IPRO 325 Designing Affordable Water, Energy, and Shelter Solutions for the World's Poor

IPRO 325 е a r

Overall Team Objective

To design, test and implement solutions costing \$5 or less that can be implemented and maintained by local people using locally available materials.

Overarching Ethical Principle

To Improve the quality of life for the world's rural poor

Water, Energy and Shelter St. U.B. and Shelter Vater, Energy and Shelt

Peru & Nicaragua

January 2008

Testing & Field Implementation

Spring 2008

Research Fall 2006 Research Spring 2007 Field Research: Peru Summer 2007 Field Research: Peru Summer 2007 Field Research: Peru Summer 2007 Field Research: Peru Design & Test Fall 2007

- Fall 2006:
 - Identified Top Ten Problems
 - Began campus awareness campaign
 - Narrowed scope to Water, Energy and Shelter
- Spring 2007:
 - Developed solutions in Water and Energy
 - Increased campus awareness
- Summer 2007:
 - Field Research with Dr. John Duffy in Peru
- Fall 2007:

IPRO 325

• Developed solutions in Water, Energy and Shelter

SODIS Method

- Solar disinfection process
- Some drawbacks

La Conquista, Nicaragua

IPRO 325 Presents

An Extremely Affordable Solution

From Locally-Available Materials

- Research
- Make Prototypes
- Test Prototypes
- Create Field Manual

IPRO 325

 Gain First-Hand Experience

1. Research Water Purification

2. Make Filter Prototypes

3. Test Filtration Prototypes

4. Make a Field Manual

5. Gain First-Hand Experience

Designing and Testing a Filter

The Competition

Sedimentation

IPRO 325

e

a

The Objective

- Rate
- Increase in Light Transmittance
- Cost
- Availability of Materials
- Ease of Use

The Three-Bucket System

3BS

The Results

IPRO 325

r

е

The Redesign

3BS

Final Results

Percent UV Light Transmitted

IPRO 325

a

r

e

Field Manual

- Overcome language barriers
- Step by step
- Local population builds and repairs
- Allow the knowledge to spread

Field Experience Trip

- 3 sub-team members will be travelling
- Peru team with University of Massachusetts, Lowell

IPRO 325

 Nicaragua team with Simmons College

Field Experience Objectives

- Observe the culture
 and lifestyle
- Observe the implementation teams in action
- Take water samples
- Form relationships

Wrap Up

Sustainable

- Locally available materials
- SODIS-oriented model
- Extremely affordable solution
- Multiple revisions of prototype
- Picture field manual

Questions

