•IPRO-325 Introduction

- Cooling Subgroup
- •Individual Roles
- •Goals
- •Progress
- •Continuation Plan
- •Obstacles and Resolutions
- •Anticipated Challenges
- •Questions/Comments

IPRO-325C DESIGNING AFFORDABLE SHELTER SOLUTIONS FOR THE WORLD'S POOR

SHELTER – EVAPORATIVE COOLING SUBGROUP

Illinois Institute of Technology

IPRO 325

•IPRO-325 Introduction

•Shelter Subgroup

- •Individual Roles
- •Goals
- •Progress
- •Continuation Plan
- •Obstacles and Resolutions
- •Anticipated Challenges
- •Questions/Comments

Shelter Subgroup

Problem:

- 792 million people worldwide are malnourished
- 5 million children die each year due to malnourishment.
- Many of the rural poor buy in bulk and stockpile since they typically are not near markets
- Food stored from the market or their own produce typically spoils before they can eat or sell it
- 20% of fruits and vegetables are lost due to rotting during storage
- Micro-Nutrient Malnutrition (MNM) is a medical condition resulting from insufficient consumption of nutrients
 - 1 in 5 with MNM have access to fruits and vegetables but cannot store it

Illinois Institute of Technology

•IPRO-325 Introduction

Individual Roles

•Individual Roles

•Goals

- •Progress
- •Continuation Plan
- •Obstacles and Resolutions
- •Anticipated Challenges
- •Questions/Comments

<u>August Sylvain</u> 4th year Biology Major Engineering Notebook <u>Casey Franklin</u> 5th year Architecture Major Cultural Liaison

<u>Carl Ekstrand</u> 4th year Civil Engineering Major Funding Research

<u>Amber Heinz</u> 5th year Architecture Major Subgroup Leader

<u>Mark Chiu</u> 4th year Architecture Major Testing Coordinator

IPRO 325

<u>Justine Banda</u> 4th year Architecture Major Minute Taker

Shelter Subgroup

Illinois Institute of Technology

- •IPRO-325 Introduction
- Cooling Subgroup
- •Individual Roles
- •Goals
- •Progress
- •Continuation Plan
- •Obstacles and Resolutions
- •Anticipated Challenges
- •Questions/Comments

- Design a cooling system that will help combat malnutrition by enabling the storage of fruits and vegetables for longer periods of time before decaying.
- Expand on Research from Previous Semesters
- Test In-Ground System vs. Existing Precedents
- Test Lid Designs
- Test Fruit Preservation in System vs. Out of System
- Make Recommendation on Most Efficient System Design
- Modify & Translate Construction & Use Manual
- Find Implementation Location, Connections, & Funding

- •IPRO-325 Introduction
- Cooling Subgroup
- •Individual Roles

- •Progress
- •Continuation Plan
- •Obstacles and Resolutions
- •Anticipated Challenges
- •Questions/Comments

Progress: Evaporative Cooling

<u>Theory:</u>

- Air temperature decreases as water evaporates
- Effect:

•

Objects or liquids that are in contact, become cooler

- •IPRO-325 Introduction
- Cooling Subgroup
- •Individual Roles

- •Progress
- •Continuation Plan
- •Obstacles and Resolutions
- •Anticipated Challenges
- •Questions/Comments

Ideal climate:

- High temperature
- Mid to low humidity
- Breezes
- Most suitable regions of Peru for testing:
 - Coastline
 - More tropical areas.

- •IPRO-325 Introduction
- Cooling Subgroup
- •Individual Roles
- •Goals
- •Progress
- •Continuation Plan
- •Obstacles and Resolutions
- •Anticipated Challenges
- •Questions/Comments

Progress: Location Research

Terrain:

- Andean Ridge divides the country into two sections
- Large effect on climate within the country resulting in a total of 8 different climates

- •IPRO-325 Introduction
- •Cooling Subgroup
- Individual Roles
- •Goals
- •Continuation Plan
- •Obstacles and Resolutions
- Anticipated Challenges
- •Questions/Comments

Static Cooling System

Zeer Pot System

Figure 3: A static cooling system

IPRO 325

- •IPRO-325 Introduction
- Cooling Subgroup
- •Individual Roles
- •Goals
- •Progress
- •Continuation Plan
- •Obstacles and Resolutions
- •Anticipated Challenges
- •Questions/Comments

