

Marta Bastrzyk, Jose Hernandez, Tae-Young Kim, <u>Kevin Lerash</u>, <u>Crystal Lybolt</u>, <u>George Skontos</u>, <u>Tyge Sopko</u>, Nir Vaks

Faculty Advisor Prof. Janet Staker Woerner

In Collaboration with Ball State University Faculty Advisor Prof. George Elvin

> © IPRO 341 December 1, 2006

Agenda

- Background
- Introduction
- Collaboration Process
- Technical Evaluations
- Societal Issues
- Conclusions

History of Insight

- Fall 2005
 - -Researched emerging technologies
 - Video Games, Internet, Optical Drives, Cell Phones
- Spring 2006
 - Focused on nanotechnology
 - Perceptions of Society
 - Stakeholder Bias
 - Major products currently on market

Objectives of IPRO 341

- Identify nanotechnology concepts and properties (self-study).
- Detail technical obstacles with BSU designs.
- Apply various communication tools in collaborative process with BSU.
- Research, identify, and analyze selected societal issues.
- Construct recommendations pertaining to the future of nanotechnology and its integration into society.

Collaboration Process

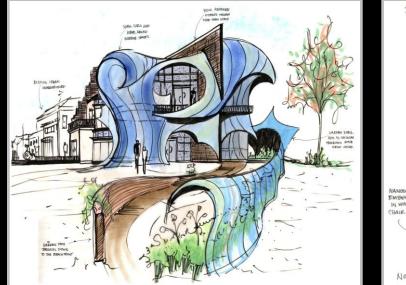
- The beginnings...
- Working with Ball State University (BSU) Architecture – "Nanostudio"
- Communication methods:
 - Breeze Software
 - E-mail
 - Newsletters
- Face to face meetings:
 - IPRO Games
 - Visits
- Balanced conversation

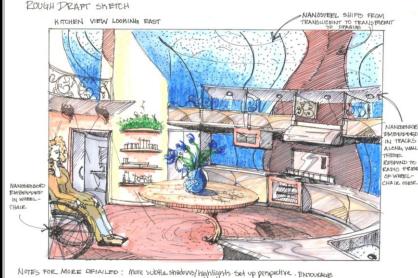
Technical Research

- Nanotechnology research:
 - General overview (Self-learning)
 - Specific materials and their applications
 - Existing nano-products
 - Technical problems with materials in proposed designs
 - Recommendations to solve technical issues
- Individual groups vary by:
 - Nano-materials implemented
 - House designs and sites

Team 3884

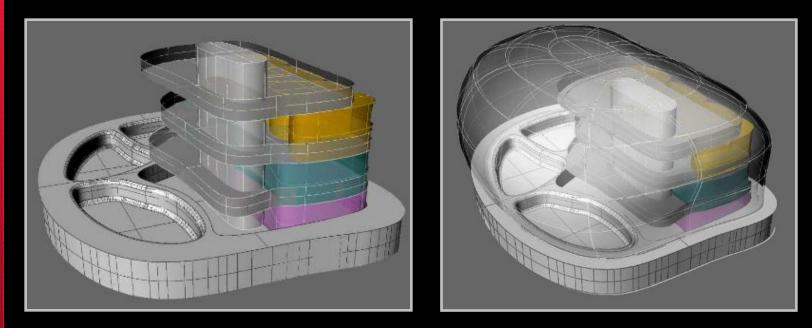
Marta Bastrzyk (IIT), Elizabeth Boone (BSU), Adam Buente (BSU) , Tae Young Kim (IIT)


Material: Carbon Nanotube Sheets, Quantum Dots


Location: Chicago, IL

Team NanoShell

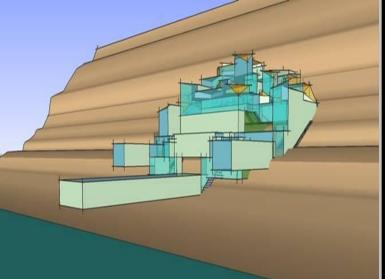
Jessica Coleman (BSU), Matt Goyak (BSU), Nir Vaks (IIT)


