### Low-Cost Water Pump Design/Testing to Serve Rural Villages



### **IPRO 323**





# **Project Timeline**

#### Studied Components

- Ordered Test Components
- Testing Model
- Full Model Scale
  - Farm in Kankakee
- Large Scale Project
  - Understanding the Requirements
  - Ordering Components

## Methodology

- Design a renewable solar power based water pump
- Four subteams
  - Pump
  - Solar Panels
  - Pipes
  - Storage

# Pump Subgroup

### Katty Davila, Erick Leong, Joshua Sullivan

### Pump Test System

- A small test pump was selected to aid in understanding its working mechanisms
- Size, GPM, DC
  Powered, Submersible



## **Pump Test Selection**

#### • Testing on Farr Hall Apparatus

- Understanding Electricity Requirements
- Possible Factors of Flow Rate
- Physical Constraints

## Pump Design Requirements

#### • Functional Requirements:

- 6gpm @ 36m
- Must be no-maintenance.
- Operate off of DC current (Solar Panel)
- Submersible
- Groundwater temperature between 20-25 Celsius
- Positive Displacement Pump

## **Pump Selection (Mexico)**

- Suitable Candidates
  - 1) Grundfos 11 SQF-2
  - 2) Lorentz PS200 HR
  - 3) Lorentz PS600 HR
- Candidate Selected: Lorentz PS600
- HR-14 Class 2 (HR-14-2)
- Reasons:
  - Lower Cost (About \$1700 total)
  - Efficiency and Low Maintence
  - Scalable to increases in village size or water consumption



## Solar Panel Subgroup

Ellen Rohde, Ryan Yarzak, Nicholas Bailey, and Jaucinta Burt

### **Test Solar Panel**



 To gain an understanding of expected pump performance when powered by solar energy

- Purchased a small solar panel to evaluate panel performance relative to given ratings
- Determine size of solar panel needed in Monterrey

### **Solar Panel Test Circuit**

- Purchased to obtain panel test data
- Connects to computer via USB
- Comes with software to interpret data



### Accomplishments

- Previous research data states that Solar Panels achieve maximum performance in Chicago when mounted at 67 degrees during the winter
- Mounting bracket has been constructed
- All testing equipment has been procured

### Next Steps

- Collect data over two 1 day periods
- Correlate solar panel performance data to expected performance in Mexico
- Determine size of solar panel array necessary to provide required flow rate from pump
- Monterrey receives 98% of the solar radiation available at the equator therefore, performance will be better than in Chicago.

# Piping Subgroup



#### Brian Albee, William Pajak

# **Piping Objectives**

- Determine the piping needs of the test system on Farr Hall
- Purchase the piping for the test system on Farr Hall
- Construct the piping on the test system for Farr Hall
- Determine the piping needs for a large scale test system in Kankakee, IL
- Determine and design the piping needs for the final system in Mexico

### Determining the Piping Needs of the Test System

- The piping needs were determined by the Bernoulli Equation:  $p+.5\rho V^2 + \rho gh = const.$
- Using the known diameter of the outlet pipe, the equation was solved for the proper diameter of inlet tubing.
- After solving the equation, a sketch of the test system was drawn.

### **Purchasing and Construction of Piping**

Piping material was purchased and then the piping structure was constructed based on the following diagram



## **Piping Needs for Mexico**

- A design will be proposed as to the piping systems of Kankakee, IL and Mexico once the test system has been sufficiently monitored.
- The Bernouli equation will again be used to determine the piping needs.
- Corrections will be made to the design of the piping system for the water wells in Kankakee, IL and Mexico.
- The design for Mexico will hopefully be approved by the Mexican government for installation in the village.

# Storage Subgroup



#### Leon Chan, Nicole Galbraith, Jinting Liu

## **Objectives**

- Design the water storage for Farr Hall test system (IIT solar water pump prototype)
- Obtain a storage container that will meet the needs of the designed test system
- Design the storage tank, according to data obtained from Mexico, for the final system.

## Criteria for Storage (Test System)

### • Volume

- 3 GPM pump, continuous water cycle
- Depth
  - submerge pump at all times
- Stability
  - supports pressure of pump and piping
- Temperature
  - water should not freeze

## Choice for Storage (Test System)

- Based on the design criteria, a 44 gallon Rubbermaid trash can was selected.
  - capacity is sufficient to maintain the continuous cycle
  - Depth of 24" will keep the pump submerged
  - The material and weight provides adequate stability.



## Design of Storage (Mexico)

- Research water usage rate per person per day in Mexico
- Determine size and type of water tank to be used
- Calculate height and placement of water tank
- Design of water flow from storage tank to individual households

## Objectives

- Finished a small scale test
- Install a full scale system in Kankakee
- Collect data
- Write a plan to be approved by the Mexico Government for eventual installation in Monterrey, Mexico

### **Questions?**

