• • • IPRO 325

Developing Affordable Solutions for the World's Rural Poor

• • • The Problem

3 billion people live on less than \$2 a day

• • • Team Overview

- o 3 Subgroups
 - Water
 - Cooking
 - Evaporative-Cooling

o Location Interest Group

- Identified 3 regions for field testing & implementation
 - China, Nicaragua and Peru
- Identifying potential sponsors
- Fundraising

Trips planned for January & June 2008 to Nicaragua and Peru

Water Purification

Jessica Henson, Ashley Ono, Brian Schiller, David Curtin, Ryan Witthans

• • • Problem

- Tainted water kills 5 million each year
- Secondary effects on village
- Need for extremely cheap solution
- Current solutions don't fit every village

• • • SODIS method

- o Solar disinfection process
- o Some drawbacks

Progress Determined location resources and needs

- Examined current purification methods
- Developed a prototype
- Completed first round of testing

Future work

- Complete testing
- Create a field implementation manual
- Implement in real world situation

Cooking

Curtis Aubry, Jaime McClain, Nick Przybysz, Ernest Dogbe, Ian Seagren, Heling Shi

• • • Problem

- 1.6 Million premature deaths each year caused by indoor air pollution due to cooking.
- Inefficient cooking methods such as open fire cooking, lead to social, economical and environmental problems.

Solution

o Design & Build

- Conventional Oven
 - Improved Efficiency
 - Simple Construction
- Solar Oven
 - Umbrella Design
- o Testing
 - Conventional Oven
 - Time to boil, peak temperature, gas emissions, fuel consumption
 - Solar Oven
 - Time to boil, peak temperature, solar intensity, sun angle

Rocket Stove

Parabolic Solar Oven

• • • Progress

o Research

- Research has been conducted to identify:
 - Extent of problem
 - Types of ovens and current usages
 - Locally available materials
 - Existing projects in field
 - Testing Procedures
- o Design & Build
 - Design nearing final design phase.
 - Construction beginning.
- o Testing
 - Parameters have been defined.
 - Benchmark comparisons defined and acquired.
 - Testing procedures are being adapted.

Evaporative-Cooling

Amber Heinz, Bryan Murillo, Eliza Bober, Phil Korol, Shreyas Dole, John Sullivan-Fedock

• • • Objective

- o Problem:
 - Food storage is a major issue preventing the advancement of the world's rural poor.
- Solution:
 - Our subgroup's objective is to develop and implement a more effective and efficient way for the world's rural poor to store food.

oDesign & Build

- A working prototype
- A "how to" manual

oTesting

• Through various tests we will establish standards of maximum performance and efficiency

Results to Date

• The outer layer is to be constructed of adobe bricks

The mixing process...

The brick making process...

Results to Date

• The inner layer is to be constructed of clay pots

Professor Steve Stanard made two circular pots for the group

• • • Testing

o Benchmarks

- leaving the fruits and vegetables open to the elements
- a standard cooler
- Tests will include:
 - Varying the sizes and shapes of the inner layer
 - Varying the saturation levels of the sand
 - Testing covering methods and materials