
[IPRO313]Ultra-High-Speed Market Data System

November 29, 2007

IPRO PRESENTATION

• Design Group

• Software Group

• Hardware Group

IPRO PRESENTATIONIPRO PRESENTATION

November 30, 2007

Main Goal

• To create a system that can handle an input message rate of three

million market ticks per second

Objectives

• Learn the Basics of the Industry

• Identify the Competitors and Their Systems

• Design an Alternate Solutions

• System Development

• System Optimization

• Experiment the Prototype to identify the Bottlenecks

• Provide Guidance for Future Work

Objectives

Q: Why Fast Data?

A: Information Is Money!

Background

Background

Need for Data Constantly Increasing

Example:

• 4320km: distance from Stanford to Boston

• 300 x 10^6 m/s: speed of light

• 200 x 10^6 m/s: speed of light through fiber

• One-way trip to Boston and back

is at minimum 43.2 ms

Background

• Speed Limit: Speed of Light

• Implementation of High-Speed Data Transmission in Different Industries

Background

• Government

– Simulations

• Life Science

– Surgeries Over Internet

• Travel

– Customer Notification

• Financial

– Access Many Markets

– Consolidate Market Data

– Direct VPN and Web Access

– Algorithmic Trading

Organization

Philip Pannenko, C.S. (Team Leader)

Devaraj Ramsamy, B.A.

Kenneth D. Buddell, B.A.

Michael Lenzen, AM (Sub Team Leader)

Jong Min Lim, ECE

Yunseok Song, ECE

Jong-Yon Kim, B.A. (Sub Team Leader)

Jesus Allan C. Tugade, C.S.

Jong Su Yoon, CS

Usman Jafarey, CS

Young Cho, AM

• Design Team

– IPRO Deliverables

– Research

– Coordination

• Hardware Team

– Research

– Experiment

• Software Team

– Developing the Prototype

– Testing Modules

IPRO Deliverables

• Project plan

• Midterm report

• Abstract

• Presentation

• Project code

• Technical documentation

• Final Report

Generic Architecture

• Options, Stocks, Futures

• Translates incoming data to an internal format

• Stores data

• Handles client connections and permissions

Feeds

Feed
Handler

Data
Cache

Data
Distributor

Clients

Categorization

O

O

O

O

Consolidator

O

O

O

Network

Areas of Optimization

OOWombat

OBloomberg

RTI

OOExegy

TA

OReuters/RMDS

Application

Direct

Feed

HandlerH/WS/W

Type

Company

Architecture features

• Bloomberg

– Terminal with direct server
access

• Reuters

– Dedicated network

• Wombat

– Modular design

– Feed handler split to line and message handlers

• Real Time Innovations

– Feed Handler/Data Distributor direct connection

Ideal Architecture

• Direct connection between Feed
Handler and Data Distributor

– Clients will receive updates as partial records

– Remove Last Value Cache from chain of

transmission

– Reduces message size

– Offloads work to client

Feeds

Feed
Handler

Data
Cache

Data
Distributor

Clients

Proposed Design

Last Value

Cache
Client

Client

Client

Subscription/

Security

Archive

Direct Update

On Connection

Updates

Data Feed TAL

4

TAL

4

TAL

4

FH

Exchange 1

Exchange 2

Exchange 3

Data

Distributor

Prototype Design

Last Value

Cache

Data

Distributor
Client

Client

Client

Subscription/

Security

Updates

Data Generator
• Simulate the exchanges

• Generates symbols and

random updates

• Fixed size (57bytes)

Last Value Cache

/Data Distributor
• Cache values into hash table

• Send updates to Clients

Subscription
• Contains hash table with

client list and subscribing

symbol information

• Last value updates to client at

initial login purpose

Data

Generator

Client List
Client 1

Client 2

Client 3

Symbol
ABB, AAB
BBB, BAA
ABB, CCC

Symbol

GOOG

Bid $

XX

Ask #

XX

Ask $

XX

Ask #

XX

Last $

XX

Last #

XX

Client Sub

1, 3

• Current Status

UDP

TCP

Last Value Cache Optimization

• Hash table is a data structure used for efficient lookup (i.e. symbols)

• Hashing algorithm

– Hash function : Generates unique keys to indicate the address to be

mapped in the container

– Hash container : Actual table where the data is stored

• Townsend Analytics

– Hash function : CRC32

• Hashing Algorithm

Research

1.341.921.921.54SuperFast

2.072.032.362.08Bob Jenkins

4.874.834.844.88FNV Hash

5.674.064.063.29Alpha Numeric

5.695.665.665.76One at a Time

5.675.665.666.42CRC32

GCCWATCOM C++MSVCIntel C++

AMD Athlon XP 1.620Ghz

※ Data is time in seconds taken to hash a random buffer of 256 bytes 5million times.

http://www.azillionmonkeys.com/qed/hash.html

• Benchmarks on Hash Function

http://www.azillionmonkeys.com/qed/hash.html
http://www.azillionmonkeys.com/qed/hash.html

Optimization

• Different containers with same STL hash function

– Sparse Hash (by Google)

• Hash map store the data in a sparse table container

• Memory efficiency in the expense of speed

– Dense Hash (by Google)

• Similar to sparse hash map.

• Speed in the expense of memory.

