
FINAL REPORT Faculty Advisor

Wai Gen Yee

Ben Van Vliet

Team Members

Oluwaseun Shonubi

Khanh Duong

Jose Acuna-Rohter

Tarun Anupoju

Lance Cooper

Martin Kolodziej

Konstantin Roytman

Jing Kai Tan

Jong Su Yoon

Problems

 People had access to substantially larger volumes of

data with significantly less latency

 To provide assistance to those seeking a tool that
provides the most up-to-date financial data

IPRO Goals
 To create a high performance data ticker system

 proof-of-concept data ticker plant that processes
real data by the end of the semester

 The learn to work as a team

Objectives

 Explore competitors' solutions and available technology

 Develop a functioning ticker plant system

 Improve system performance

 Determine hardware requirements

 Update the technical user manual

 Create a website

Team division

 Development team
 Designing & Implementing the system

 Research/Optimization team
 Research solutions to improve base system developed

 IPRO/Web Design team
 Project management, IPRO deliverables

 Project website

Development team

Konstantine Roytman CS

Jose Acuna-Rohter CS

Lance Cooper CS

Jong Su Yoon CS

Developing the software and hardware for the system.

Responsible for design and implementing the system.

System Design

Last Value

Cache

Head

End

Client

Client

Client

Subscription/

Security

Updates

Data

Feed

Client List
Client 1

Client 2

Client 3

Symbol
ABB, AAB
BBB, BAA
ABB, CCC

Symbol

GOOG

Bid $

XX

Ask #

XX

Ask $

XX

Ask #

XX

Last $

XX

Last #

XX

Client Sub

1, 3

• Current Status

UDP

TCP

UDP

Data Feed

RAW OPRA DATA

FILE

DATA GENERATOR

(UDP Server)

OPRA DECODER

(UDP Client)

UDP Packets

containing

OPRA packets

Head End - Inputs

 Receive OPRA FIX FAST encoded data

 Receive data via UDP

 Incoming Data is grouped in OPRA Packets

 Each OPRA packet must be completely

decoded before more packets are read in.

Head End - Output

 40 byte message is created

 Position Based Message

 Sent to Last Value Cache(LVC) via UDP

 1 message is sent per UDP packet

Head End Message Structure

 Sample Message:
 FVXWHB0004000A00000001000200000001100020

LVC

 Stores the last seen value for all symbols that
pass through the system.

 Updates must be stored rapidly to avoid loss

 We use a hash table to do this efficiently

 Subscription submodule distributes updates to
connected clients, and handles client requests
to subscribe or unsubscribe to a symbol.

LVC: Hash Performance

 The most performance critical aspect of the
LVC is the hash algorithm used.

 Tested:

 CRC32

 STL

 Jenkins

 AlphaNum

 The established CRC32 proved performed well
enough to continue use, but AlphaNum showed
promise warranting investigation.

Client

 The client program allows user to get price

update from the server on selected symbols.

 Function

 You can make a connection to LVC

 You can add/remove symbol through add/remove

symbol button.

Client

It shows you change of the price with color
 Yellow: no change.

 Green: increasing

 Red: decreasing

Research/Optimization Team

Tarun Anupoju CPE Jing Kai Tan EE

Look at the base system developed, research for solutions

to improve and optimize the system for maximum reliability

and performance.

09:59:54 AM
10:00:12 AM

10:00:29 AM
10:00:46 AM

10:01:03 AM

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

Column C

Logarithm
regression
for Column C

Analysis of Real OPRA Data

 2 real OPRA data sets. OPRA9.OUT and OPRA10.OUT

Contains data between 9am and 11am

Analysis gives understanding of what the system is handling.

Graph to the right: Show the unique
symbols in the 1st 60 seconds

Results form the basis for the requirements of the Hash Function

09:50:24 AM09:57:36 AM 10:04:48 AM10:12:00 AM 10:19:12 AM10:26:24 AM 10:33:36 AM 10:40:48 AM10:48:00 AM 10:55:12 AM11:02:24 AM

0

10

20

30

40

50

60

70

80

90

100

#msgs vs time for APVVL

#msgs

time

#
m

s
g

s

Graph shows the option put symbol APVVL which belongs to Apple Inc

Hashing

 Hash Function tested:

 Alpha Numeric – Bob Jenkins

 CRC32 – CRC32 Parallel

 Fowler Noll Vo – One at a Time

 Super Fast

 Testing Platform:

 Intel Centrino 2.50 GHz

 2.0 GB Memory Ram

 Measurement:

 Time taken to hash 217 millions of OPRA Symbol (5 Characters)

 Number of collision in 113,263 unique hash key

Hash Result

Hash Function
Alpha

Numeric
Bob Jenkins CRC32

CRC32

Parallel

Fowler Null

Vo

One At A

Time
Super Fast

Average Time

(µs)
0.4776880524 0.5155182644 0.5014418247 0.4981016012 0.5270051974 0.5144626931 0.4981157233

Number of

Collision 0 3 0 183 0 13 899

IPRO/Web Design team

Khanh Duong CPE

Martin Kolodziej EE

Oluwaseun Shonubi EE

Responsible for handling the creation of IPRO

deliverables and the IPRO 313 Website

IPRO 312 website

 phpWiki driven design

 Support for Firefox and IE 7

 Includes web client

 Integrated search option

 http://www.iit.edu/~ipro313s08/

http://www.iit.edu/~ipro313s08

Obstacles and Other Team Related Issues.

SOFT SKILLS

 Difference in disciplines of the respective

team members

 Time management

 Team building / individual motivation

 Meeting deadlines set by fellow team-mates

and laid down deadlines from IPRO office.

Visualization of Obstacles

Soft
skills

Multi-
discipline

Team
Building

Deadline

Pressure

Time
Planning

Conclusions

 We fixed the system from what it previously was

 We created a base system.

 We followed the rules/guidelines from the IPRO

office.

 IPRO was a success!

 Questions?

