IPRO 328

Spring 2008

Code of Ethics

Dverarching Standard

Result of IPRO Deliverables Project Plan

PRO Deliverable ____ Start ___Finish _

Project Plan Grade: 14/14

All book-contributors will:

. Project Plan 1/25/2008 2/22/2008
Midterm Report Grade: 16/16 : .
P e Submit only original work Midterm Report 3/3/2008 3/14/2008
COde Of Eth ICS Grade . 1 6l1 6 e Never act unfairly toward fellow members Midterm Presentation 3/3/2008 3/14/2008
e Fulfill all requirements set forth by the client Final Report 4/21/2008 5/2/2008
e Never lose sight of the best interest of the consumers IPRO Day Presentation 4/20/2008 5/2/2008
Work Results
IPRO Day Poster 4/21/2008 4/25/2008
. . . Code of Ethics 2/15/2008 3/7/2008
Paradigm of Code of Ethics
Book Results Exercise Results g Webeita 2/18/2008 2/25/2008
Revised Chapters 7 total time spent (min) 5285 e The book uses multicultural examples and exercises Abstract 4/21/2008 4/25/2008
Completely New 2 average time spent g such as driving or making sandwiches. Meeting Minutes 1/25/2008 4/18/2008
Chapters (min / prob) e : CD-ROM 4/25/2008 5/2/2008
average grade e All of our content is original and created with our
Total Chapters 10 (out of 5) 4.15] ‘] Team Debriefing 5/5/2008 5/5/2008
, audience in mind.
Book Changes Exercise Changes ilestones ____Start____Finish
Insertions 497 Changed 23 Meetln Structure Chapters 1 - 4 and
Midterm report 2/4/2008 3/16/2008
Deletions 518 Added 35 1. Monday two and a half hour face-to-face meeting Chapters 5 - 9 3/14/2008 4/28/2008
Total Changes 1015 Deleted 14 2. Thursday IRC online chat F'gae'liszf;’gf:s”d 3/14/2008 5/2/2008
. . - 3. Other subteam meetings throughout the week
Lecture Slide Results Exercise Difficulty
Chapters w/ Slides 5 Time Spent
Total Slides 152 Rasy
Medium
Avg Slides / Chapter 30.4 Hard
7.0 6.0 6.8 9.6 13.5 12.3 3.0 5.5 6.0 7.5 9.0 7.0
Ch C S Board 7.3 3.5 7.0 11.5 10.0 | 10.0 7.0 1.0 6.0 3.0 8.0 6.0
apter Lomments Score boar 3.5 12.0 9.0 11.0 @ 10.0 @ 10.0 5.0 10.0 | 12.0 9.5 11.0 9.0
. Team Member = Major | # Commented Chapters 2.5 10.5 9.0 9.0 10.0 10.0 9.0 2.0 11.0 6.0 7.0 10.0
Non-C3 10 5.0 8.5 8.3 10.0 | 10.0 6.0 6.5 6.5 6.0 6.5 7.0 4.0
cs g
Non-CS 10 7.1 6.0 3.0 6.0 8.5 12.0 7.0 0.0 8.0 8.0 8.5 7.8
CS 10 3.5 7.5 8.5 11.0 8.5 12.0 7.0 3.5 6.5 10.0 9.0 9.0
Non-C5 10 3.5 9.8 9.5 6.5 10.0 10.0 7.5 0.0 6.5 6.0 9.0 11.5
Non-CS 10
cs o 5.0 10.0 | 10.0 10.0 8.0 9.0 8.0 0.0 9.0 8.5 9.0 10.0
Non-CS 10 5.9 6.3 4.0 4.8 8.0 8.8 5.0 3.0 4.0 3.5 5.0 14.0
Non-C5 2 5.0 10.0 6.5 6.0 10.0 10.5 6.0 0.0 9.0 6.0 9.0 8.0
o 2
Non-CS 5 2.6 10.0 8.0 10.0 @ 100 100 @ 100 @ 100 @ 10.0 | 11.0 @ 11.0 @ 10.0
o 2

IPRO 328

Spring 2008

Background Phase One (Create original book draft)

Most Traditional Computer Science Last semester's IPRO was given a bare bones draft of a Ruby textbook provided by Prof. Frieder & Prof.

Texts are: Grossman P — .

After all the requirements are refined, the engineer will start solving
the problem. He will draft and possibly redraft a design for the
bridge. He will then assess how well the bridge design meets the

for the cases where there is no solution/there are an infinite number of solutions.

stated requirements and correct any deficiencies. 3.9 A leap year is a year containing an extra day. Every year divisible by 4 is a leap
year. However, if the year is also divisible by 100, it will not be a leap year

. : . . be inefficient to find out

baseball card? Given the requirements, he will then draft a design. ’

He will develop an a]gon't]ul?— a sequence of steps used to solve tghe that a bridge is only 3.11 Draw a diagram that illustrates the actions a program would take that takes an

development task to a team of carpenters and welders. ¢) Write the program using case statements.

