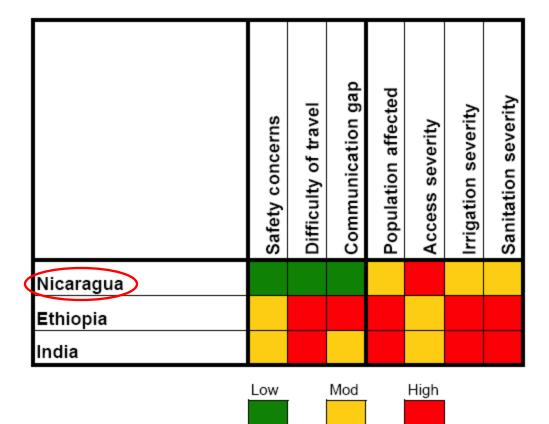
- A. THE PROBLEM
- b. Objective
- c. Prototype
- f. Implementation

# III. Energy Subteam

- a. The Problem
- c. Objective
- c. Objective
- d. Prototype
- e. Testing
- f. Implementation

### IV. Conclusion

- a. Continuation
- b. Acknowledgements


# **Reality:**

1.1 billion people lack access to clean water; millions more lack enough to water crops

# **Country Selection**

| 1. |  |  |  |  |
|----|--|--|--|--|
|    |  |  |  |  |
|    |  |  |  |  |

- a. The Problem
- b. Objectives
- c. Campus Awareness
- II. Water Subteam
  - a. The Problem
  - B. OBJECTIVE
  - c. Prototype
  - f. Implementation
- III. Energy Subteam
  - a. The Problem
  - c. Objective
  - d. Prototype
  - e. Testing
  - f. Implementation
- IV. Conclusion
  - a. Continuation
  - b. Acknowledgements



# Nicaraguans Need Clean Water!

# Access:

- In rural areas 72% of people lack access to potable (clean) water
- Sanitation:
  - Almost 3% infant mortality rate
- Irrigation:
  - Agriculture per capita has diminished consistently over last 20 years

# North America Berny Barry CANADA Roy CA



# Area of Focus

# . Introduction

- a. The Problem
- b. Objectives
- c. Campus Awareness
- II. Water Subteam
  - a. The Problem
  - B. OBJECTIVE
  - c. Prototype
  - f. Implementation
- III. Energy Subteam
  - a. The Problem
  - c. Objective
  - d. Prototype
  - d. Prototype
  - e. Testing
- f. Implementation
- IV. Conclusion
  - a. Continuation
  - b. Acknowledgements

# **SODIS Process**

(Solar Water Disinfection Process)

# **Benefits:**

- Rids water of bacterial contaminants
- Widely-available components
- Scaleable
- No operating expense

# PET Source: http://www.sodis.ch/

# I. Introduction

- a. The Problem
- b. Objectives
- c. Campus Awareness

### II. Water Subteam

- a. The Problem
- b. Objective

# C. PROTOTYPE

f. Implementation

# III. Energy Subteam

- a. The Problem
- c. Objective
- MILLIAN.
- d. Prototype
- e. Testing
- f. Implementation

- a. Continuation
- b. Acknowledgements

# **Prototype Testing**

# **Procedure**

 Measure UV light penetration through salvaged PET bottles



# Subject

 Testing opacity/color, condition, and wall thickness of PET bottles





# I. Introduction

- a. The Problem
- b. Objectives
- c. Campus Awareness

### II. Water Subteam

- a. The Problem
- b. Objective

# C. PROTOTYPE

f. Implementation

# III. Energy Subteam

- a. The Problem
- c. Objective
- d. Prototype
- e. Testing
- mini
- f. Implementation

