Carbon Footprint of Automobiles IPRO 322

Intercontinental team: Illinois Institute of Technology (IIT)

&

Vilnius Gediminas Technical University (VGTU)

IIT group

- Advisor: Dr.Donatas Tijunelis
- Mary Yu
- Seantoia Swanston
- Jim Burian
- Teodora Vasilev
- Andres Mora
- Rajiv Bais
- Susan Rafalko
- Lien Choi
- Won-Jae Yi
- Morayomola Shonekan

Lithuanian Group

- Advisor: Dr. Edita Baltrenaite
- Ruta Blagnyte
- Jolita Dudaite
- Vytautas Kalpokas
- Mindaugas Kargis
- Ruta Navickaite
- Remigijus Savickas

Purpose

The purpose of this IPRO is to develop and present a "user friendly" way of identifying vehicles with respect to the emission of greenhouse gases throughout their life cycle.

Objectives

- 'Accurate' carbon footprint
- Derive a standard for calculating an accurate footprint
- Design consumer-friendly and meaningful way of presenting footprint information
- Steer manufacturing processes
- Research global standards (manufacturing, recycling and use)

Global Climate Change

- A global problem
- 75% of GHGs is CO₂
- CO₂ primarily emitted by burning of fossil fuels
- Automobiles 2nd highest source of CO₂ in U.S.
 - -Over 250 million registered vehicles in U.S.

Carbon Footprint

- GHG produced to directly and indirectly support human activities (tons CO₂)
- Personal carbon footprint
- U.S. is improving availability of information
- EU mandates manufacturers provide information

- How are these values derived?
- What do these numbers mean?

Carbon Footprint Assessment

- Life-Cycle
 - Production (Materials, Manufacturing, Assembly)
 - Disposal /Recycling
- Fuel-Cycle
 - Extraction and tail pipe (MPG)

- Final Vehicle Choices
 - Audi A3, Mazda 5, Nissan Leaf, Hyundai Sonata, BMW X5d, Chevrolet Impala

http://www.worldautosteel.org/Environment/Life-Cycle-Assessment.aspx

VILNIUS GEDIMINAS TECHNICAL UNIVERSITY Faculty of Environmental Engineering Department of Environmental Protection

Carbon footprint of automobiles

Presared by: AVGm5/09 group students Advant' Or Edita Baltrenate

Vénius 2010

VILNIUS GEDIMINAS TECHNICAL UNIVERSITY

Chevrolet Impala – The Model Car

- To find values for Manufacturing, Fuel Cycle, and Recycling/Disposal, there were many things to consider
- We will demonstrate how we were able to find these values for one model vehicle

GREET MODEL

• Materials Breakdown – Vehicle Material Composition by Weight.

	ICEV:		HEV:		FCV:	
	Conventional	ICEV: Light-weight	Conventional	HEV: Light-	Conventional	FCV: Light-
	Material	Material	Material	weight Material	Material	weight Materia
Steel	61.7%	30.5%	65.2%	30.9%	56.4%	21.6%
Stainless Steel	0.0%	1.1%	0.0%	0.7%	0.0%	0.0%
Cast Iron	11.1%	4.2%	6.0%	3.7%	1.8%	2.6%
Wrought Aluminum	2.2%	6.9%	1.8%	6.3%	5.9%	9.6%
Cast Aluminum	4.7%	14.7%	5.1%	14.1%	3.2%	11.4%
Copper/Brass	1.9%	3.2%	4.3%	5.4%	4.8%	5.5%
Magnesium	0.02%	0.4%	0.02%	0.4%	0.02%	0.3%
Glass	2.9%	3.0%	2.9%	3.0%	2.6%	2.8%
Average Plastic	11.2%	14.0%	10.6%	12.6%	10.2%	11.7%
Rubber	2.4%	2.6%	1.9%	2.0%	1.8%	1.9%
Carbon Fiber-Reinforced Plastic	0.0%	15.1%	0.0%	16.0%	10.0%	26.4%
Glass Fiber-Reinforced Plastic	0.0%	2.3%	0.0%	2.4%	0.0%	2.4%
Nickel	0.0%	0.0%	0.0%	0.0%	0.1%	0.1%
PFSA	0.0%	0.0%	0.0%	0.0%	0.4%	0.4%
Carbon Paper	0.0%	0.0%	0.0%	0.0%	0.4%	0.4%
PTFE	0.0%	0.0%	0.0%	0.0%	0.1%	0.1%
Carbon & PFSA Suspension	0.0%	0.0%	0.0%	0.0%	0.05%	0.05%
Platinum	0.0005%	0.0009%	0.0003%	0.0004%	0.007%	0.007%
Others	1.9%	2.2%	2.2%	2.5%	2.2%	2.6%