The design stage is key to any successful project. If we design a

L
. C . : : . “ Gem of Wisdom unless the year is also divisible by 400. Write a program that asks a user for an
omputer science is no different. For example, someone might say: “I W————— b ol e e s B e e o e e
® ® need a piece of software that will allow me to keep track of all of my WV (;’)111 aced witha Py y pyear
baseball cards.” It is impossible to simply start hammering out pri) el?l y(;u are trying to
o . e acco m 1 S e e O OWln aS S o software. A properly trained computer scientist will talk to the user solve, the first step 1s to 3.10 Write a program that outputs Good morning/ Good afternoon/ Good evening/
 Out of touch with student needs ’ e e ———
. . t for pedestrians integer input, and then two more after which it is output if the most recent input
problem. He will then evaluate how well the design solves the Dant Ior pedes ; g
-t -t problem and change it to solve its deficiencies. He is then finally after designing it for is larger, smaller, or equal (o the previous one.
® u O Ouc Wl ln us able to write the code or to turn over the actual writing task to CTUcks. Computer science a2 Drava diagramt o llustratethe progrems exeeution
problems are no different.
d e bridge that will collapse under certain wind conditions, the best
. g i 40 th 1d b il d g tit ’ 3.12 Draw a diagram that illustrates the actions a program would take that takes three
r v l X l ;:arpen ry 111 9 Wor WIth 2 (Iilo .mg (;lpreve.n L .ft lected integer inputs and then outputs the largest and the smallest of the inputs.
n computer science, e design phase is often neglected or Draw a di to illustrate the 's exectti
completely skipped. It is tempting to just write some code and see) Draw a diagram to illustrate the program’s execution

anticipate having? What information do you wish to store for each L€ requirements. It would
programmers-- just as a bridge engineer might turn over the bridge b) Write the program using if statements.
how things work.

b) Write this program using if statements.
¢) Write this program using case statements.

]

o D ‘ 7 1 2 - X r l r h r n We believe that the heart and soul of computer science is about _
algorithms. While not every project requires a fully detailed design, 3.13 What does the following code do?
you should always put in the time to develop a good algorithm. If you

skip this step and start writing code in the computer language of your array = [gets, gets, gets, gets]

choice, you might implement a solution that has more limitations than array.sort!
r O e m 1 3 f hd you imagined. . !
t puts array

SO u lonS Or every exerCISe [What is an Algorithm

An algorithm is a sequence of steps for performing a task, often based
on some input. Any series of steps can be thought of as an algorithm.
For example, if Nancy gives Scott directions to her house, she is

o
giving him an algorithm to follow. This algorithm may include such 3.15 Numbers in ruby have a method named 'between?' on them. This is very useful
® e ‘; e O e L I O I ammln e 8 am e S steps as “Turn left at Main street,” or “Take a right after three lights.” in 'if' statements. An example of this is:
For computer science, it is convenient to write algorithms as a

numbered series of steps. Directions from Scott's house are given 1.5.between?(1,2)
below in such a manner. In order to solve the problem of getting to B
Nancy’s house, Scott simply needs to follow the 5 steps in order:

3.14 Write a program to output whether a given input is even or odd.

Create an effective text:

This will evaluate to 'true’. For example:

Start going South on Riverroad.
Turn left at Main street.
Take a right after three lights, at Ruby lane.

number = 1.5
if number.between?(1,2)

print number, ' is between 1 and 2!’
Turn left at first Stop sign. You will now be on Algorithm else

Assess and improve the text * Created two Model Eliciting Activities e e e e e

Create teaching tools
Create new problem sets

* Created figures & accompaniments

=W N

* The book was not perfected and needed a large scale revision phase, Phase 2 — this semester of IPRO 328

Objectives Phase Two (Test and Revise)

Text itself
Revise or rewrite all 8

original chapters * Returning members from last years IPRO taught the

class the contents of the book. cupers: [3)

‘Teaching Tools

1.3 Algorithins for the cases where there is no solution/there are an infinite number of solutions.
(J Algorithms are step—’t?y-step methods of solving plro?t)len}s. The name database example 3.9 Aleap year is a year containing an extra day. Every year divisible by 4 is a leap
. r n 1 shown a_bove is an example of an algonthm_, but it is by no means the be-all and end-all year. However, if the year is also divisible by 100, it will not be a leap year
Qf algorlth_ms. Some_ are extrem_ely complicated and many, arc dynam_lc. A lot of the unless the year is also divisible by 400. Write a program that asks a user for an
time algorithms take input and give output, but sometimes they do neither. However, input year and determines if that year is a leap year.

all algorithms have something in common — they all do something.