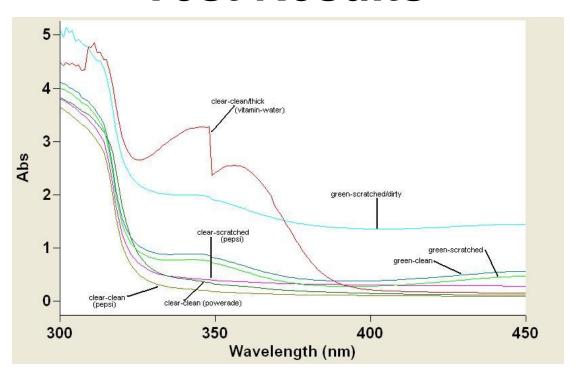
- a. Continuation
- b. Acknowledgements

# I. INTRODUCTION

- a. The Problem
- b. Objectives
- c. Campus Awareness

# II. Water Subteam

- a. The Problem
- b. Objective
- c. Prototype
- f. Implementation


# III. Energy Subteam

- a. The Problem
- c. Objective
- d. Prototype
- e. Testing
- f. Implementation

# IV. Conclusion

- a. Continuation
- b. Acknowledgements

# **Test Results**



| PET Bottle Properties | Thickness                              | Opacity/<br>Color | Condition                                  |
|-----------------------|----------------------------------------|-------------------|--------------------------------------------|
| Acceptable            | Thin- Coke,<br>Pepsi,<br>Aquafina, etc | Clear             | Scratched/<br>scuffed                      |
| Unacceptable          | Thick- Sobe,<br>Vitamin Water,<br>etc  | Colored           | Dirty- must<br>clean or use<br>new bottles |

# **Water Farm Proposal**

|           | PET BOTTLES    | FENCE                |
|-----------|----------------|----------------------|
| WASHBASIN | STORAGE BASINS | CORRUGATED SUBSTRATE |
|           |                |                      |
|           |                |                      |
|           |                |                      |
|           |                |                      |

# I. Introduction

- a. The Problem
- b. Objectives
- c. Campus Awareness

# II. Water Subteam

- a. The Problem
- b. Objective

# C. PROTOTYPE

f. Implementation

# III. Energy Subteam

- a. The Problem
- c. Objective
- d. Prototype
- e. Testing
- f. Implementation

- a. Continuation
- b. Acknowledgements

# Adopting the IDE Micro-Enterprise Model

### I. Introduction

- a. The Problem
- b. Objectives
- c. Campus Awareness

### II. Water Subteam

- a. The Problem
- b. Objective
- c. Prototype

# F. IMPLEMENTATION

# III. Energy Subteam

- a. The Problem
- c. Objective
- d. Prototype
- e. Testing
- f. Implementation

### IV. Conclusion

- a. Continuation
- b. Acknowledgements

# **Benefits:**

- Provides a villager with income
- Provides operating capital
- Ensures proper disposal
- Micro-loan Investment:
  - Purchase clean, full plastic water bottles
  - Purchase soap



# **Education Materials**

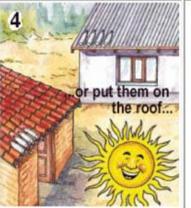
# **Instructional Diagrams**

### I. Introduction

- a. The Problem
- b. Objectives
- c. Campus Awareness

### II. Water Subteam

- a. The Problem
- b. Objective
- c. Prototype
- F. IMPLEMENTATION


# III. Energy Subteam

- a. The Problem
- c. Objective
- d. Prototype
- e. Testing
- f. Implementation


# IV. Conclusion

- a. Continuation
- b. Acknowledgements











Source: www.sodis.ch

- a. The Problem
- b. Objectives
- c. Campus Awareness

### II. Water Subteam

- a. The Problem
- b. Objective
- c. Prototype
- f. Implementation

# III. ENERGY SUBTEAM

- a. The Problem
- c. Objective
- d. Prototype
- e. Testing
- f. Implementation

### IV. Conclusion

- a. Continuation
- b. Acknowledgements

# **Energy Sub-Team**

Nikola Baltadjiev, 3<sup>rd</sup> year Aerospace Ricardo Gonzalez, 4<sup>th</sup> year Political Science Jeremy Locquiao, 3<sup>rd</sup> year Mechanical Engineering Danny Kim, 4<sup>th</sup> year Architecture