Production

- Reduced to 3 main components ~88%
- Steel (70%) includes iron
- Plastics (15%) various plastics
- Glass (3%)

Production

- Calculated from national averages of ~50%
 Coal and 20% Natural Gas
- 0.6 Kg CO_2/kWh
- kg CO₂/kg material standard
- Many conversion needed

Total CO₂ from Steel = 2,258 kg CO₂

Total CO₂ from Plastic = 1,742 kg CO₂

Total CO₂ from Glass = 29 kg CO₂

Impala – Production (Total)

Summary

Steel Total = 2,258 kg CO₂
Plastic total = 1,742 kg CO₂
Glass Total = 29 kg CO₂

• TOTAL CO₂ emitted = 4,029 kg

Impala – Production (Extraction - Steel)

•From –

car weight(lbs) × 70% × $\left(\frac{-1lb}{2.204kg}\right)$ × $\left(\frac{13kg CO_2}{kg steel}\right)$

• Where –

– 13kg CO₂ per 1kg of steel (from greenmatrix.org)

- Total = 14,678 kg CO₂ emission produced for virgin steel used
- Plastic 34kg CO₂ / kg_plastic
- Tempered Glass 10kg CO₂ / kg_glass

Impala – Production (Extraction)

• From –

- Extraction = (Manufacturing + Extraction) – (Manufacturing)

• Where –

- Total Manufacturing + Extraction CO₂ emission
 - 23,388 kg CO₂ emission
- Total Manufacturing CO₂ emission
 - 4,029 kg CO₂ emission

Total Extraction only = 19,359 kg CO₂ emission

Assembly

- UNESCO (United Nations)
 - 20,000MJ per car
 - where : 1kWh/3,600J & 0.6kg CO₂/kWh
 - Total : 3,333 kg CO₂ emission / car
- GREET (United States)
 - -3.9 million Btu per car
 where : 1kWh/3413Btu & 0.6kg CO₂/kWh
 Total : 685.6 kg CO₂ emission /car

~60,232 kg CO₂

~Where Gas = $8.834 \text{ kg CO}_2/\text{gal}$ ~Where Diesel = $10.493 \text{ kg CO}_2/\text{gal}$

~75,321 kg CO₂

Impala – Fuel Cycle

Fuel-Cycle
– Tail Pipe: 60,232 kg

– Fuel Extraction: 15,089 kg

• Total = 75,321 kg

Fuel Cycle (kg of CO2 emitted)

Vehicle Recycling

- Values are difficult to find for Recycling and Disposal
- Focused on Recycling
- Should Recycling be a CO₂ benefit or a CO₂
 cost
- Recycling as a benefit
- Greenmatrix.org only available information

Recycled Steel

- From Greenmatrix.org –
 Virgin Steel 10 kg CO₂/kg Steel
 Recycled Steel 4 kg CO₂/kg Steel
- Values include extraction and production
- Cars can be made of up to 25% recycled steel

Impala – Production (Recycling benefit)

• 75% Virgin Steel and 25% Recycled-

$$\left[Car(lbs) \times (70\%) \times \left(\frac{1lb}{2.204kg}\right)\right] \times \left[0.75 \left(\frac{10kgCO_2}{kg_Virgin}\right) + 0.25 \left(\frac{4kgCO_2}{kg_Re\ cycled}\right)\right]$$

Total CO₂ = 9,597 kg CO₂
CO₂ emissions benefit = 5,081 kg CO₂

Impala – Life-Cycle (Total)

• Life-Cycle :

Material Production: 4,030 kg
Material Extraction: 19,360 kg
Assembly: 3,333 kg or 685.6 kg
Recycling: -5,081 kg (Benefit)
Total = 18,995 - 21,642 kg CO₂

Percentage BreakDown (%)

Ethical Issues

- Composed of parties that reside both in the United States and Lithuania.
- Meetings, communication, and collaboration difficult
- The information on vehicles was not as readily available in the U.S. as it was in the European Union.
 - Credit our counterparts and well as keep them involved as much as possible
- Falsifying data/estimating values

Conclusions

- Discrepancies exist between calculated value depending on considerations
- U.S. manufacturers do not provide any information
- Not globally mandated
- No standards exist
- Based on too many 'flexible' considerations
- Entire Life-cycle costs must be considered
- Environmental impact must be considered

Conclusions

- An accurate life-cycle calculation is important
- Significant differences were found
- Too many considerations; many ignored
 Too many generalizations of materials
 - Extraction costs
 - Assembly
 - Recycling
- Standards must be created

Recommendations

- Research other models
- Establish more consistent communication with Lithuanian counterparts.
- Work directly with GREET to develop existing model.

Future

- Propose standards for footprints
- Design environmental impact ratings system
- Calculate actual footprint for one material
- Study one manufacturing plant
- Develop Sticker concept
- Study recycling values for an old car

Thank you