Wastewater Reclamation

IPRO 304-C

Danielle Burkes George Derrick Christy Dillard Ashanti A. Griffin Katie Gwozdz Masami Komatsu Kelly Morken Anna Patel Brian Sherman Greg Stachurski

Project Outline Statement of Problem Background Design Constraints Regulations Treatment Plant Design - Assumptions – Unit Operations Storage Reservoir Future of the Project Conclusions

Problem

Water shortages
Past Solutions
Type of treatment
Solution?
Economics

Background

Water reclamation is important in the US

Plants are used all over the nation especially in dry and overpopulated areas

Two categories of recycled water

- Planned
- Unplanned

Reclaimed water is used for non-potable uses

- Irrigation of parks, golf courses, creation of artificial lakes
- Industrial uses as in cooling of factories, dust control, concrete mixing

Environmental benefits

- Provides additional source of water
- Reduces and prevents pollution

Design Constraints

Social
Economic
Weather
Environmental

Regulations

Legal issues: Federal, state, and local statutes. Federal laws State Legal Issues: State Water rights Appropriative Rights System Riparian Rights System Reuse Water Rights State Liability Laws **Reuse ordinances**

Elements of Design

Primary Treatment Screening Grit chamber **Primary clarifier** Secondary Treatment - Recycle of Biosolids - Aeration Basin Secondary Clarifier

Tertiary Treatment
 – Chlorination

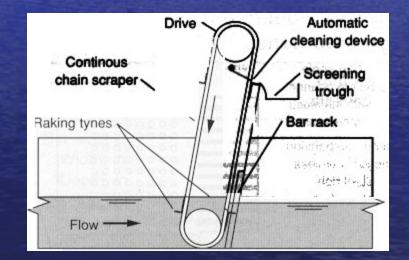
- Dechlorination
- Distribution System
- Storage Reservoir

Design Assumptions

Residential Community
Daily water usage = 70 GPD
Peak daily water usage = 90 GPD

Organic Content = 365 ^{mg}/_L

Design Parameters


Flow Rate $Flow_{avg} = (70^{gal}/_{day \cdot person}) \cdot (20000 \, people) = 1.4 MGD$ $Flow_{peak} = (90^{gal}/_{day \cdot person}) \cdot (20000 \, people) = 1.8 MGD$ Design for 2.0 MGD • Organic Content (OC) $OC_{avg} = 365 \frac{mg}{L} \cdot (3.785 \frac{L}{gal}) \cdot (1.4MGD) = 1.34 \frac{kg}{min}$ $OC_{peak} = (365 \frac{mg}{L}) \cdot (3.785 \frac{L}{gal}) \cdot (1.8MGD \frac{gal}{day}) = 1.73 \frac{kg}{min}$

Primary Treatment

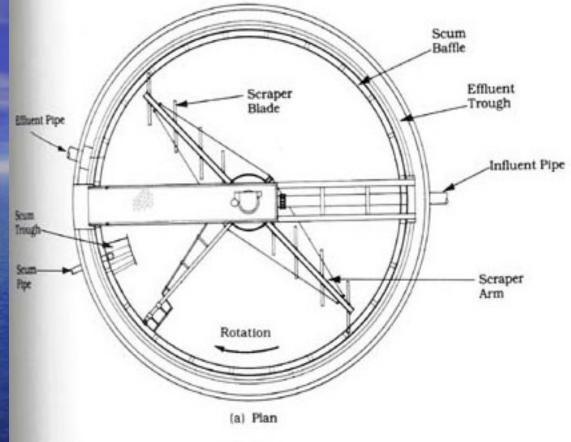
Screening

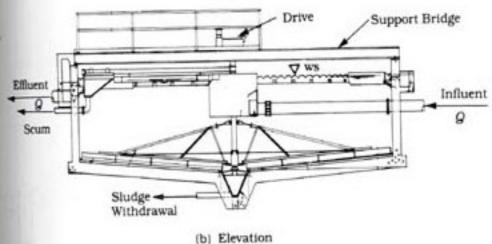
Solids Removal Methods

- Bar Racks
- Rotary Disks
- Screens
- Centrifugal
- Types of Bar Racks
 - Chain Operated
 - Reciprocating Rake
 - Catenary
 - Cable Type