Material: Translucent Nanosteel, Carbon Nanosensors

Location: San Diego, CA

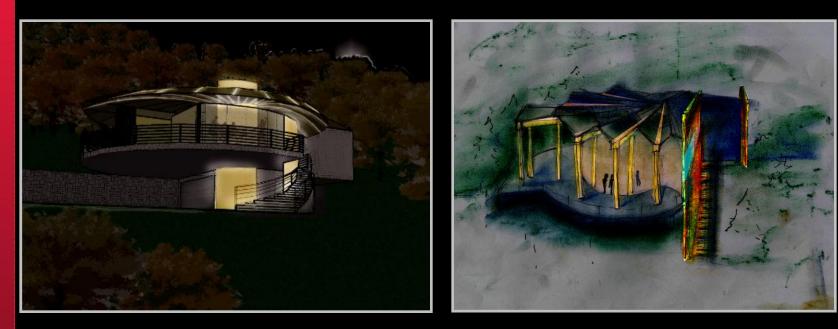
Team NanoSpa

Amber Agan (BSU), Andrew Glass (BSU), George Skontos (IIT), Tyge Sopko (IIT)


Material: Expandable Building Envelope, Nanosensors Location: Cincinnati, OH

Team Fleischman

Eric Gerding (BSU), Kevin Lerash (IIT), Crystal Lybolt (IIT), Paul Ripley (BSU)



Material: Carbon Nanotube Sheets, OLED Panels Location: Anchorage, AK

Team Natural Umbrella

Jose Hernandez (IIT), Nicole Holt (BSU), Jessica Mullendore (BSU), Emily Perchlik (BSU)

Material: <u>Nanowire Paper, Quantum Dots, Nanosensors</u> *Location:* Greenville, SC

Technical Evaluation Conclusions

- All designs were developed based on the assumption that they may not necessarily be applicable today, but they will be within 25 years
- BSU overall designs have questionable feasibility at this point in time
- Full potential of nanotechnology is yet to be determined
- Collaboration of technical and non-technical fields

INSIGHT Anticipating the Future... Assessing the Impact

Societal Issues

Material	Education	Society	Construction Market	Global
 Cost-efficiency Toxicity Life-expectancy Sustainability 	 User Insurance agents Workers Designers / Engineers Governing body 	 Privacy / hacking Malfunctions Governing bodies 	 Material transport Job force / market New hardware / machines needed 	• How other nations deal with / what regulations do they have?

Societal Issues

- Toxicity Issues with CNT
- Material Handling

 Shipping, disposal, and recycling
- Malfunctions/Emergencies
- Construction Issues
 - Site
 - Worker education/certification
- Regulatory Agencies

Anticipating the Future... Assessing the Impact

Conclusions

- Like any technology before, nano will have opportunities and challenges, and then one day new innovations will come to the forefront.
- Will we use this new opportunity wisely? igodol
- May other situations arise comparable to asbestos? Teflon? Nuclear power?

Gallery/Cambr

WU 00

Nano is coming, are we ready?

Special Thanks To:

- O'Connor Design Works
- Jannelle Ruswick
 - Galvin Library
- Julian Zarate
 - Graphic Designer
- Jay Marhoefer
 - Attorney at Latham and Watkins, LLP
- IPRO Offices
- Brandon Seaton
 - IIT Student

