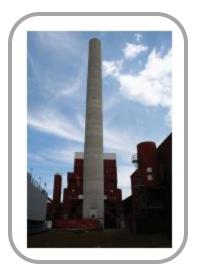
Introduction

Waste Heat and Carbon Dioxide Utilization at Robbins Community Power



Introduction Plant Background

Robbins Community Power

Plant Overview

- Refitting former waste to energy plant to clean burning wood biomass plant
- 50 MW output

P

Team Problem

Problem:

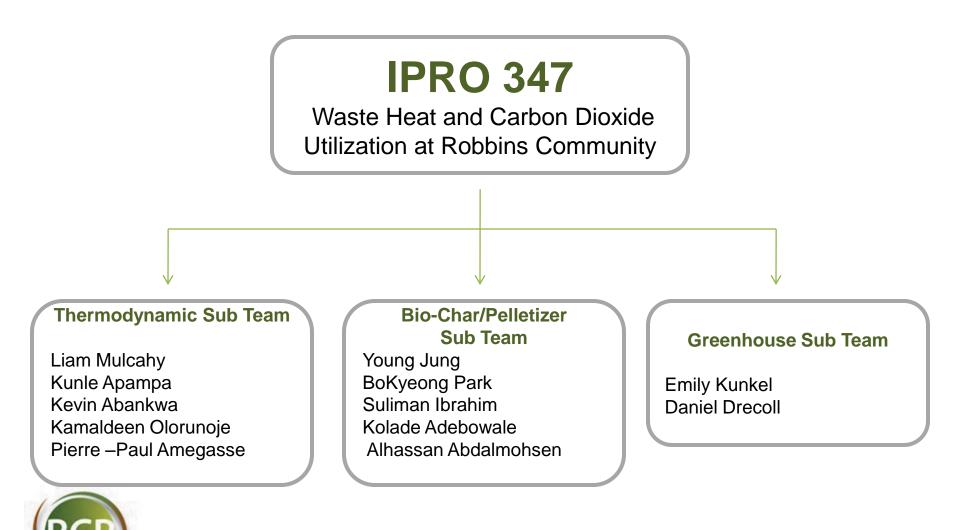
- 40% of wood chips utilized inefficiently
- Plant generates waste heat and carbon dioxide

Solution:

- Turn small wood chips into useful products
- Capture waste heat for productive uses
- Remove carbon dioxide from flue gas

Introduction Plant Background Problem Statement Project Goals

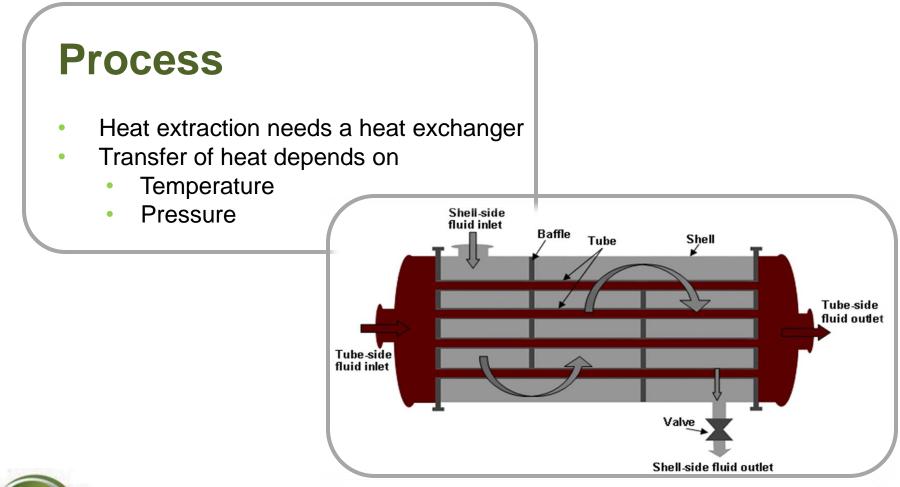
Objectives


Examine the feasibility of using the heat and CO2 from the plant
Quantify heat to be captured with heat exchanger
Determine the requirements and market for wood byproducts
Analyze cost-benefit of the various processes

