Spring 2002 IPRO 304-b

Design of Pollution Control Devices for removal of VOC's from Ground Water

Professor Noll and Professor Abbasian Chemical Engineering

Design of Pollution Control Devices for removal of VOCs from Ground-Water

Seniors Nathaniel Brown Benjamin Cacace Brian Kustwin Susan Ogunribido Melissa Sarmiento Sophomores Michael Edwards II Kristina Felfe Justin Van Gundy Greg Hudalla Adenkunmi Keleko

Outline

- Problem Statement Justin Van Gundy
- Specifications and Objectives Adekunmi Keleko
- Methodology Susan Ogunribido
- Decision Process Susan Ogunribido
- Design and Results (Air Stripper) Brian Kustwin
- Cost (Air Stripper) Benjamin Cacace
- Design and Results (Carbon Sorption) Nathaniel Brown
- Cost (Carbon Sorption) Benjamin Cacace
- Cost Comparison Ben Cacace
- Conclusions Melissa Sarmiento

The Problem

- Water in Wausau, Wisconsin is contaminated with VOC's
- Pose hazardous health risks
- Need to determine a unit operation that can remove VOC's effectively and cost efficiently
- TCE and PCE primary contaminants

Possible Unit Operations

- Air Stripping
- Carbon Adsorption
- Carbon Absorption
- Chemical or Biological Oxidation
- Reverse Osmosis

Background

- Examined Wausau Groundwater site
- Affects 6 of the City Well Field's production wells
- 35,000 residents depend on the well water
- 1982, half the wells were contaminated with high levels of VOC's
- Temporary carbon filter installed on one of the wells until two air strippers could be built
- Air strippers provided long-term solution to the contamination

Background

- Two sources of contamination:
 - Old municipal landfill on west bank of Wisconsin River (soils mainly contaminated with TCE)
 - Wausau Chemical facility property on east bank of Wisconsin River (soils contaminated with PCE, TCE, and other VOC's)

Methodology

- Absorption
- Adsorption
- Air stripping
- Reverse Osmosis
- Oxidation
 - Chemical
 - Biological

Decision Process

Reverse osmosis

- Infeasible because the membranes are not effective at removing lighter-weight VOCs such as TCE and PCE
- Absorption
 - Little information due to the poor prospects.
- Chemical Oxidation
 - High cost due to energy requirements, cost of hydrogen peroxide, and high capital cost of UV reactor systems.
- Biological Oxidation
 - High cost

Decision Process

Acceptable Processes

- Adsorption
 - Low cost
 - Efficiency
- Air Stripping
 - Low cost
 - Efficiency

Carbon Adsorption Design

Assumptions

Transport Assumptions

- Plug flow exists in the bed.
- Loading rate and influent concentration are constant.
- The Granular Activated Carbon is fixed inside the column.
- Adsorption equilibrium can be described by the Freundlich Isotherm.

Assumptions Cont.

Calculation Assumptions

Empty Bed Contact Time is ten minutes.
Bulk density of the carbon is 500 g/L
The Mass Transfer Zone is one meter in length.