- a. The Problem
- b. Objectives
- c. Campus Awareness

# II. Water Subteam

- a. The Problem
- b. Objective
- c. Prototype
- f. Implementation

# III. Energy Subteam

# A. THE PROBLEM

- c. Objective
- d. Prototype
- e. Testing
- f. Implementation

### IV. Conclusion

- a. Continuation
- b. Acknowledgements

# **Reality:**

Two billon people across the world don't have access to affordable energy

# Alternative Energy Sources Explored

- Electrical
  - Wind
- Mechanical
  - Water
- Thermal
  - Biogas
  - Solar

# I. Introduction

- a. The Problem
- b. Objectives
- c. Campus Awareness

### II. Water Subteam

- a. The Problem
- b. Objective
- c. Prototype
- f. Implementation

# III. Energy Subteam

- a. The Problem
- C. OBJECTIVE
- d. Prototype
- e. Testing
- f. Implementation

- a. Continuation
- b. Acknowledgements



# **Team Objective**

 Create and test an energy prototype that can be constructed for less than \$5.

# I. Introduction

- a. The Problem
- b. Objectives
- c. Campus Awareness

# II. Water Subteam

- a. The Problem
- b. Objective
- c. Prototype
- f. Implementation

# III. Energy Subteam

- a. The Problem
- C. OBJECTIVE
- d. Prototype
- e. Testing
- f. Implementation

- a. Continuation
- b. Acknowledgements

# **Solar Cooker Prototypes**

- Benefits over conventional
  - Renewable, free energy
  - Zero pollution
  - Low operating cost
- Disadvantages
  - Increased cooking time
  - Adjustment to Sun
  - Cultural Barriers

# I. Introduction

- a. The Problem
- b. Objectives
- c. Campus Awareness

### I. Water Subteam

- a. The Problem
- b. Objective
- c. Prototype
- f. Implementation

# III. Energy Subteam

- a. The Problem
- c. Objective

# D. PROTOTYPE

- e. Testing
- f. Implementation

- a. Continuation
- b. Acknowledgements

# **Area of Focus: Peru**

- In collaboration with Dr. John Duffy
- The Peruvian Kitchen

### I. Introduction

- a. The Problem
- b. Objectives
- c. Campus Awareness

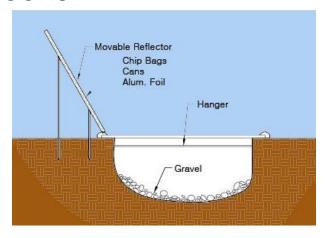
# II. Water Subteam

- a. The Problem
- b. Objective
- c. Prototype
- f. Implementation

# III. Energy Subteam

- a. The Problem
- c. Objective

# D. PROTOTYPE


- e. Testing
- f. Implementation

- a. Continuation
- b. Acknowledgements



# **Our Designs**

# Earth Cooker



# Adobe Brick Cooker



# . Introduction

- a. The Problem
- b. Objectives
- c. Campus Awareness

# II. Water Subteam

- a. The Problem
- b. Objective
- c. Prototype
- f. Implementation

# III. Energy Subteam

- a. The Problem
- c. Objective

# D. PROTOTYPE

- e. Testing
- f. Implementation

- a. Continuation
- b. Acknowledgements

# **Prototype Test 1**



# Adobe Brick Cooker v. Sun Oven

Goal Temperature = 250 F

**Ambient Conditions** 

Humidity: 31%

Outside Temperature: 51F

Condition: Fair

Wind: 10-14mph NW

# I. Introduction

- a. The Problem
- b. Objectives
- c. Campus Awareness

### II. Water Subteam

- a. The Problem
- b. Objective
- c. Prototype
- f. Implementation

# III. Energy Subteam

- a. The Problem
- c. Objective
- d. Prototype

# E. TESTING

f. Implementation

- a. Continuation
- b. Acknowledgements

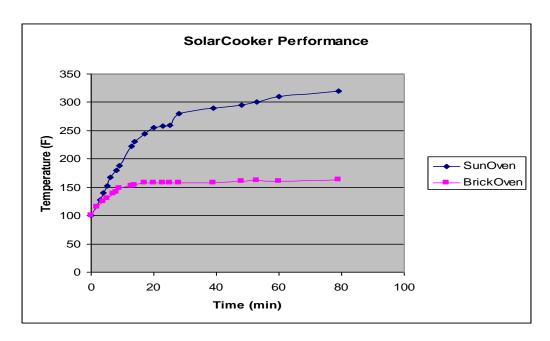
- a. The Problem
- b. Objectives
- c. Campus Awareness