Grit Chamber

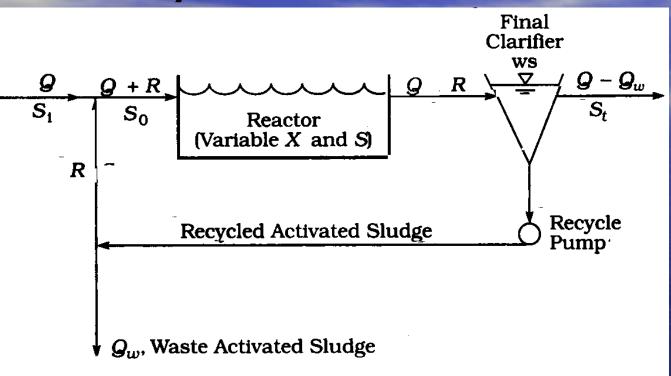
Three Types Horizontal-flow type Aerated Type Spiral-flow type




Primary Clarifier

Design requirements Evenly distributed flow Promote flocculation Dissipate influent energy Minimize sludge blanket disturbance Choose circular tank Dimensions: diameter and side wall depth

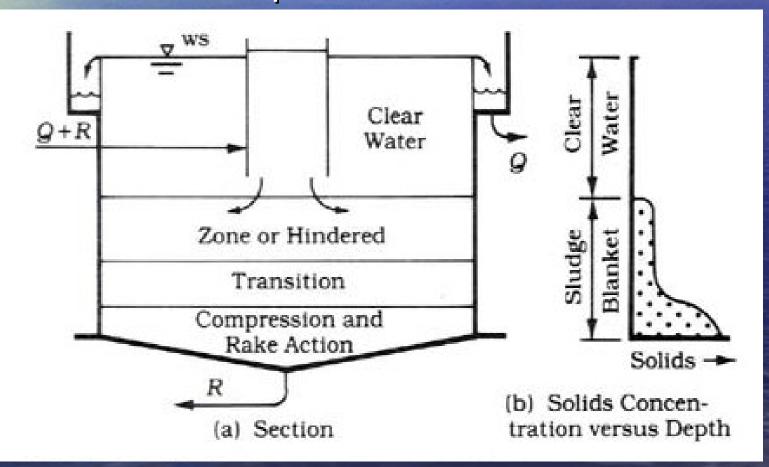
Primary Clarifier


Diam = 50 ft Depth = 12 ft

Secondary Treatment

Recycle of Biosolids

 $R = design flow rate \cdot \text{Re } cycle Ratio$ $R = (1.0 \times 10^{6} \frac{gal}{day}) \cdot (1.0) = 1.0 \times 10^{6} \frac{gal}{day}$ $flow = Q + R = 1.0 \times 10^{6} \frac{gal}{day} + 1.0 \times 10^{6} \frac{gal}{day}$ $flow = 2.0 \times 10^{6} \frac{gal}{day}$


Choosing an Aeration Basin Important characteristics - Retention time - Food-to-microbe ratio Basic design choices - circular rectangular - rectangular with baffles Choice: Extended Aeration Basin

Extended Aeration Basin

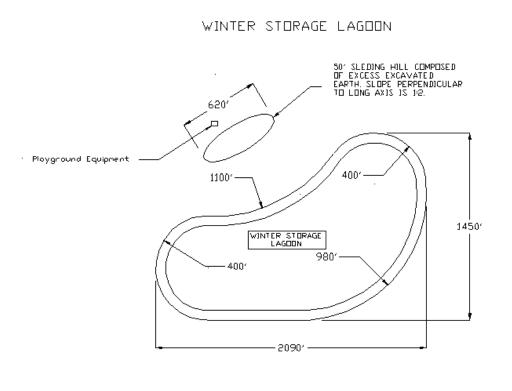
Selection reasons
Built in safety factor
Small amount of solids produced
Endogenous respiration phase

Secondary Clarifier
Diam = 80 ft
Depth = 13 ft

Tertiary Treatment

Disinfection

What is Disinfection? The point of disinfection Important factors Types of disinfectants


Method of Disinfection

Chlorination
Types of Chlorine compounds
Chlorinator
Injector
Reactions with Chlorine in water
Contact Chamber

Other Aspects of Chlorination

Dechlorination
Purpose
Types
Reactions with Sulfur Dioxide in Water
Effluent Discharge to Distribution

Storage Reservoir

COST ESTIMATE: \$6 MILLION

Future Work

Water Distribution System Meets with regulations **Contaminant concentrations** Maximum loading allowances Economical Recharges groundwater Develop general design procedures Adaptable to any location

Conclusions

Wastewater Reclamation
Possible solution to groundwater depletion
Cost prohibitive to rework existing systems
Recommended for new plant construction

Questions?

Comments?