Column Design Equations

Column Area

Total.Adsorber.Area $(m^2) = n \frac{\pi D(m)^2}{4}$

Loading Rate

 $Loading.Rate(m/h) = \frac{Flow.Rate(m^3/h)}{Total.Adsorber.Area(m^2)}$

Carbon Volume

 $V_{Carbon}(m^3) = Flow.Rate(m^3/h) \times EBCT(h)$

• Bed Depth

 $Bed.Depth(m) = \frac{V_{Carbon}(m^3)}{s \times AdsorberArea(m^2)}$

Sidewall Depth

 $Sidewall.Depth(m) = Bed.Depth(m) \times 1.5$

Carbon Bed Design

Freundlich Isotherm

 $q = KC_o^{1/n}$ K = 27.4 mg / g1 / n = .61

• Bed Life

 $Bed.Life(BV) = \frac{q}{C_o - C_f}\rho$

 $CUR(BV) = \frac{C_o - C_f}{q} \rho$

Carbon Usage Rate

Final Design

and the second se	
Flow Rate (m ³ /s)	340.686
Unit Diameter (m)	3.048
Unit Area (m ²)	7.296
Number of Units in Parallel	2
Total Area (m ²)	14.593
Loading Rate (m/h)	23.347
Pressure Drop (ft-H2O)	10.636
Carbon Volume (m ³)	56.781
Bed Height (m)	3.891
Numer of Units in Series	2
Bed Height Per Unit (m)	1.945
Sidewall Height Per Unit (m)	2.918
Bed Life (Bed Volumes)	39006
Bed Life (months)	9
Carbon Usage Rate (Bed Volumes)	38461
Yearly Carbon Usage (kg/year)	37980

Cost Optimization - Carbon Adsorption

Annualized Capital and Operating Costs VS. Volume Distribution

Cost Optimization - Carbon Adsorption

Total Annualized Cost VS. Volume Distribution

Air Stripper Design Equations

- $Q_w[C_{in}-C_{out}]=Q_A[A_{out}-A_{in}]$
- R value picked
- NTU
- $(Q_A/Q_w)=R/H'$
- K_La from Onda correlations
- $D_L: D1/D2 = (M2/M1)0.5$
 - Benzene
 - Trichlorophenol
- D_G : Wilke-Chang method

- Half flooding line
- Pressure drop
- Back out diameter
 Mass Loading Rate

HTU=L/M_wK_La
 Z=(NTU*HTU)*1.2

Air Stripper Specifications

- R=5
- Q_A=64,655 GPM
- NTU=4.33
- HTU=4.4 ft
- dP=0.42 in H_2O/ft
- Diam=5.55 ft
- H_{packing}=23 ft
- $H_{tower} = 36 \text{ ft}$

- Packing- Tellurite
 88mm
- Annualized Costs
 - Capital=\$38,645
 - Operating=\$26,266
 - Total=\$64,911
- \$0.08/1000 Gal

Cost Optimization - Air-Stripping

Annualized Capital and Operating Costs VS. G/L Ratio

Cost Optimization - Air-Stripping

Total Annualized Cost VS. G/L ratio

Cost Optimization - Comparison

Carbon Adsorption System			Air-Stripping System	
Capital Costs			Capital Costs	
Contactors Shells, SS.	\$509,507.04		Packing	\$5,572.00
Initial and Reserve Carbon	\$66,159.02		Tower Shell, FRP	\$57,294.08
Pump	\$24,000.00		Pump	\$24,000.00
Carbon Storage Tank	\$28,228.57		Fan	\$11,069.09
Auxiliary Equipment	\$52,228.57		Auxiliary Equipment	\$36,376.75
Equipment Cost	\$245,764.35		Equipment Cost	\$99,242.83
Total Depreciable Capital	\$638,004.26		Total Depreciable Capital	\$257,634.39
Operating Costs			Operating Costs	
Yearly Carbon	\$6,102.00		Air Flow Rate (cfm)	\$8,644.40
Electricity	\$504.78		Electricity	\$13,384.73
Indirect Annual Costs	\$31,900.21		Indirect Annual Costs	\$12,881.72
Annual Operating Costs	\$38,549.70		Annual Operating Costs	\$26,266.45
Total Cost			Total Cost	
Annualized Cost	\$134,207.63		Annualized Cost	\$64,911.61
Cost per 1,000 gal	\$0.17		Cost per 1,000 gal treated	\$0.08

Pathway to Design Success

- Narrowing the field of alternatives
- Preliminary design report and presentation
- Detailed part and process design
- Estimation of capital and operating costs
- Final report and presentation

Conclusion

- Goals that were reached:
 - Students were able to bring together the
 diverse elements of science and engineering
 introduced in earlier courses and apply basic
 ideas to develop designs of actual equipment
 and processes
 - An optimized economic evaluation of the result was performed
 - Successful teamwork and valuable interaction with group members and faculty