347 Interprofessional projects program

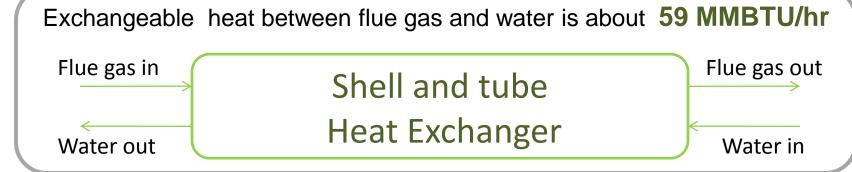
Group Structure

Heat Exchanger



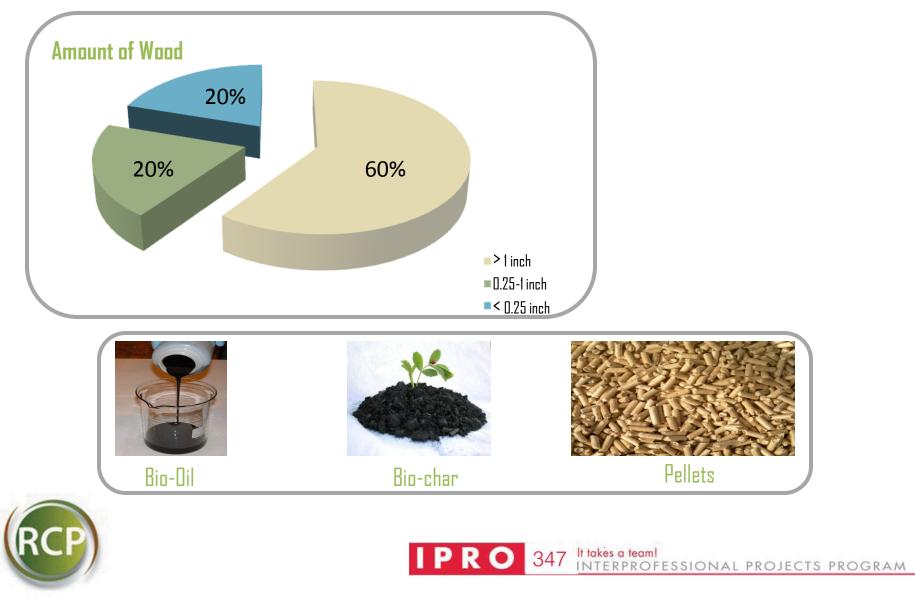
Purpose

- The plant produces waste in the form of high temperature flue gas and find a way to extract the heat from the flue gas and use it elsewhere.
- Produce steam or hot water as options.

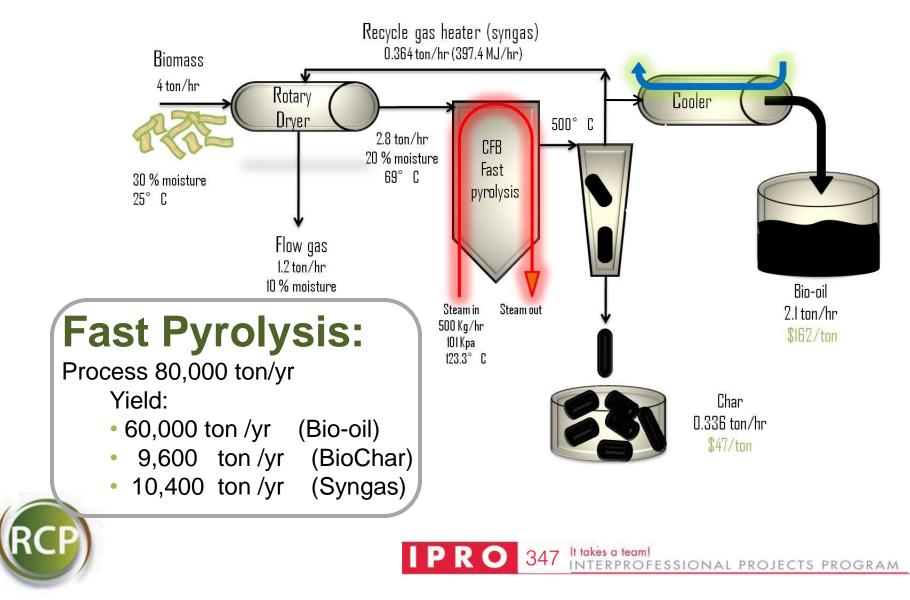

Heat Exchanger Option

- Shell and fin tube heat exchanger
 - Hot water production
- Plate and frame heat exchanger
 - Preheat ambient air
- Additional heater provides low/high pressure steam

The "2" Components				
Mass flow rate (lb/hr)	T (in) (^o F)	T (out) (^o F)		
565,644.4	429.8	199.4		
456,356.9	81.3	212		
	Mass flow rate (lb/hr) 565,644.4	Mass flow rate (lb/hr) T (in) (°F) 565,644.4 429.8		


