IPRO 307: Intermodal Container Facility Improvements

Presented by: Michael Krueger, Ryan Maas, Andrey Kolesnikov

Problem Statement

Goals

Team Structure Obstacles

Final Progress

> Next Steps

Questions?

Problem Statement

 Identify and meet our client's needs while proving the logistical, engineering and financial feasibility of the proposed technology.

Problem Statement

Team Structure

Goals

Obstacles

Final Progress

> Next Steps

WHY?

• The current industry "norm" is to use trackside storage with gantry cranes or fork lifts when the truck arrives.

•The proposed technology uses a buffer system to lower the intermodal unit onto the truck chassis when it arrives.

•Eliminates the need for an individual operator to go back and forth throughout the yard when a truck arrives.

Problem Statement

Goals

Team Structure

Obstacles

Final Progress

> Next Steps

Questions?

<u>Goals</u>

- To enhance the productivity of Harvey Intermodal Storage Yard and Trucking Terminal by providing a new crane structure that utilizes buffers.
- Increase the number of average lifts per year from 300,000 to 1,000,000.
- Prove that such a crane is possible, capable of holding that capacity of production, and potentially profitable.
- Cost estimate for the implementation and creation of this system.

Problem Statement

Goals

Team Structure

Obstacles

Final Progress

> Next Steps

Team Structure

- Each meeting is run by a different Session Leader who was secretary at the prior meeting.
- At the beginning of each meeting, a secretary is appointed for the next meeting.
- The group will be divided into sub-groups with six major areas of focus.

Problem Statement

Team Structure

Obstacles

Final Progress

> Next Steps

Questions?

Breakdown

Name	<u>Tasks</u>
Gallagher, Ellen	Foundations Subgroup Leader
Gregory, Nicole	Foundations Subgroup Member
Hartwig, Michael	Layout Subgroup Leader
Krueger, Michael	Layout Subgroup Member
Kutryn, Anna	Layout Subgroup Member
Kolesnikov, Andrey	Mechanical Subgroup Leader
Loquidis, Ryan	Mechanical Subgroup Member
Pirkle, Matthew	Mechanical Subgroup Member
Haucke, Stephen	Pavement Subgroup Leader
Hafdi, Kamal	Pavement Subgroup Member
Sun, Yuefeng	Simulation Subgroup Leader/Mechanical Member
Gima, Daniel	Simulation Subgroup Member
McCloat, Declain	Simulation Subgroup Member
Maas, Ryan	Structural Subgroup Leader
Guglielmo, Kyle	Structural Subgroup Member
Olney, Peter	Structural Subgroup Member

Team Structure

IPRO 307

Problem Statement

Goals

Team Structure

Obstacles

Final

Progress

Next Steps

Obstacles

- Defining the scope of the project
- Determining whether the 1,000,000 lifts could actually be possible with the space and time restrictions of the crane
- The size and number of the cranes
- Stability of the structure
- Placement of the entire system in the existing yard

Problem Statement

Goals

Team Structure

Obstacles

Final Progress

> Next Steps

Final Progress

- Simulations
 - Defined terms
 - Initial "proof of concept" run to show that there would be enough space to accommodate the increase in production
 - Proved that 4 tracks would be necessary and buffers should be two high
 - Created a loading pattern

IPRO 307	Day 1: 6 trains arrive 6 trains depart = (+ 960 - 960) Day 2: 6 trains arrive 6 trains depart plus decay of previous day's delivery (+480 + 960 - 960) Day 3: 6 trains arrive 6 trains depart plus decay of previous <i>days</i> ' delivery(+192+480+960-960) Day 4: " Full example:			
Problem Statement	$\begin{array}{l} D1: (+ 960 - 960) = 0 \\ D2: (+480 + 960 - 960) = 480 \\ D3: (+192 + 480 + 960 - 960) = 672 \\ D4: (+96 + 192 + 480 + 960 - 960) = 768 \\ D5: (+0 + 96 + 192 + 480 + 960 - 960) = 768 \\ D6: (+0 + 0 + 96 + 192 + 480 + 960 - 960) = 768 \end{array}$			
Goals	$\begin{array}{llllllllllllllllllllllllllllllllllll$			
Team	overload our yard. Table Driven			
Structure	IPRO 307 Calculations by Michael Krueger and Ryan Maas			
- With 8 trains in and out per day,				
Obstacles	Trains IN AND OUT / IM's in - / day out / day Decay / day space at all Lifts / times			
Obstactes	1280 0.5 640 640 Day 2560			
	0.3 384 256 Year 798720			
	8 0.1 128 128 0.1 128 0			
Final	1024			
	- Too many			
Progress	- With 7 trains in and out per day,			
Nert	Trains IN AND OUT / day IM's in - out / day Decay / day Total Accupied space at all Lifts / times			
Next	1120 0.5 560 Day 2240			
Steps	0.3 336 224 Year 698880			
L				
	0.1 112 0 896			
	- This is the maximum number of trains our system can handle without overflowing the available			
Questione?	spaces. This is under 1 Million lifts!			
Questions?	Therefore, we know that availability of spaces DOES control!!			