Brick 'N' Brick

Progress: Past Semesters Precedents

Pot 'N' Pot

Pot 'N' Brick Three systems' efficiencies were tested against one another

Illinois Institute of Technology

IPRO 325

- •IPRO-325 Introduction
- Cooling Subgroup
- •Individual Roles
- •Goals
- •Progress
- •Continuation Plan
- •Obstacles and Resolutions
- •Anticipated Challenges
- •Questions/Comments

Progress: This Semester

Illinois Institute of Technology

- •IPRO-325 Introduction
- Cooling Subgroup
- •Individual Roles

- •Progress
- •Continuation Plan
- •Obstacles and Resolutions
- •Anticipated Challenges
- •Questions/Comments

Progress: In-Ground Testing

<u>Pot (In Sand)</u> Variable: Ground temp + substrate

<u>Pot-In-Pot (In Ground)</u> Variable: Ground temp + evaporation

<u>Pot (In Soil)</u> Variable: Ground temp + substrate

Pot-In-Pot (Above Ground) Control: Traditional Zeer-Pot design

Illinois Institute of Technology

- •IPRO-325 Introduction
- Cooling Subgroup
- •Individual Roles

- •Progress
- •Continuation Plan
- •Obstacles and Resolutions
- •Anticipated Challenges
- •Questions/Comments

Progress: In-Ground Testing

Illinois Institute of Technology

IPRO 325

- •IPRO-325 Introduction
- •Cooling Subgroup
- •Individual Roles
- •Goals
- •Progress
- •Continuation Plan
- •Obstacles and Resolutions
- •Anticipated Challenges
- •Questions/Comments

Progress: Connections & Funding

- Start Researching Possible Connections with Other Organizations
- Start Contacting Potential Connections
- Start Researching Possible Sources of Funding

- •IPRO-325 Introduction
- Cooling Subgroup
- •Individual Roles
- •Goals
- •Progress
- •Continuation Plan
- •Obstacles and Resolutions
- •Anticipated Challenges
- •Questions/Comments

Continuation Plan: The Rest of This Semester

- <u>Research:</u>
 - Potential Implementation Site Locations
 - Potential Funding Options
 - Connections with Other Organizations
- <u>Design:</u>
 - Lids
- <u>Testing:</u>
 - Lids
 - Fruit Storage Duration
- <u>Analysis:</u>
 - All Test Results
 - Recommendation on Most Efficient Design
 - <u>Manual:</u>
 - Modify & Translate

- •IPRO-325 Introduction
- Cooling Subgroup
- •Individual Roles
- •Goals
- •Progress
- •Continuation Plan
- •Obstacles and Resolutions
- •Anticipated Challenges
- •Questions/Comments

Obstacles & Resolutions

- Problem: Climate Differences Between Chicago & Peru
 - Temperature
 - Rainfall
- <u>Resolution:</u> Relocating Testing to Indoors
- <u>Problem:</u> Locating Previous Semesters' Work <u>Resolution:</u> Increase Communication with Members from Previous Semesters
- Problem: Variance in Testing Results
- Resolution: Establish a Baseline
- Problem: Stolen Equipment
- <u>Resolution:</u> Replace Equipment and Restart Testing

- •IPRO-325 Introduction
- Cooling Subgroup
- •Individual Roles
- •Goals
- •Progress
- •Continuation Plan
- •Obstacles and Resolutions
- Anticipated Challenges
- •Questions/Comments

Anticipated Challenges

- <u>Challenge:</u> Controlling Temperature Inside Testing Enclosure
- <u>Alternative:</u> Measure Results over a Range of Temperatures & Note Differences in Results
- <u>Challenge:</u> Finding Connections and Funding
- <u>Alternative:</u> Personal & Group Fundraising
- <u>Challenge:</u>Communicating with Target Region
- <u>Alternative:</u> Obtain Knowledge to be Able to Operate Independently

- •IPRO-325 Introduction
- Cooling Subgroup
- •Individual Roles
- •Goals
- •Progress
- •Continuation Plan
- •Obstacles and Resolutions
- •Anticipated Challenges
- •Questions/Comments

Questions/Comments?