Results and Economics

- Shell and Tube heat exchanger is ideal.
- Flue gas output is at a low temperature and well enriched with quality CO2 for greenhouse.
- Our clients invests \$ 1.31 million into building heat exchanger.
- Based on 0.3 cents/lb of steam, company can produce \$1,359/hr
- Ability to use steam for space heating or industrial process heat


Resulting in \$1.1 million in revenue per year

Bio-Char

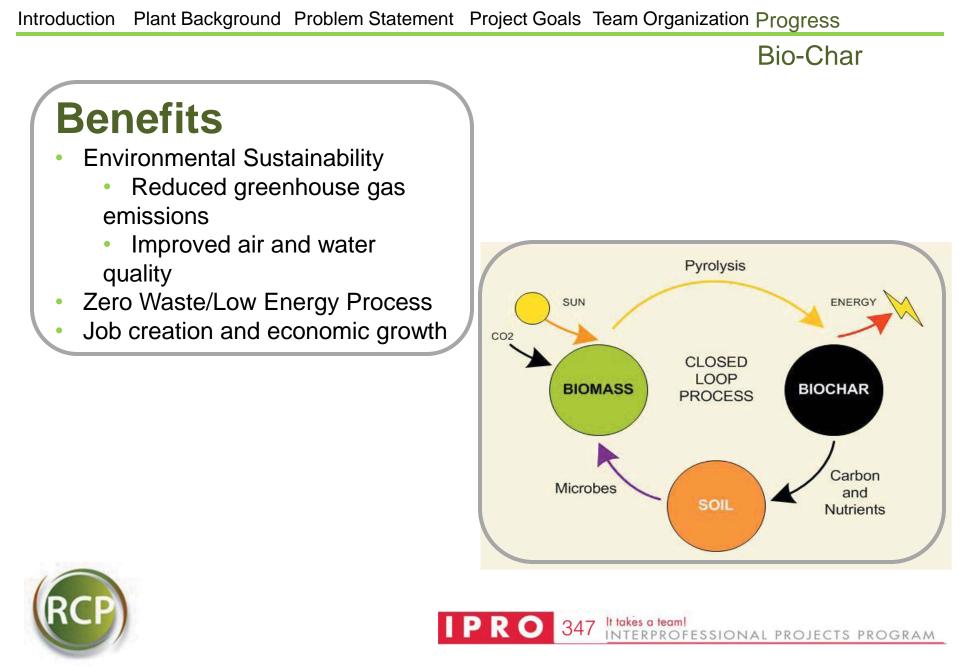
Bio-Char

Bio-Char

	Annualized Cost (\$MM)	Capital Cost (\$MM)	Revenue (\$MM)		
Cost of feed (\$)	1.44				
Cost of dryer (\$)		0.3			
Cost of steam (\$)	0.08				
Cost of storage (bio-oil and bio-char) (\$)		1.5			
Labor and Maintenance (\$)	0.43				
Reactor cost (\$)		6.0			
Miscellaneous cost (\$)	0.15				
Transportation cost (\$)	1.30				
Value of Bio-oil (\$)			9.7		
Value of Bio-char (\$)			0.4		
Loan Repayment	1.2		1.2		
Yearly Cost			3.4		
Net (\$)	4.6	7.8	5.5		

IPRO 347 It takes a team! INTERPROFESSIONAL PROJECTS PROGRAM

Bio-Char



IPRO 347 It takes a team! INTERPROFESSIONAL PROJECTS PROGRAM

Bio-Char

Total cost and profit							
Production (ton/ hours)	Start Cost (USD) (x 10 ⁶)	Operating Cost (USD) (x 10 ⁶)	Total Pellet Sales (USD) (x 10 ⁶)	Total Shipping Cost (USD) (x 10 ⁶)	Number of pellets produced (tons) (x 10 ⁶)	Energy (kWh) (x 10 ⁶)	Profit (USD) (x 10 ⁶)
5	1.66	0.425	6.90	2.83	0.025	113.25	1.98
10	3.32	0.700	13.80	5.66	0.050	226.50	4.12
15	4.98	0.825	20.70	8.49	0.075	339.75	6.40

