IPRO 304 Final Report

Fall 2008

Innovating Process Improvements in Manufacturing Operations

Advisors: William Maurer Sheldon Mostovoy

Sponsor: A. Finkl & Sons Co.

Team: Asad Akram Talha Bhatti Yvonne Hernandez Satyam Kaneria Wesley Kerstens Shahmeer Khaliqdina Zhenlin (William) Lu Vien Quach Philip Siu Jan Teves Seth Thomas Min Zheng

Table of Contents

Abstract	. 3
Background	. 3-4
Objectives	. 5
MethodologyGantt Chart	. 6-8
Project Budget	. 9
Team Structure	. 10-11
Results	.12 - 13
Map to A. Finkl	14

1. Abstract

A. The purpose of this IPRO is to develop a robust, working prototype that can automatically monitor and detect a problem with a milling machine at A. FInkl & Sons Co. This IPRO is in its fourth semester and there are two challenges remaining: (1) alerting management to the detection of broken teeth during machining; and (2) developing spatial representations of items undergoing heat treatment. However, A. Finkl & Sons has asked us to concentrate solely on the goal of finding a way to detect when a break occurs in one of the milling teeth and then alert the mechanic monitoring the machine in order to replace it. This system will involve measuring vibrations using an accelerometer or by the use of laser detection. The goal of this IPRO is to research, test, and inform A. FInkl & Sons of the best solution to invest in, therefore they can decide what is better for their company.

2. Background

- A. The project customer is A. Finkl & Sons Co. which is looking for a way to detect a break in their milling machine, so that it can be replaced quickly and efficiently.
- B. The problem that A. FInkl & Sons wants us to concentrate on is that of the detection of broken teeth on their milling machine. Milling machines are used to cut and finish metal. A rotating head on the milling machine has a number of inserts, also referred to as teeth, which cut the material as it rotates. The material moves under the rotating head so that the entire surface can be milled. The mills are used to remove material of large forged steel parts to properly fit the customer's specifications.

Currently, A. Finkl & Sons keeps an operator by the mill when it is running and that person is in charge of turning off the mill when a tooth breaks. The only form of detecting if a tooth has broken is to constantly check the solid piece of steel for any unusual marks. This form of checking is too long, because most mistakes will not be noticed until after a long while and then the operator has to check every single tooth on the rotating head. If the broken tooth is not fixed or noticed in time, it presents drastic problems. By having one tooth that breaks while milling, it causes strain on the milling machine and more weight on the other milling teeth, therefore causing more inserts or teeth to be susceptible to breaking as well. By finding a solution to better detect when an insert breaks, it will save A. Finkl & Sons much time and money, enabling them to manufacture more quantity of pieces and better quality.

C. The existing technology that we have coming into the IPRO is all the preliminary research. We are focusing on two main ideas as to how to

approach the problem of detecting a tooth breakage in the machine. The use of accelerometers to measure vibrations and the detection by laser.

The first technology we focused on is the accelerometer. There are two aspects to the accelerometer technology, wireless or wired. One is a wireless accelerometer provided by Techkor, which seems to be the best option. There were a few companies that were investigated, for example, Honeywell and G-Link. However, Techkor is the better of the three because the G-Link is too slow for the required frequency. Honeywell also is not up to speed on the aspects we were looking for in an accelerometer. We have a high frequency issue and Techkor is the only one that demonstrates the capacity that we need on measuring vibrations.

We also investigated and sought out help for building our own wired accelerometer. There is an uncertainty if we may have the best results with a wireless accelerometer, therefore it was suggested to us that we build our own accelerometer in order to obtain the maximum results. We can purchase a wired accelerometer and an 18 series PIC chip to store data on the machine during normal and broken teeth situations. By using the PIC chip we can gather more data and properly analyze it. If we do not witness a spike in the frequency then we can rule out accelerometers all together.

Thru several interviews with experts in this area, as well as direct contact with other companies with similar problems, we were informed that possibly laser detection may be a different route. Basically, a laser beam will count the teeth on the milling head and an alarm will sound. There is a laser provided by Renishaw that may be able to detect tooth breakage.

A major conflict with using the accelerometer is that it measures vibrations. Therefore we must be accounting for all the factors that will cause vibrations in the factory at the moment of data recording. These are some problems we hope to solve in our IPRO.

