IPRO 310 : Designing & Building Prototypes for

Assisting Blind Swimmers

Team Members:

Research Subteam

Elizabeth Bauer Ivan Tovalin Mohammad Mahmoud

Passive Device Subteam

Axita Patel Garrett Ezell Abin Koshy

Active Device Subteam

Miguel Dela Cruz Svetlana Mokhnach Jeffrey Stanford Palika Goldstein

The Problem

- In the U.S.
 - 10 million blind and visually impaired
 - 1.3 million are legally blind
- Challenges in swimming
 - Access to swimming facilities
 - Orientation in the water
 - Location of the wall

The current method used in swim competitions uses tappers who use a foam device to inform swimmers of when to turn

Semester Goals

- Design, Build and Test an Active Sonar Device
- Redesign, Build and Test a Passive Device: Swimming Lane Tapper
- Write a thorough report that captures:
 - Essence of issues faced by blind swimmers
 - Design Criteria
 - Need and Proposed Acceptance of Devices

Background Research Results

- Review of Spring '07 Data
- Patent Search
- Research on Notre Dame's Passive Device Designs
- Patented Lane Bubbler
- Research on Institutions for the Blind
- Research on Health Risks

Research Subteam Objectives

- Gather information on the design criteria for future prototypes
 - Market Demand
 - Prototype Interface
 - Location of prototype on swimmer
 - Multiple vs. Single Devices
- Produce an inclusive report of all the data collected

Accomplishments

- Interview with 2 S11 Swimmer
- Interview with 2 S12 Athlete/Swimmer
- Interviews with 2 Swimming Coaches of the Blind
- Interview with Ophthalmologist who specializes in low vision rehabilitation
- Prototype Ideas and suggestions
 - Vibration
 - Inconspicuous Device
 - Location on the body

Recommendations for Next Semester

- Analyze results from surveys given to the family and friends of the blind or visually impaired swimmers
- Conduct Market feasibility search
 - Pricing Range
 - Possible Government Funding
- Identify other uses for the devices
- Compare satisfaction/ease of use of both prototypes by test volunteers

Passive Device Subteam

Design Requirements

- Based on Notre Dame's 'Lane Tapper'
- Easy to Set-up & Use
- Effective tool for straight swimming
- Effective tool indicating end of lane

Testing

- First Test
 - Sighted swimmer w/blacked-out goggles
 - Materials
 - Spacing of tappers
 - Body contouring of each stroke

Testing (Continued)

- Second Test...First Prototype
 - Sighted swimmer w/blacked-out goggles
 - Effectiveness
 - Interference
 - Speed
 - Swimmer's reactions

Testing (Continued)

- Third Test...Modified Prototype
 - Sighted swimmer w/blacked-out goggles
 - Visually impaired swimmer
 - Effectiveness
 - Interference
 - Speed
 - Swimmer's reactions

Notre Dame Testing

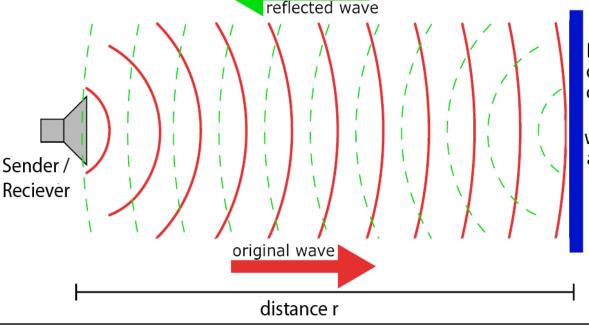
- 3 visually impaired swimmers
- 2 sighted swimmers w/ blacked-out goggles
- Side-by-side comparison test
 - 2 blind swimmers
 - 2 lane (one w/ lane tappers, one w/o)
- Very positive feedback from blind swimmers
- Suggested modification

Results

- Effective tool
 - Straight swimming
 - End of lane indication
- Swimmer's felt SAFE
 - Tactile indication of space
 - Effective for all types of strokes
 - Back stroke
 - Breast stroke
- Lane Tapper Sturdiness
 - Tappers pulled off by strong strokes

Recommendations for Next Semester

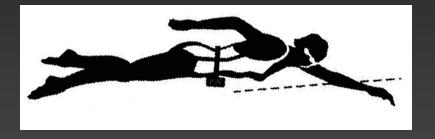
- Testing
 - With more visually impaired swimmers
- Design Modifications
 - Length of tappers
 - Thickness of end of lane tappers
 - Bracketing tappers to prevent flipping
- Documentation
 - Of Everything
 - Engineering Notebook

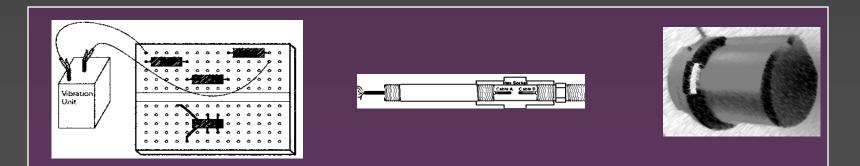


Active Sonar Device Subteam

Sonar

Etymology: **SO**und Navigation And Ranging


Definition: a technique that uses sound propagation (sound waves sent out to be reflected by other objects) especially under water to navigate, communicate or to detect other vessels.


Research/Design of SUPAD

Sonar Underwater Personal Anti-Collision Device

3 Design Teams

- Transducer:
 - Send and receive signal
 - Connected to a driving circuit
- Microcontroller:
 - Compute distance of swimmer to the wall
 - Provide voltage output
- Vibration:
 - Orient swimmer

Results to Date

Transducer:

Driving circuit in development

Microcontroller:

- PSoC seminar (Cypress)
- Rough draft of program

Vibration:

- First test:
 - Motor connected to a battery with a switch
 - Vibration too weak
 - Casing absorbed most of the vibration
- Second test:
 - Motor with an unbalanced weight
 - Can sense the vibration
 - Need to create a more effective casing

Next Semester Recommendations

Transducer

- Obtain a driving circuit
- Possibly use two transducers
 - At end of the pool and with the swimmer

Microcontroller

Determine constants from the driving circuit

Vibration

Build and finalize casing

Goals Achieved

- Completed patent research
- Developed a progressive sonar device
- Built and tested passive device
- Conducted 8 Interviews
- Edited videos for testing
- Created & maintained engineering notebooks

Special Thanks To:

- Chicago Lighthouse for the Blind
- Irish Aquatics Paralympics Program
- Wisconsin School for the Blind and Visually Impaired
- Cypress Semiconductor Corporation
- Mr. Tim Spencer
- Mr. Jeffrey Larson
- Mr. Ray DeBoth
- Our faculty advisor Prof. Daniel Ferguson
- Mr. John Komer

[Insert I feel Safe Video]

Thank you

Questions?