Greenhouse

Purpose

• Bypassing the use of the 300ft tall smokestack

Problem

• Reduce CO₂ and excess heat in flue gas

Greenhouse

Greenhouse

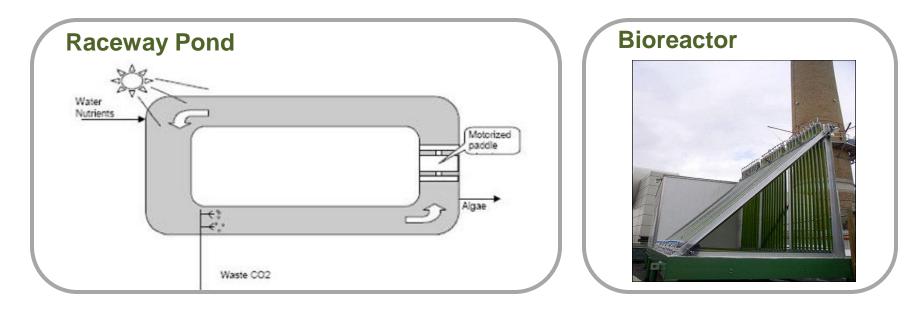
Utilizes .25-.9MMBTU/hr of waste heat to retain ideal temperature Plant generates enough heat for 30 acres of greenhouses

Trees

- Absorb 2 lbs/year of carbon dioxide at 0-3 in DBH
- Tree nursery to replace trees killed by diseased

Crops

- Absorb 3-8 lbs/year of CO2 per square meter
- Greenhouses provide jobs and healthy food for community residents



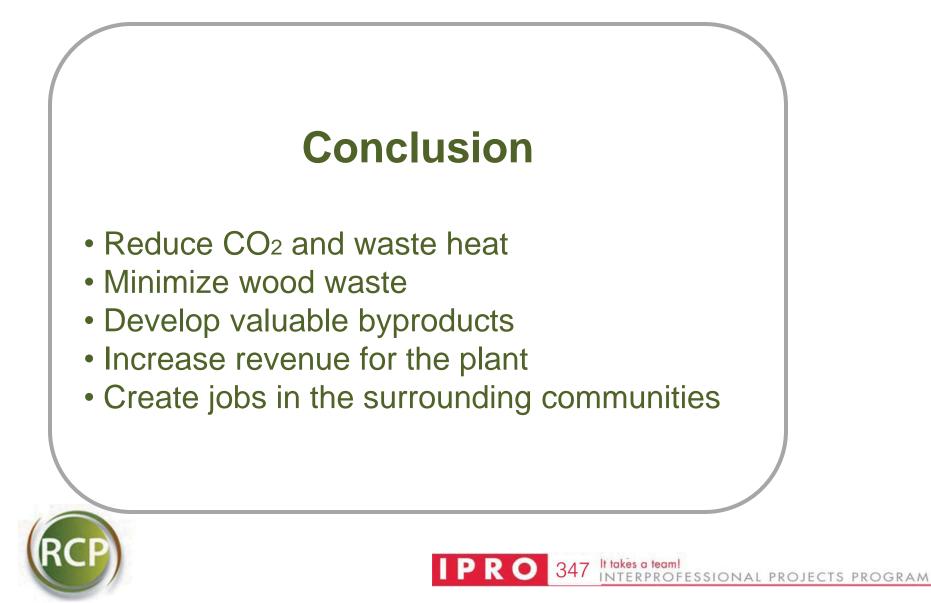
Greenhouse

Algae Production

Utilizes carbon dioxide more efficiently than other plants. The oil in the biomass can be extracted and made into 2000 gallons of biodiesel per acre of algae.

Greenhouse

Economic Feasibility


- Costs:
 - Initial construction of 20 structures/ponds
 - Cost per year for initial construction
 - Annual lease of the Cal-Sag property
 - Costs to grow algae
- Revenue
 - Sales of algae oil
 - Lease of heated greenhouses
 - Total Net Revenue

Community Benefits

- Growth of replacement trees
- Reduction of carbon dioxide and heat in the environment
- Jobs in the community

- \$1,200,000
- \$ 190,000/year
- \$ 200,000/year
- \$ 10,000/year
- \$ 30,000/year \$1,300,000/year
- \$ 930,000/year

IPRO 347 It takes a team! INTERPROFESSIONAL PROJECTS PROGRAM

IPRO 347 It takes a team! INTERPROFESSIONAL PROJECTS PROGRAM

Range Calculations

U (BTU/ft-hr-ºF)	Inner Area (ft²)	Outer Area (ft ²)	Fixed Head С _{вм} (\$)
10	43,610	52,819	5,816,715
50	8,189	9,909	1,111,576

- Recommended option,
 - $C_{B} = $72,940$
 - $C_{P} = $396,996$
 - $C_{BM} = $1,310,088$