M KO 30 7	
Problem Statement	
Goals	
Team Structure	
Obstacles	
Final Progress	
Next Steps	
Questions?	

307

 $IDD \cap$

Final Progress

- Mechanical
 - Full renderings
 - Dynamic loads
 - Crane interference clearance

1 Engineering Management, 1 Aerospace, 1 Mechanical

IPRO 307	
Problem Statement	
Goals	
Team Structure	
Obstacles	
Final Progress	
Next Steps	
Questions?	

Final Progress

• Structural

- Superstructure and Substructure designed to accommodate loads of the crane and containers
- Frame designed to carry the crane up and down the span of the tracks

IPRO 307	
Problem Statement	
Goals	
Team Structure	
Obstacles	
Final Progress	
Next Steps	
Questions?	

Final Progress

Site Layout

- Full overlay of aerial photography
- Analyzed gradations and water retentions
- Created two options for the cranes positioning.
- Proposed best option based on the owners needs and cost effectiveness
- Creating preliminary staging plans and finalized design

Problem Statement

Goals

Team Structure

Obstacles

Final

Progress

Next Steps

Questions?

Option A

Pros:

- ٠ Minimal Building Relocation
- Do not have to shut down/relocate ٠ maintenance area
- Could potentially reroute intermodal terminal ٠ to middle of yard for better space utilization

Cons:

- Retention pond ٠
- Have to shut down half of intermodal lines • during construction

Deciding Factors

- Cost of moving retention .
- Cost of building demolition/relocation .
- Cost of land clearing .
- Yard operation during construction .
- Yard operation after construction .
- Traffic flow of trucks, trains, other vehicles ٠

Staging

- Relocation of buildings .
- Relocation and fill of retention ponds .
- Land clearing and grading . Lay foundations
- ٠ .
- Lay rails .
- Build crane structure Place cranes 1,2,3 .

Problem Statement

Goals

Team Structure

Obstacles

Final

Progress

Next Steps

Questions?

Option B

Pros:

- Do not have to shut down any existing • intermodal lines during construction
- Retain existing intermodal infrastructure for . overload capacity
- Do not disrupt much of the retention/detention . areas

Cons:

- Must relocate several buildings/maintenance ٠ facilities
- Must relocate all rails in area .
- Several areas must be cleared and graded .

Deciding Factors

- Cost of moving retention ٠
- Cost of building demolition/relocation
- Cost of land clearing .
- . Yard operation during construction
- Yard operation after construction .
- . Traffic flow of trucks, trains, other vehicles

Staging

- Relocation of buildings .
- Relocation and fill of retention ponds
- Land clearing and grading Lay foundations
- Lay rails
- Build crane structure Place cranes 1,2,3

Questions?

• Final layout still allows for the existing yard to remain operational throughout most of construction and can be used for overflow if crane requires emergency maintenance.

IPRO 307	
Problem Statement	
Goals	
Team Structure	
Obstacles	
Final Progress	
Next Steps	
Questions?	

Final Progress

Pavements

- Typical Pavement cross sections calculated for the entire system
- Runoff and retention data collected

IF KO 307	
Problem Statement	
Goals	
Team Structure	
Obstacles	
Final Progress	
Next Steps	
Questions?	

PRA 307

Final Progress

- Foundations
 - Forces calculated
 - Geographical data collected
 - Footings and Load bearing plates were designed.

Problem Statement

Goals

Team Structure

Obstacles

Final Progress

> Next Steps

Questions?

Next Steps

- Verifying cost analysis
- Verifying crane design capacity and detailing
- Integration of the system to the yard
- Cost Benefit Analysis

IPRO 307	
Problem Statement	
Goals	
Team Structure	
Obstacles	
Final Progress	
Next Steps	
Questions?	

