IPRO 307: Intermodal Container Facility Improvements



Presented by: Michael Krueger, Ryan Maas, Andrey Kolesnikov

Problem Statement

Goals

Team Structure Obstacles

Final Progress

> Next Steps

Questions?

## **Problem Statement**

 Identify and meet our client's needs while proving the logistical, engineering and financial feasibility of the proposed technology.



Problem Statement

Team Structure

Goals

Obstacles

Final Progress

> Next Steps

# WHY?

• The current industry "norm" is to use trackside storage with gantry cranes or fork lifts when the truck arrives.

•The proposed technology uses a buffer system to lower the intermodal unit onto the truck chassis when it arrives.

•Eliminates the need for an individual operator to go back and forth throughout the yard when a truck arrives.

Problem Statement

Goals

Team Structure

Obstacles

Final Progress

> Next Steps

Questions?

## <u>Goals</u>

- To enhance the productivity of Harvey Intermodal Storage Yard and Trucking Terminal by providing a new crane structure that utilizes buffers.
- Increase the number of average lifts per year from 300,000 to 1,000,000.
- Prove that such a crane is possible, capable of holding that capacity of production, and potentially profitable.
- Cost estimate for the implementation and creation of this system.



Problem Statement

Goals

Team Structure

Obstacles

Final Progress

> Next Steps

## **Team Structure**

- Each meeting is run by a different Session Leader who was secretary at the prior meeting.
- At the beginning of each meeting, a secretary is appointed for the next meeting.
- The group will be divided into sub-groups with six major areas of focus.

### Problem Statement

Team Structure

Obstacles

Final Progress

> Next Steps

Questions?

## **Breakdown**

| <u>Name</u>        | Tasks                                        |
|--------------------|----------------------------------------------|
| Gallagher, Ellen   | Foundations Subgroup Leader                  |
| Gregory, Nicole    | Foundations Subgroup Member                  |
| Hartwig, Michael   | Layout Subgroup Leader                       |
| Krueger, Michael   | Layout Subgroup Member                       |
| Kutryn, Anna       | Layout Subgroup Member                       |
| Kolesnikov, Andrey | Mechanical Subgroup Leader                   |
| Loquidis, Ryan     | Mechanical Subgroup Member                   |
| Pirkle, Matthew    | Mechanical Subgroup Member                   |
| Haucke, Stephen    | Pavement Subgroup Leader                     |
| Hafdi, Kamal       | Pavement Subgroup Member                     |
| Sun, Yuefeng       | Simulation Subgroup Leader/Mechanical Member |
| Gima, Daniel       | Simulation Subgroup Member                   |
| McCloat, Declain   | Simulation Subgroup Member                   |
| Maas, Ryan         | Structural Subgroup Leader                   |
| Guglielmo, Kyle    | Structural Subgroup Member                   |
| Olney, Peter       | Structural Subgroup Member                   |

## **Team Structure**



**IPRO 307** 

Problem Statement

Goals

Team Structure

Obstacles

Final

### Progress

Next Steps

## **Obstacles**

- Defining the scope of the project
- Determining whether the 1,000,000 lifts could actually be possible with the space and time restrictions of the crane
- The size and number of the cranes
- Stability of the structure
- Placement of the entire system in the existing yard

Problem Statement

Goals

Team Structure

Obstacles

Final Progress

> Next Steps

# **Final Progress**

- Simulations
  - Defined terms
  - Initial "proof of concept" run to show that there would be enough space to accommodate the increase in production
  - Proved that 4 tracks would be necessary and buffers should be two high
  - Created a loading pattern



