

IIT IPRO 304 Machine Tool Monitoring Control For A. Finkl & Sons

IPRO Presentation

John Rhoda (MMAE 4) Joshua Iszory (MMAE 2) Sunghwan Yeo (MMAE 3) Donghwan Kim (MMAE 4) Daniel Oh (MMAE 4) Sajid Ali Khan (MMAE 4)

Facility advisors

Mostovoy Sheldon

Maurer William

Background

- A. Finkl & Sons is the world's leading supplier of forging die steels, plastic mold steels, die casting tool steels and custom open-die forgings,
- A. Finkl & Sons process over 100,000 tons of steel each year. These products are distributed domestically and to more than 18 countries worldwide.

The Problem

- Machinists must remain at machines at all time
- Broken inserts cause downtime and higher costs

Previous Work

• Visual method

- A camera was used to take photographs of the milled piece and a Fast Fourier Transform analysis was preformed to discover patterns.

- Acoustic method
 - A directional microphone was used to try to detect the sound of an insert breaking.
- Accelerometer method

- An accelerometer was attached to the milling machine housing directly over the cutting head.

Current Work

- Accelerometer data :
 - 4 grades of steel
 - Five different machines of various size
 - Two different shapes (most milled material is rectangular)
 - Eight different size parts (from 1 to 17 tons)
- Lab View Signal Express was used to collect and analyze data

Research Time

- We went to A Finkl & Sons twice a week to collect data.
- We spent over 40 hours to get appropriate data from several machines.
- Two following signals were extracted from over 500 MB data.

Analysis (Proper signal)

Transforming Lives. Inventing the Future. www.iit.edu

Analysis (Improper signal)

Hypothesis

- In order to acquire accurate data the machine's running noise must be minimized
- Every machine is different and some may have worn bearings which could cause extra noise.

Recommendations

- Wireless accelerometers will be mounted to the milling machine shaft.
 - These computer chips are capable of wirelessly transmitting the vibration data to a central computer used for the analysis.
 - Mounting the accelerometers on the rotating shaft might minimize the noise found in the signals.

Future Work

- The accelerometers will need to be programmed to send the data to the central server.
- A program will be written to convert the streaming data into a format for LabView to analyze.
- If the noise is reduced the machine shop will be analyzed for optimal placement of the receiver.

Acknowledgements

- Bruce Liimatainen- CEO
- Guy Brada- Chief Metallurgist
- Operators
- Supervisors
- Chris Herzog- STG President