• Hash Container

Unit Testing

• Agenda

– Performance testing

• STL

• Sparse

• Dense

– Experiment to find the behavior of different hashing algorithm

• Variables

• Varying character length (5, 7, 10 character)

• Varying hash table size (0.5M, 1M, 2M unique symbols)

– Unique symbol = Unique characters ^ Character length

• Test Configuartion

• Data Size : 57bytes

• Input messages : 20 Million (Insert + Updates)

• Coded : C++ / Compiled : Window Visual Studio

STL Hash

0

100000

200000

300000

400000

500000

600000

700000

800000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45

Sec

M
s
g
/s

5 char(14)

5 char(16)

7 char(8)

10 char(4)

Unit Testing

482,512

475,649

585,771

671,600

Performance (Msg/s)

67 Mb537,824 (=14^5)5 char

257 Mb2,097,152 (=8^7)7 char

129 Mb1,048,576 (=4^10)10 char

129 Mb1,048,576 (=16^5)5 char

Memory usedUnique symbolsNumber of Characters

Critical Point

• STL Hash Algorithm

※ Performance is measured starting from the critical point

By Character Length

5 Char > 10 Char > 7 Char

By Table Size

0.5 M > 1.0 M

Sparse Hash

0

200000

400000

600000

800000

1000000

1200000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Sec

M
s
g
/s

5 char(14)

5 char(16)

7 char(8)

10 char(10)

Unit Testing

Critical Point

• Sparse Hashing Algorithm

793,005

872,994

1,003,827

1,012,201

Performance (Msg/s)

56 Mb537,824 (=14^5)5 char

218 Mb2,097,152 (=8^7)7 char

109 Mb1,048,576 (=4^10)10 char

110 Mb1,048,576 (=16^5)5 char

Memory usedUnique symbolsNumber of Characters

※ Performance is measured starting from the critical point

By Character Length

5 Char > 7 Char >10 Char

By Table Size

0.5 M = 1.0 M

Dense Hash

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Sec

M
s
g
/s

5 char(14)

5 char(16)

7 char(8)

10 char(4)

Unit Testing

Critical Point

• Dense Hashing Algorithm

1,013,039

1,192,174

1,404,268

1,412,862

Performance (Msg/s)

101 Mb537,824 (=14^5)5 char

273 Mb2,097,152 (=8^7)7 char

137 Mb1,048,576 (=4^10)10 char

136 Mb1,048,576 (=16^5)5 char

Memory usedUnique symbolsNumber of Characters

※ Performance is measured starting from the critical point

By Character Length

5 Char > 7 Char >10 Char

By Table Size

0.5 M = 1.0 M

Unit Testing

• Performance : Dense > Sparse > STL

– Dense over twice as fast as STL

• Memory usage : Sparse > STL > Dense

• Results

14^5 16^5 8^7 4^10

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

1100000

1200000

1300000

1400000

1500000

STL

Sparse

Dense

Unique Character Count ^ Symbol length

M
s
g

/s
e
c

System Testing

• Agenda

– To find the throughput of the system (Last Value Cache)

– Performance testing on the system varying the hashing algorithm

– To find the bottleneck of the system through experimental

approach

• Hypothesis

– Last Value Cache is the bottleneck of the system

System Testing

• Testing Configuration

– All the components are connected using network

– Varying hash algorithm (STL, Sparse, Dense)

– Data Size : 57bytes

– 1 Million Unique Messages

PC1 - Data Feed

DataGenerator

PC2 - Ticker Plant System

LastValueCache

Subscription

PC3 - Client

TickerClient

LVCDisplay

Test Specifications

•Testing specification

Belkin F5D8230-4 Wireless 802.11x Pre-N Router

(Maximum throughput of 108 Mbps)

Window XP SP2Operating System

Broadcom NetXtreme 57xx Gigabit ControllerNetwork Card

Network Equipment (Router)

UTP cable 100 base T

Machine 1 - 3

2.00 GBMemory

Intel® Core 2 CPU @ 2.40 GHzCPU

Test Results

82,00082,000Dense

82,00082,000Sparse

82,00082,000STL

Last Value Cache

(msg/sec)

Data Generator (msg/sec)Hash Algorithm

1 Data Generator

109,000120,000Dense

109,000120,000Sparse

109,000120,000STL

Last Value Cache

(msg/sec)

Data Generator (msg/sec)Hash Algorithm

2 Data Generators

Remarks

• Performance measurement is rounded off average message per second

• No improvements in messages per second when 3 data generators were used

Analysis

• Bandwidth of the network equipment (Router and UTP cable

100 base T) is limited to 100Mbps

– A Message contains

• Payload : 57 bytes

• UDP Overhead : 8 bytes

• IPv4 Overhead : 20 bytes

• Total Data Size : 85 bytes

– Max Possible Throughput: 120,000 messages/sec

• Need to find the ways to Bandwidth of the network equipment

(Router and UPT cable) is limited to 100Mbps

Other Technologies

• Playstation 3

– Cell Architecture

• FPGAs

• Infiniband

Obstacles

• Lack of programmers and
programming experience

• Hardware Constraints

• Network Constraints

• Time Constraints

Future Works

• Use network equipments with higher bandwidth

• Find other ways to get around the network limit

• Incorporate efficient hash functions and provide

experimental benchmark

(i.e SuperfastHash. CRC32)

• Extend the system to implement the ideal architecture

• Optimization (Multi-threading)

Conclusions

• Created a platform for future works

• Better understanding of how to optimize

system

• Built a prototype system that is easily

extensible for optimization

Q & A

Any Questions?

