Hybrid Cars with UltraCapacitor Augmentation

•Toyota Prius

Dice Carnegie Copyright, 1996 © Dale Carnegie & Associates, Inc.

Introduction

* More efficient hybrid vehicles

- * **Researched:**
 - Ultra-Capacitors

Batteries

Overview

* Problems with regular battery life

* Benefits of Lithium Ion Batteries

* Benefits of Ultra-Capacitors

* Combination of batteries and Ultra-Capacitors

Circuit Design

* Various circuits developed for model

Figure 1

Figure 2

Figure 3

Copyright @ 2000-2002 H2 ECOnomy.

Specifications of DC to DC Converter

DC-100-2 conv	erter specifications	DC-100 basic unit specifications			
Input voltage range	0.5 – 1.6 V	Input voltage range	0.3 – 0.9 V		
Working input voltage	1.2 V	Working input voltage	0.5 V		
Output voltage range	9 – 24 V	Output voltage range	3 – 18 V		
Average working output voltage	12 V	Average working output voltage	6 V		
Maximum Input Power	12 W	Maximum Input Power	5 W		
Average efficiency	90%	Average efficiency	85%		
Acceptable ambient temperature	-30 to +50 ° C	Acceptable ambient temperature	-30 to +50 ° C		
Dimensions	12 x 7 x 3.5 cm or 4.7 x 2.8 x 1.4 in	Dimensions	12 x 7 x 3.5 cm or 4.7 x 2.8 x 1.4 in		

Specifications of Relays

Physical specifications Size: 1.75" x 2.50" x 1.25" Weight: 4 oz. Supply voltage: 4.1 – 5.5 Vdc. Supply current: 20ma stand-by, 220ma when relay energized. Load rating: relay is rated for non-welding contact up to 24 amps at 30 volts DC. Switching time: 8.0 milliseconds typical.

Simplorer

* Simplorer Goals

Brief overview of the circuit simulations

*

Simplorer

Simplorer

Advisor

Vehicle Input

Motor pre transmission

Load File PARALLEL_defaults_in 💌								Auto-Size		
Drivetrain Confid Inarallel							_	Scale		
version				type	e		max pwr	peak eff	mass (ka)	
\square	Vehicle		-	?		-	VEH_SMCAR			592
\square	Fuel Converter	ic	-	?	si	•	FC_SI41_emis	41	0.3	131
	Exhaust Aftertreat		┓	?		⊡	EX_SI	#of mo	ocV nom	11
	Energy Storage	rc	-	?	сар	-	ESS_UC2_Maxwell 💌	33	41	23
	Energy Storage 2			?			ess 2 options 📃 💌			
$\mathbf{\nabla}$	Motor		-	?		-	MC_AC75	75	0.9	91
	Motor 2		-	?		-	motor 2 options 📃 💌			
	Starter		-	?		-	starter options 📃 💌			
	Generator		-	?		-	gc options 📃 🔽			
\square	Transmission	mar	-	?	man	-	TX_5SPD 💌		1	114
	Transmission 2		$\overline{}$?		$\overline{\mathbf{v}}$	trans 2 options 👘 💌			
	Clutch/Torq. Conv		$\overline{}$?		$\overline{}$	clutch/torque conver			
\square	Torque Coupling		-	?		-	TC_DUMMY		1	
	Wheel/Axle	Crr	-	?	Crr	-	WH_SMCAR			0
\sim	Accessory	Con	-	?	Con	-	ACC_HYBRID			
	Acc Electrical		$\overline{}$?		-	acc elec options 📃 💌			
	Powertrain Control	par	-	?	man	-	PTC_PAR			
								С	argo 🔽	136
Calculated 1098										1098
iew Block Diagras BD_PAR override mas 1										1
Variable									Help	
Componer fuel_converter Sac Bac									Continue	
	Variables fc_acc_									

Advisor Overview

Powered by Matlab and Simulink, Designed for simulation of:

- Fuel economy-
 - Conventional cars
 - Electrical cars
 - Hybrid cars
- Drivetrain components
- Vehicle data and algorithms

Ultracapacitor Simulation

Lead Acid Battery Simulation

Advisor Model

Problems Unable to implement correct model

 Correct model which connects the lead acid battery to the ultra-capacitor

Webpage

Updated weekly with current progress and information

* Visit us at http://www.iit.edu/~ipro314s/

Acknowledgements

- Ellen Allston Manager, University Program Ansoft Corporation
- * Professor Emadi
- * Professor Tomal
- * Professor Williamson
- * http://www.ctts.nrel.gov/analysis/advisor_doc/ advisor_ch1.htm
- * http://www.ansoft.com/products/em/simplorer/
- * http://www.maxwell.com
- * http://www.teamdelta.com/pdf/rce210r2.pdf

Team

- * Hakan Akdeniz
- * Saurav Batra
- * Josh Davis
- * Israel Gonzalez
- * Ben Hunter
- * Toh Chu Lee
- * Benito Lugo
- * Luke Radwanski
- * Jeffery Stano
- * Karen Stone
- * Rafael Tudor
- * Ima Ufot

Summary and Q/A

₩

Any questions?