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•  Objectives 
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•  Survey of other processes 
•  Process design
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•  Safety and environmental concerns 
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Objectives
Apply engineering principles of 

separation processes to recover 
hydrogen from mixed gases

Analyze the feasibility and economics of 
commercial and innovative processes 
for the recovery operation 

To study hydrogen itself and its global 
importance



  

H2 Derivatives and Uses:
 Fuel Cells

 ENERGY CRISIS: One of biggest issues 
in world today

• Main sources of energy now are fossil fuels, oil, coal

• Problem? 

• Solution? 

Limited resources, unlimited 
demand

Hydrogen-powered fuel cells may be the 
answer 

Pollution and global warming



  

Benefits of Fuel Cells
• Environmental

•Decrease CO2 emissions

•Reduce global warming effect

• Economic
•US imports 55% of oil and projected to reach 68% by 2025

•Fuel cells would greatly reduce foreign import dependence

• Industrial Applications
•Residential Energy Generators

•Transportation

•Telecommunication



  

Several H2 Recovery Processes

Electrolysis
Material Recycling
Membrane Separation
Steam Reformation
Biological Resources
Off-Gas Cleanup
Photo Processes
Hydrolysis
Thermal Dehydrogenation (scope of project)



  

Why Thermal Dehydrogenation?

Commercially feasible 
Tractable feed selection

Minimal CO2 release

By-products (ethylene and 
propylene) are used in industry

Economically efficient



  

Design of a Hydrogen 
Production & Recovery Facility

Scope of Design
 recovery operations from a hydrocarbon 

stream

Process Design Using HYSYS and 
ChemCad
 Usage of various design programs to better 

illustrate design concepts
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Initial Design Section

Fresh feed of precursors of H2

 ethane, ethylene, propane, propylene

First sent to reactor 
 for thermal dehydrogenation
 for production of “easily-separated” 

components 



  

Direct Fire Furnace 

Serves as reactor for this design
 basic process:

  thermal decomposition of ethane and 
propane prevents total decomposition of 
carbon and hydrogen 

 operates at low pressure, high temperature 
and low residence time

 heat transfer by convection and radiation
 use of steam diluent to reduce hydrocarbons’ 

partial pressure



  

Reaction Information

 Reactions included:
 direct and free radical

 Component Conversions:
 ethane: 56.6%
 propane: 73.6%
 hydrogen yield: 80.9%
 ethylene yield: 79.1%
 propylene yield: 15.5%



  

Continuation of First Design Section
 Cooling 

 accomplished via heat exchangers
 utility fluid used is refrigerant

 Removal of water from condensed hydrocarbons
 3 phase separator
 absorber (silica gel utilized)

 Compression and cooling prior to flash drum (for 
vapor-liquid separation)

 Separated liquid sent to demethanizer; vapor to 
hydrogen recovery “section”



  

Separation Train

 Series of distillation towers
 first, methane (99.3%) and hydrogen 

(100%) separation; then, sent to hydrogen 
recovery “section”

 next, ethylene separation (99.9% )
 followed by ethane (99.9%),
  propylene (97.9%), 
 propane (99.8%), 
 1,3-butadiene and i-butene 



  

Hydrogen Recovery Section

 Vapor stream from demethanizer & overhead 
product from first distillation tower sent by 
countercurrent flow through series of “cold 
boxes” and separators
 hydrogen recovery completion
 trace amounts of ethylene and propylene 

recovered



  

Overall Recovery Statistics

Product
Hydrogen

 12,531 lbs/hr

Ethylene
 197,229 lbs/hr

Propylene
 59,809 lbs/hr 

Methane
 28,403 lbs/hr

Fresh Feed
Ethane

 183,562 lbs/hr

Propane
 121,555 lbs/hr



  

Process Optimization
Reactor: simulation ran at various reactor 

temperatures to maximize component 
conversion

Heat exchangers and compressors: 
simulated using various temperatures 
and pressures to maximize efficiency 

Distillation columns: simulated using 
various combinations of temperatures, 
pressures and numbers of trays



  

HYSYS Simulation

Reactor
HYSYS does not handle free-radical 

reactions
Excel was used to extrapolate overall 

reactions and conversions from 
previous industrial modules



  

Economics
Bare Module Costs

ChemCad Used For Costing

 Total Furnace Cost

$3,868,383.00
 Total Heat Exchanger 

Cost

$231,069.00
 Total Cooler Cost

$266,388.00 
 Quench Tower Cost

$852,922.00

 Absorber Cost

$2,410,000.00
 Flash Drum Cost

$386,219.00
 Compressors Cost

$8,093,450.00
 Total Distillation Columns

$6,266,530.00



  

Economics 
Total Costs

Total Fixed Capital Cost (TFC)
 $167.33M

Total Working Capital 
 $91M

Total Operating Cost (TOC)
 $469M

Net Present Worth at Start-up (NPW)
 $37.8M



  

Economics 
Production Schedule

 Hydrogen
 12,531 lbs./hr at 70 cents/lb.

 Ethylene
 197,229 lbs./hr at 30 cents/lb.

 Propylene
 59,809 lbs./hr at 27 cents/lb.

 Fuel
 222MBtu/hr at $2.50/MBtu

 Total Revenue = $704M/yr



  

Hydrogen Safety Issues 

Hydrogen Concerns - Explosions
Hydrogen Properties
Safety Issues

 Hydrogen Use
 Transportation
 Storage



  

Conclusion
Thermal dehydrogenation process is:

feasible for industry production and 
recovery of hydrogen

economically efficient (at start up, is 
approx. 37.8 million USD profitable)

environment-friendly: can be a “clean” 
energy



  

Conclusion (continued)

 H2 is a vital element for current times; can 
be a beneficial “fuel” when handled and 
stored properly

 There are several methods of producing 
hydrogen, but our process, thermal 
dehydrogenation, is more economically 
viable



  

Teamwork
 Importance of Communication

 Accomplished through weekly meetings, 
email, and personal conversations 

 Organization and planning
 Division of tasks
 Scheduled deadlines
 Weekly follow-ups



  

Group Dynamics

Sophomores
 Tasks were divided among members 

according to interest levels
 Promoted initiative and exposure to design

Seniors
 Tasks were divided among members 

according to skills and interest levels
 Promoted leadership and reinforcement of 

design principles



  

The End
Questions? Comments?
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