| IPRO 307             | Day 1: 6 trains arrive 6 trains<br>Day 2: 6 trains arrive 6 trains<br>Day 3: 6 trains arrive 6 trains<br>Day 4: ""<br>Full example:                                                                                  | depart = (+ 960 -<br>depart plus deca<br>depart plus decay | – 960)<br>1y of previous da<br>1y of previous <i>da</i> y | y's delivery (<br>vs'delivery(+ | (+480 +<br>-192+48      | 960 – 9<br>0+960– | 60)<br>960)           |             |             |                  |     |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------|---------------------------------|-------------------------|-------------------|-----------------------|-------------|-------------|------------------|-----|
| Problem<br>Statement | $\begin{array}{l} D1: (+\ 960 - 960) = 0 \\ D2: (+480 + 960 - 960) = 480 \\ D3: (+192 + 480 + 960 - 960) = \\ D4: (+96 + 192 + 480 + 960 - \\ D5: (+0 + 96 + 192 + 480 + \\ D6: (+0 + 0 + 96 + 192 + \\ \end{array}$ | = 672<br>960) = 768<br>•960 -960) = 768<br>•480 +960 -960) | = 768                                                     |                                 |                         |                   |                       |             |             |                  |     |
| Goals                | D7: (+0 +0 +0 +96 +192 +480 +960 -960) = 768<br>D8: (+0 +0 +0 +0 +96 +192 +480 +960 -960) = 768<br>In this case we can see that with 6 trains in and out per day, we will occupy 768 of the available spaces.        |                                                            |                                                           |                                 |                         |                   |                       |             |             |                  |     |
| Team                 | overload our yard.                                                                                                                                                                                                   | -                                                          |                                                           |                                 | -                       |                   |                       |             | labl        | e Driv           | ren |
| Structure            |                                                                                                                                                                                                                      | IPRO                                                       | 307                                                       |                                 |                         |                   | Calculation           | ns by Micl  | hael Krueg  | ger and Ryan Ma  | as  |
|                      |                                                                                                                                                                                                                      | -                                                          | With 8 trains                                             | in and out p                    | er day,                 |                   | Total Accupied        |             |             |                  |     |
| Obstacles            |                                                                                                                                                                                                                      | l rain:                                                    | / day                                                     | IM's in -<br>out / day          | Decay                   | / day             | space at all times    | Lifts /     |             |                  |     |
| Obstacies            |                                                                                                                                                                                                                      |                                                            |                                                           | 1280                            | 0.5                     | 640               | 640                   | Day         | 2560        |                  |     |
|                      |                                                                                                                                                                                                                      |                                                            | 8                                                         |                                 | 0.3                     | 384               | 256                   | Year        | 798720      |                  |     |
| <b>T</b> ' 1         |                                                                                                                                                                                                                      |                                                            | -                                                         |                                 | 0.1                     | 128               | 0                     |             |             |                  |     |
| Final                |                                                                                                                                                                                                                      |                                                            | Teeman                                                    |                                 |                         |                   | 1024                  |             |             |                  |     |
| Progress             |                                                                                                                                                                                                                      | -                                                          | 100 many                                                  |                                 |                         |                   |                       |             |             |                  |     |
|                      |                                                                                                                                                                                                                      | -                                                          | With 7 trains                                             | in and out p                    | er day,                 |                   | Total Accupied        |             |             |                  |     |
| Novt                 |                                                                                                                                                                                                                      | Train                                                      | s IN <b>AND</b> OUT<br>/ day                              | IM's in -<br>out / day          | Decay                   | / day             | space at all<br>times | Lifts /     |             |                  |     |
| INCAL                |                                                                                                                                                                                                                      |                                                            |                                                           | 1120                            | 0.5                     | 560               | 560                   | Day         | 2240        |                  |     |
| Steps                |                                                                                                                                                                                                                      |                                                            | 7                                                         |                                 | 0.3                     | 336               | 224                   | Year        | 698880      |                  |     |
|                      |                                                                                                                                                                                                                      |                                                            |                                                           |                                 | 0.1                     | 112               | 0                     |             |             |                  |     |
|                      |                                                                                                                                                                                                                      |                                                            |                                                           |                                 |                         |                   | 896                   |             |             |                  |     |
|                      |                                                                                                                                                                                                                      | -                                                          | This is the m<br>spaces. This                             | aximum nun<br>is under 1 M      | nber of i<br>fillion li | trains o<br>ifts! | ur system can har     | idle withoi | ut overflov | ving the availab | le  |
| Questions?           |                                                                                                                                                                                                                      |                                                            |                                                           |                                 |                         |                   |                       |             |             |                  |     |
|                      | Therefore, we know that availability of spaces DOES control!!                                                                                                                                                        |                                                            |                                                           |                                 |                         |                   |                       |             |             |                  |     |

| <b>M KO 30</b> 7     |  |
|----------------------|--|
| Problem<br>Statement |  |
| Goals                |  |
| Team<br>Structure    |  |
| Obstacles            |  |
| Final<br>Progress    |  |
| Next<br>Steps        |  |
| Questions?           |  |

