Results

Team structure

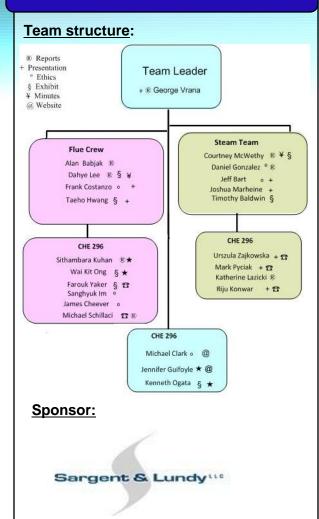
IPRO 302

Steam Team:

Provided energy penalty data for economic analysis 30MW average energy penalty required for ammonia regeneration

Flue Crew:

Developed models of Absorber and Stripper

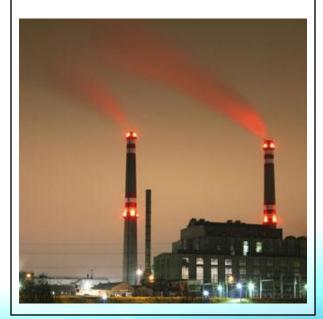

Performed economic analysis to compare relationship of dimensions with efficiency of CO2 capture and removal

Recommendations

•25% CO₂ removal system is economically feasible in coal fired plants Higher removal rate results in higher energy penalties

Sequestration : Coalbed Methane (based on cost calculations)
Location: Approximately 100-150km from power plant

•Compressor : RG Man Turbo Compressor



Faculties: Professor Don Chmielewski Professor Satish Parulekar Paula Moon

CO₂ Mitigation: A Techno-Economic Assessment

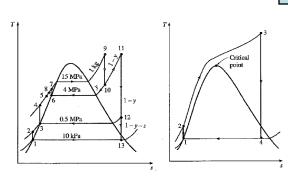
Objective :

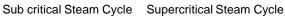
Design of a retrofit addition to an existing pulverized coal-fired power plant to remove carbon dioxide from flue gas steam

Steam Team

Flue Crew

Pressurization Team

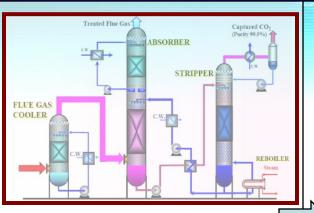

Key Tasks


 Created Matlab model of supercritical steam cycle

•Determined flow rate of CO₂ annually before removal

•Modify cycle to provide steam to run CO₂ removal unit

•Cool flue gas before entering CO₂ removal unit



Challenges/Obstacles

•Not having access to T-S diagram for supercritical cycle until final weeks

 Changing from a sub critical model to a supercritical model with limited time

 Few team members were acquainted with Matlab coding

Key Tasks:

•Produce a CO₂ removal unit design with removal percentages of 25%, 50%, and 90% for absorbent inlet temperatures of 35°F

•Determine the energy requirements of our stripper operation

 Perform economic analysis on each case

Reaction:

 $(NH_4)_2CO_3 + H_2O + CO_2 \leftrightarrow 2 NH_4HCO_3$

Forward reaction In Absorber Backward reaction in Stripper

What is Absorber and Stripper?

Absorber: CO₂ absorbed from flue gas into stagnant liquid Stripper: separate and regenerate CO₂ from solution

Heat integration:

Steam from the plant used to combine heat difference between steam cycle and CO2 technology process

RG Man Turbo Compressor

Ideal Compressor - Type RG multistage integrally geared centrifugal compressor manufactured by Man Turbo Volumetric flow rate - 2,000m³/h to 500.000m³/h Maximum Discharge pressure – 225bar Estimated compressor capital costs -\$55 million.

Sequestration Team

Key tasks:

 Research various sequestration methods

•recommend the most cost effective methods

Four major sequestration methods:

Coalbed Methane-injection of CO₂ into exhausted coal seams to displace and recover methane

Enhanced Oil Recovery-injection of CO₂ into oil wells to boost oil recovery by 10-20%

Saline – injection of CO_2 into porous rocks to be trapped over a long period Terrestrial-use of forestry to remove CO₂ from the atmosphere and store it in wood