3. Objectives

- A. Our objectives are testing the validity of the wireless accelerometer, the wired accelerometer and the laser detection. Then providing A. Finkl & Sons with the proper data so that they can decide what they want to use in their factory.
- B. For the wireless accelerometer we would like to purchase one immediately to start recording data. However, it is a high priced item. We would need the approval of A. Finkl & Sons to purchase it with their funding in order to experiment.
- C. For the wired accelerometer we will also purchase the parts to see if it works better or at pace with the wireless system. This is the cheaper option and we would like to compare its effectiveness with the wireless method.
- D. As for the laser detection, we would like to continue investigating with other companies and gather as much statistics as possible.

Deadline
I
5
S. M

4. Methodology

5. Project Budget

-Travel (to A. Finkl): 7.4 miles to A. Finkl fro	\$.585 per mile om IIT	x 4 cars (First trip) x 4 trips	= \$34.632
		x 3 cars TOTAL	= \$103.896 = \$138.528
-Magnetic bases (for accelerometer)			= \$124.89
-Wireless Accelerometer:	\$4999 (To be funded by	Techkor y A. Finkl &	Sons)

TOTAL for IPRO: \$263.42

Total for A. Finkl = \$4999

6. Team Structure and Assignments Α.

A.			
Name	Major, Year	Skills & Strengths	Team
Akram, Asad	EECE, Senior	Communication Skills, Electrical and Computer Engineering	Accelerometer investigation, Wireless Transmission
Ariani, Asau		Computer Engineering	
Bhatti, Talha	EECE, Senior	Data processing, Electrical and Computer Engineering	Laser Measuring system, Wireless Transmission
			IPRO Organizer; Meeting minutes,
Hernandez,	Architecture,	Microsoft Office, good	project planner, project/enforce
Yvonne	5th year	organizational skills	deadlines
Ken est -			
Kaneria, Satyam	EECE, Senior	Electrical and Computer Engineering	Wireless Transmission
Satyam		Ligheening	
Kerstens,		Microsoft Office, Mechanical	
Wesley	MMAE	Engineering	Drawing of attachment, Aquire data
	_		
Khaliqdina,	Electrical Engineering,	Acquiring data, Electrical	
Shahmeer	Junior	Engineering	Obtaining precedents, Techkor
		Microsoft Project and good in	
Lu, Zhenlin	Finance, Senior	business direction	IPRO Organizer
		LabView, Mechanical and Materials	LabView VI's, Drawing of
Quach, Vien	MMAE	Engineering	attachment
	ME & AE,	Mechanical and Materials	Drawing of attachment, Aquire
Siu, Philip	Junior Mechanical/	Engineering	data, Wireless Transmission
	Aerospace		
	Engineering,	Data processing, Microsoft office,	
Teves, Jan	Senior	Mechanical Engineering	Techkor
		Microsoft Office, LabView,	Accelerometer Investigation,
		Mechanical and Materials	LabView VI's, Drawing of
Thomas, Seth	MMAE	Engineering	attachment
		MATLAB, Organizational skills,	
Zheng, Min	CHBE	Engineering Comprehension	Laser Measuring System

B. There are six parallel sub teams in IPRO 304 to work on seven different issues, but toward the same big goal together.

Team: IPRO Organization	Yvonne Hernandez -Leader Zhenlin Lu
Team: Wireless Transmission	Seth Thomas – Leader Wesley Kerstens Talha Bhatti Satyam Kaneria Philip Siu Jan Teves
Team: Attachment drawings	Vien Quach- Leader Seth Thomas Philip Siu
Team: Laser	Min Zheng - Leader Talha Bhatti
Team: Data	Asad Akram – Leader Shahmeer Khaliqdina Philip Siu Jan Teves
Team: LabView	Vien Quach - Leader Seth Thomas

C.

Minute taker: Yvonne Hernandez Agenda maker: Yvonne Hernandez Time Keeper: Zhenlin Lu Summarizer: Zhenlin Lu Master Schedule: Yvonne Hernandez IGROUPS: Yvonne Hernandez

- 7. Results
 - A. IPRO 304 has found that the best solution is to use the wireless accelerometers from Techkor to measure vibrations. It is possible to gain accurate data from the accelerometers and put it in diagrams to read results accurately.
 - **B.** Here are our main diagrams:

The blue dots represent the detection of broken teeth. Also you can further analyze that the detection of broken teeth is more clear when the accelerometer is actually mounted on the work piece.

C. The laser approach was not the answer for A. Finkl & Sons because it would cost to much to retrofit their machines with the laser system. Therefore, we conclude that the best approach is the wireless accelerometer.