### II. Water Subteam

- a. The Problem
- b. Objective
- c. Prototype
- f. Implementation

# III. Energy Subteam

- a. The Problem
- c. Objective
- d. Prototype


# E. TESTING

f. Implementation

# IV. Conclusion

- a. Continuation
- b. Acknowledgements

# **Test Results**



Sun Oven Brick Cooker Max temp: 320F

Max: 160F

# Not ready for implementation

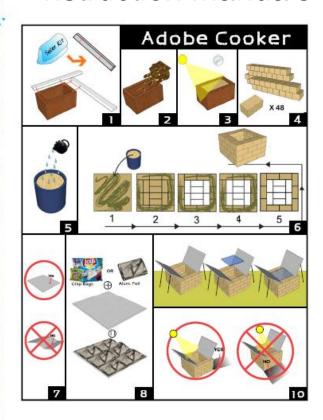
- Improve on Reflectors
- Improve on gasket
- Improve Interior

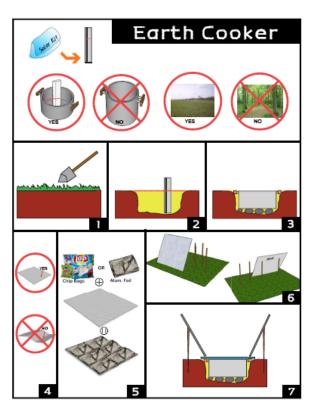
# **Educational Materials**

# **Instruction Manuals**

# I. Introduction

- a. The Problem
- b. Objectives
- c. Campus Awareness


### II. Water Subteam


- a. The Problem
- b. Objective
- c. Prototype
- f. Implementation

# III. Energy Subteam

- a. The Problem
- c. Objective
- d. Prototype
- e. Testing
- F. IMPLEMENTATION

- a. Continuation
- b. Acknowledgements





# Conclusion

# I. Introduction

- a. The Problem
- b. Objectives
- c. Campus Awareness

# II. Water Subteam

- a. The Problem
- b. Objective
- c. Prototype
- f. Implementation

# III. Energy Subteam

- a. The Problem
- c. Objective
- d. Prototype
- e. Testing
- f. Implementation

# IV. CONCLUSION

- a. Continuation
- b. Acknowledgements





Introduction

- a. The Problem
- b. Objectives
- c. Campus Awareness

# II. Water Subteam

- a. The Problem
- b. Objective
- c. Prototype
- f. Implementation

# III. Energy Subteam

- a. The Problem
- c. Objective
- d. Prototype
- e. Testing
- f. Implementation

# IV. Conclusion

# A. CONTINUATION

b. Acknowledgements

# What's Next?

- Future Semesters
- Involvement in the field
- IIT Affordable Village



# Thank You

IPRO 325 Would like to thank all the people who have helped us along the way:

**Dr. John Duffy PhD**, Professor,
University of Massachusetts at Lowell

Zenia Tata, Executive Director, International Development Enterprises

**Sun Oven International** 

# **Advisors:**

Professor Daniel Ferguson
Professor Ken Schug
Professor Ray DeBoth

# I. Introduction

- a. The Problem
- b. Objectives
- c. Campus Awareness

# I. Water Subteam

- a. The Problem
- b. Objective
- c. Prototype
- f. Implementation

# III. Energy Subteam

- a. The Problem
- c. Objective
- d. Prototype
- e. Testing
- f. Implementation

- a. Continuation
- B. ACKNOWLEDGEMENTS

- a. The Problem
- b. Objectives
- c. Campus Awareness

# II. Water Subteam

- a. The Problem
- b. Objective
- c. Prototype
- f. Implementation

# III. Energy Subteam

- a. The Problem
- c. Objective
- 1111111
- d. Prototype
- e. Testing
- f. Implementation

# IV. CONCLUSION

- a. Continuation
- b. Acknowledgements

# Questions?