307

 $IDD \cap$ 

# **Final Progress**

- Mechanical
  - Full renderings
  - Dynamic loads
  - Crane interference clearance

1 Engineering Management, 1 Aerospace, 1 Mechanical







| IPRO 307             |  |
|----------------------|--|
| Problem<br>Statement |  |
| Goals                |  |
| Team<br>Structure    |  |
| Obstacles            |  |
| Final<br>Progress    |  |
| Next<br>Steps        |  |
| Questions?           |  |

# **Final Progress**

## • Structural

- Superstructure and Substructure designed to accommodate loads of the crane and containers
- Frame designed to carry the crane up and down the span of the tracks





| IPRO 307             |  |
|----------------------|--|
| Problem<br>Statement |  |
| Goals                |  |
| Team<br>Structure    |  |
| Obstacles            |  |
| Final<br>Progress    |  |
| Next<br>Steps        |  |
| Questions?           |  |

# **Final Progress**

## Site Layout

- Full overlay of aerial photography
- Analyzed gradations and water retentions
- Created two options for the cranes positioning.
- Proposed best option based on the owners needs and cost effectiveness
- Creating preliminary staging plans and finalized design







### Problem Statement

Goals

Team Structure

Obstacles

Final

Progress

Next Steps

Questions?

## **Option A**

#### Pros:

- ٠ Minimal Building Relocation
- Do not have to shut down/relocate ٠ maintenance area
- Could potentially reroute intermodal terminal ٠ to middle of yard for better space utilization

#### Cons:

- Retention pond ٠
- Have to shut down half of intermodal lines • during construction

#### **Deciding Factors**

- Cost of moving retention .
- Cost of building demolition/relocation .
- Cost of land clearing .
- Yard operation during construction .
- Yard operation after construction .
- Traffic flow of trucks, trains, other vehicles ٠

#### Staging

- Relocation of buildings .
- Relocation and fill of retention ponds .
- Land clearing and grading . Lay foundations
- ٠ .
- Lay rails .
- Build crane structure Place cranes 1,2,3 .



### Problem Statement

Goals

Team Structure

Obstacles

Final

Progress

Next Steps

Questions?

## **Option B**

#### Pros:

- Do not have to shut down any existing • intermodal lines during construction
- Retain existing intermodal infrastructure for . overload capacity
- Do not disrupt much of the retention/detention . areas

#### Cons:

- Must relocate several buildings/maintenance ٠ facilities
- Must relocate all rails in area .
- Several areas must be cleared and graded .

#### **Deciding Factors**

- Cost of moving retention ٠
- Cost of building demolition/relocation
- Cost of land clearing .
- . Yard operation during construction
- Yard operation after construction .
- . Traffic flow of trucks, trains, other vehicles

#### Staging

- Relocation of buildings .
- Relocation and fill of retention ponds
- Land clearing and grading Lay foundations
- Lay rails
- Build crane structure Place cranes 1,2,3





Questions?

• Final layout still allows for the existing yard to remain operational throughout most of construction and can be used for overflow if crane requires emergency maintenance.



| IPRO 307             |  |
|----------------------|--|
| Problem<br>Statement |  |
| Goals                |  |
| Team<br>Structure    |  |
| Obstacles            |  |
| Final<br>Progress    |  |
| Next<br>Steps        |  |
| Questions?           |  |

## **Final Progress**

### Pavements

- Typical Pavement cross sections calculated for the entire system
- Runoff and retention data collected







| Problem<br>Statement |  |
|----------------------|--|
| Goals                |  |
| Team<br>Structure    |  |
| Obstacles            |  |
| Final<br>Progress    |  |
| Next<br>Steps        |  |
| Questions?           |  |

PRA 307

# **Final Progress**

- Foundations
  - Forces calculated
  - Geographical data collected
  - Footings and Load bearing plates were designed.







Problem Statement

Goals

Team Structure

Obstacles

Final Progress

> Next Steps

### Questions?

## Next Steps

- Verifying cost analysis
- Verifying crane design capacity and detailing
- Integration of the system to the yard
- Cost Benefit Analysis

| IPRO 307             |  |
|----------------------|--|
| Problem<br>Statement |  |
| Goals                |  |
| Team<br>Structure    |  |
| Obstacles            |  |
| Final<br>Progress    |  |
| Next<br>Steps        |  |
| Questions?           |  |