L
. 3.10 Write a program that asks the user to input two of the primary colors (blue, red,
() l l l e ‘ ~ (, I ‘ » :‘ : ; :‘ : ;: ; I I l (! ‘ ' (: : . :S :5 : . I l I : . ‘ E Imagine a website like MapQuestTM which has an algorithm to get directions from one yellow) and then outputs the color resulting from the mixture of those two
point to another in either North America or Europe. It typically wants two inputs: a colors. Use the figure below to write your program.

source and a destination. It also gives two outputs: the directions to get from the source
to the destination, and a map of the route.

. Pr Obl e m S ets The directions produced are also an algorithm; they accomplish the task of getting from
W O ‘ E V ‘ E I ‘ E c u I ‘ a W‘ ‘ °® the source to the destination. Imagine getting the directions to your friend’s house:
*Test and revise for all 8

original chapters

Take a right on Ruby Lane
Turn left toward Algorithm Circle.
Continue until you come to 345 Algorithm Circle (your friend’s house).

start

 Grades were tracked llSiIlg Go ogle Docs and class input o = At ittt

L e O S

Yellow

S Main Street is larger, smaller, or equal to the previous one.

a) Draw a diagram to illustrate the program's execution
b) Write the program using if statements.
House 345 ¢) Write the program using case statements.

using iGroups — this drove changes to the book. —— .

integer inputs and then outputs the largest and the smallest of the inputs.

a) Draw a diagram to illustrate the program's execution
b) Write this program using if statements.
First notice that the directions are numbered, each step happens in sequential order. ¢) Write this program using case statements.

Additionally, it tells you general steps like, “Tum left on Main Street.” It doesn’t say,
“Turn on your left turn signal and wait for the light to turn green, then turn left on Main

peoy Jaary
aueT Aqny

Street”: that is not the point of an algorithm. An algorithm does not need to write out 33 erte & program that as}(srihieruser 1o enter 3 infegers, .Thf:n ttie program.#ll
; . ; . output the integers according to size from smallest to largest. (Hint: use a case
every single detail, but it needs to have all the important parts. statement.)

This innovative method allowed us to accomplish the

Many times it is possible to write different algorithms that accomplish the same task, but
they will do it in different degrees of efficiency. Efficiency in algorithms is typically 315

. o P .
expressed in terms of speed. Take the above algorithm for going to your friend’s house, Numbers in ruby have a method named ‘between?' on them. - This is very useful

 One completely updated book .

* A lot of edits based upon real following:
results

« A largely complete set of lecture

* We completely revised 7 of the chapters and created three entirely new chapters.

slides
- Problems rearranged, edited, and 5 of the 10 chapters have lecture slides, and they have all been successfully tested.

recreated based on student * Problems from every chapter were revised and many new problems created.
feedback

IPRO 328

Spring 2008

Editing Team 1: Katherine
Hammes., Roman Kofman,
Phillip Rymek, Harry Tran

 Created new versions of chapters 1
through 8

 Edited chapters 1 through 8 based
upon others' comments

 Commented on chapters 9 and 10

diting Team 2: Nicholas
Bathum, Peter Schmitz

 Created new versions of chapters 9, 10

 Edited chapters 9 and 10 based upon
others' comments

 Commented on chapters 1 through 8

¢ Initially helped the exercise team

IPRO 328 Members

David Charles Allen, Nicholas Bathum,
Katherine Hammes, Seon Jeong, Leland
Johnson, Roman Kofman, Noh Hyup Kwak,
Vivek Patel, Phillip Rymek, Peter Schmitz,
Michael Tilatti, Harry Tran, Yacin Nadji
(Student Advisor), David Grossman (Advisor)

Exercise Team: David Allen, Nicholas
Bathum, Seon Jeong, Noh Kwak, Vivek Patel,
Peter Schmitz, Michael Tilatti

» Responsible for learning Ruby and all concepts presented
in the book.

» Completed all homeworks to test proficiency of the book.

- Commented on every chapter of the new book.

Development Cycle

Grading Team: Leland
Johnson, Phillip Rymek

e Created lecture slides

» Taught the book in a lecture
format

e Graded all the homeworks

 Commented on every chapter

Exercise Fixing Team: David
Allen, Seon Jeong, Noh Kwak,
Vivek Patel, Michael Tilatti

* Modified, deleted, and created
problems for the book.

e Populated new chapters with problems

 Commented on every chapter

N N 4 N
: Editing Teams
Grading Team / - , \ dify 5 hant y N / New chapter\
lectures chapter xercise Team modity new chapter : :
@ D / P \ begins / based upon Exercise \ Exercise and exercises
Begin < 4 homework and Team's comments Fixing Team have been
comments on - 4 fixes exercises created. Move
- Chapter /\/ Editing Teams A Editing Team's a | N from chapter on to next
begin creating new \ new chapter / (;xlradlng T(la(atm grilld.es < 4 < chapter 4
chapter omework turned in
T 4 by Exercise Team
- 4
| Step A 1 Step B | | Step C |

	Slide 1
	Slide 2
	Slide 3

