

IPRO 302 CO2 Mitigation: A Techno-Economic Assessment

Problem

- CO₂ emissions may be contributing to global warming.
- Future governmental regulations are expected.
- Power plants will require CO₂ capture technology.
- Alternate destination for CO₂ must be found

Our Sponsor:

- Full service provider to public utilities and independent power producers
- Provides global consulting services for:
 - Renewable power
 - Nuclear power
 - Fossil power
 - Design of environmental control systems

Objectives

- Analysis of CO₂ removal system

 Computer models of power, steam and flue gas cycles
- Economic analysis

 Capital and operation costs.
 Sequestration costs.

IPRO It takes a team INTERPROFESSIONAL PROJECTS PROGRAM

Overall Process

Steam Team Purpose and Goals

- Analysis of steam cycle and flue gas
- Find values via Matlab simulation and hand calculations
- Determine Flue chemical composition, total mass flow rate, and temperature

Steam Side

FIGURE 9-19

Schematic and T-s diagram for Example 9-6.

It takes a team INTERPROFESSIONAL PROJECTS PROGRAM

Steam Calculations (MATLAB)

• Gross power

- Power produced at generator

• Net power

- Power delivered to transmission lines
 - (Gross power power consumed in plant)
- Generator and turbine efficiencies
 - Used to determine the steam flow rate at the turbines (gross power known)
- Heat transfer requirements for intermediate stages.Boiler specifications given

PRO INTERPROFESSIONAL PROJECTS PROGRAM

Steam/Flue Gas Flow

IPRO INTERPROFESSIONAL PROJECTS PROGRAM

Pollution Control Devices

- Ideal Heat transfer
 Pollution Control Devices energy losses are neglible
- Baghouse removes all additional components

Results

- 76 kg/sec of coal
 708 kg/sec air into furnace
- 730 kg/sec out of flue
- 152 kg/sec of CO2 out of flue
- 82.7 Degrees C

Resulting Power Losses

- 30 MW loss for steam removal prior to entering intermediate turbine for use by CO2 removal process
- 30 / 53 MW loss depending on 100 F or 35 F temp requirement respectively

IPRO INTERPROFESSIONAL PROJECTS PROGRAM

• Process Schematic

• Absorber

- Absorption : Operation when liquid & gas phases contacts
- Diffusion or mass transfer of solute to Solution
- Solute : CO_2 absorbed from flue gas into stagnant liquid

• Stripper

- Separate and regenerate CO₂ from solution
- Separation Property : Relative Volatility --- 30 times volatility difference

Reaction $(NH_4)_2CO_3 + H_2O + CO_2 \Rightarrow 2NH_4HCO_3$ Ammonia Carbonate stripper Ammonia Bicarbonate

IPRO It takes a team INTERPROFESSIONAL PROJECTS PROGRAM

- Counter-Current packed Absorber
 - The highest *theoretical* efficiency.
 - Driving force : concentration difference
 - Pressure Drop

$$f_p = \frac{150}{\text{Re}_p} + 1.75 \Longrightarrow f_p = \frac{\Delta P}{L} \frac{D_p}{\rho V_s^2} \frac{\varepsilon^3}{1 - \varepsilon}$$

• Stripper

PRO INTERPROFESSIONAL PROJECTS PROGRAM

- Operating Condition for Chilled Ammonia Process
 - Reagent composition : 25% Ammonia, 75% Water
 - CO2 Removal Efficiency : 1.29 lb CO₂ / lb Reagent
 - Heat of Reaction : 260 Btu/lb
 - Absorption Temp. : $35 \sim 60^{\circ}$ F (2 ~ 16 °C)
 - Absorption Pressure : Atmospheric
 - Regeneration Temp. : 200 ~ 250°F
 - Regeneration Pressure : 300 ~ 600 psia
 - Pressure Drop : 0.1 psia / tray

It takes a team INTERPROFESSIONAL PROJECTS PROGRAM

• Absorber Design with Matlab

Berl Saddles

PRO

20 meter diameter
 chosen as best compromise
 of cost and efficiency.

- Higher cost
- Lower Void fraction
- Higher Surface Area

• Stripper Design with Matlab

PRO INTERPROFESSIONAL PROJECTS PROGRAM

- Heat integration Design
 - HYSYS simulation
 - Obstacle : system does not have ammonium carbonate (AC) and ammonium bicarbonate (BC)
 - Assumptions
 - majority of streams between Stripper and Absorber consists of Ammonia and Water.
 - HYSYS design model with H₂O, NH₃, CO₂ estimates the most similar heat integration process including heat exchangers and compressors.

• Economical Analysis

- Assumptions : interest rate, labor fee, Land cost, etc.

Challenges with CO₂ Compression

- Corrosive water + CO_2
- Iron Carbonyl formation water + CO

Centrifugal Compressors

- Superior efficiency
- Oil-free compression
- Less maintenance-intensive
- Higher speed, commonly used in the 10-40MW range

MOST VIABLE COMPRESSOR

• Specifications:

- Model = Man Turbo
- Type = RG
- Stages = 2-8
- Max. Pressure Ratio = 225
- Inter-stage Coolers = 1-4
 - Power = 4,500KW
- Flow Rate= $2000-500,000 \text{ m}^3/\text{hr}$

PRO It takes a team INTERPROFESSIONAL PROJECTS PROGRAM

POWER VS. INLET PRESSURE

PRESSURE

Basis - \$ 0.067/kW

CO₂ Uses and Destinations

• Food Industry

• Enhanced-Oil Recovery

Sequestration
Oceanic
Terrestrial
Geological

Iowa Options

•Saline Aquifer Storage •Enhanced Oil Recovery •Coal-Bed Methane Recovery

Potential Enhanced Coalbed Methane Recovery Sites

Potential Enhanced Oil Recovery Sites

Potential Saline Aquifer

Recommendation Coal-Bed Methane (CBM) Recovery!

Relatively close proximity to power plantOffers value-added benefit of fuel extraction

Economics

• CBM benefits from sale of CO₂

Ethical Challenges

Degeneration and loss of ammonia (~3500kg/yr)
Ensuring reliable CO₂ storage
Software Licensing (Law)
Proprietary Information (Professional Codes)

Overall Conclusions

30MW Average Energy Penalty from Steam Cycle
Only CO₂ capture with 25% feasible
158 bar compression to liquid CO₂ follows
Coal-Bed Methane Recovery/Sequestration

Thank You

Special Thanks: Charles Guilfoyle Lily Popadopoulos

Questions