Questions

© IPRO 341 December 1, 2006

INSIGHT Anticipating the Future... Assessing the Impact

Teams	Members	Year/Major	
		5 th / Mechanical, Materials, and	
	Marta Bastrzyk (IIT)	Aerospace Engineering & Applied	
		Mathematics	
Team 3884	Tae Young Kim (IIT)	4 th / Biological, Chemical, and	
		Physical Sciences	
	Adam Buente (BSU)	3 rd / Architecture	
	Elizabeth Boone (BSU)	3 rd / Architecture	
	Jose Hernandez (IIT)	4 th / Mechanical, Materials, and	
Team	Jose memandez (m)	Aerospace Engineering	
Natural	Nicole Holt (BSU)	3 rd / Architecture	
Umbrella	Emily Perchlik (BSU)	3 rd / Architecture	
	Jessica Mullendore (BSU)	3 rd / Architecture	
	George Skontos (IIT)	5 th / Applied Mathematics	
Team	Tyge Sopko (IIT)	5th / Electrical and Computer	
NanoSpa	Tyge Sopko (III)	Engineering	
Tunospa	Andrew Glass (BSU)	3 rd / Architecture	
	Amber Agan (BSU)	3 rd / Architecture	
	Kevin Lerash (IIT)	4 th / Political Science & Masters in	
		Public Administration	
Team	Crystal Lybolt (IIT)	2 nd / Mechanical, Materials, and	
Fleischman	· · ·	Aerospace Engineering	
	Eric Gerding (BSU)	3 rd / Architecture	
	Paul Ripley (BSU)	3 rd / Architecture	
	Nir Vaks (IIT)	3 rd / Electrical and Computer	
Team	1.12 . ()	Engineering	
NanoShell	Matt Goyak (BSU)	3 rd / Architecture	
	Jessica Coleman (BSU)	3 rd / Architecture	
Team	Professor Janet Staker Woerner (IIT)		
Advisors	Professor George Elvin (BSU)		

BACKUP SLIDES

© IPRO 341 December 1, 2006

What should be done?

These conclusions have been drawn based on extensive research into societal implications on nanotechnology

Regulatory Agencies

Anticipating the Future... Assessing the Impact

- Establish and International Regulatory Agency
- Launch tailor-made organization for nanotechnology within U.S. Government
- Allocate more research grants into investigation of nanotechnology based materials' effect on our environment and our health

Education

- Education of Regulatory Agency Members \bullet
 - Require knowledge of vast number of scientific fields
 - Setup collaboration and communication skills courses
 - Require certifications in rapidly updating developing technology
- Student Education

Anticipating the Future... Assessing the Impact

- Significantly revolutionize school curriculums with nanotechnology education and collaboration methods in mind
- Incorporate disciplines intersecting complex problems
- Include programs similar to our IPRO programs early on in elementary schools
- User Education

Require companies to include on their websites and all product labels' Use of RFID to tag all products that are NANO enhanced so there is a national data base

Create more public, user friendly, reliable information sources

Workforce Education igodot

Require proper training by educated professionals who understand nanotechnology.

Set requirements that companies must legally follow pertaining to the explanation to employees of the risks involved

Society

Privacy/Hacking ullet

Anticipating the Future... Assessing the Impact

- Consider establish a positions for 'nanocops' to track and punish dangerous hackers that specialize in interfering with the controls of nanodevices and systems
- Encourage and use the work of all of the hackers to develop better security systems prior to full release of a product
- Job Market/Work Force
 - Workers will have to display diversity in scientific background incorporating chemistry, biology and engineering, to name the few.
 - Encourage workers already in a given field to expand their scopes of knowledge, possibly by undertaking more education.
 - Nano workers will need a new type of union to better represent them, a union that is themselves diverse in different educational backgrounds

Materials

 Durability and Sustainability of Nano-Building Materials

All nano-enhanced materials should be tested on a practical level

Through research in controlled labs it should be predicted if structures will be safe to use

Modeling tools should be used to project pitfalls and dangerous issues

Compatibility

- Regulatory board/organization should be created to encourage and enforce a uniform compatibility between similar technologies
- Enforce making nanotechnology based products compatible with there old non-nano based technology to provide a smooth and gradual transformation

Anticipating the Future... Assessing the Impact

Malfunctions

Societal Reaction to Malfunction

- Place regulations or even prohibitions on the use of materials before extensive toxicity research has been conducted
- This toxicity research should have quantitative requirements that must be satisfied to move progress to the next stage.
- There should a set of stages or levels of safety confidence with respect to toxicity knowledge and prevention so that as research progresses on certain materials, they can be classified into these stages

Toxicity and Risks

Toxicity

Anticipating the Future... Assessing the Impact

- workers and developers should be required to wear appropriate safety gear
- Guidelines for labs and manufacturing should be developed in order to create a 'standard' procedure for handling nanomaterials
- complimentary nanomaterials and methods should be developed that actually will filter the air or water
- Much more research need to be performed in this area
- Recyclability
 - Methods of reactivation or reusing nano-particles in new products must be devised
 - More research need to be performed in this area