PRO 311

Purpose & Objectives

- Investigate economic impact of wind power and PHEV integration
- Determine feasibility of PHEVs as external • energy storage
- Find effectiveness of PHEVs at lowering operational cost in various scenarios

Background

- PHEV: Plug-in Hybrid Electric Vehicle
 - Both electric and gas powered
- Can be charged with standard 120v outlet
- V2G: Vehicle to Grid
- PHEV can provide power back to the grid
- Used to offset demand during peak hours
- Chevy Volt was used for our simulations
 - 16kwh battery capacity
 - 4.8kwh to 13.6kwh energy range
- 3 hour charge time @240v; 8hrs @120v
- Objective Function
 - Determines optimized result given inputs

- time and location are variable, as is V2G

- charge PHEVs

	290 -	
(WN)	270 -	
	250 -	
nd (230 -	
Dem	210 -	
Load	190 -	
	170 -	
	150 -	
	6	AN OON OON
	0.0	

Analysis

 Addition of wind power decreased operational cost by 30.8 percent

 11:00pm to 7:00am - best charge time • 12:00pm to 3:00pm - best discharge time

 Peak time unaffected by inclusion of PHEV in power grid 10:00pm to 1:00am - first peak time 10:00am to 3:00pm - second peak time

Conclusion

• Wind energy provides volatile, but plentiful energy

 PHEV batteries are most effectively charged at night, with V2G during early evening

 Integration of wind energy and PHEVs into a standard power system can decrease operational cost by a significant percentage

Team Members Ghita Pop Joseph Charles Peter Ryszkiewicz Byron Enriquez Joseph Krause **Robert Veitch** James Lee

Faculty Advisor Dr. Alireza Khaligh

