
VIADUCT DESIGN

Members:

Sasha Bajzek (Civil Engineer) Aaron Davis (Mech. Engineer) Jessica Roth (Civil Engineer)

Total Viaduct Cost Estimate: \$14,754,660.52

A SPECIAL THANKS TO

I P R O

It takes a team!

- The Entire IPRO Team - Mi-Jack Products, Inc. **IPRO 307**

INTERMODAL CONTAINER TRANSPORT SYSTEM SOLUTIONS FOR THE CHICAGO REGION

Team Members Faculty Advisor

Laurence Rohter

John Allen Sasha Bajzek Aaron Davis Anca Gruita Jeremy Levin Aaron Pollack Izydor Radzik Jessica Roth Gabriel Williams Bryan Woods

ILLINOIS INSTITUTE OF TECHNOLOGY

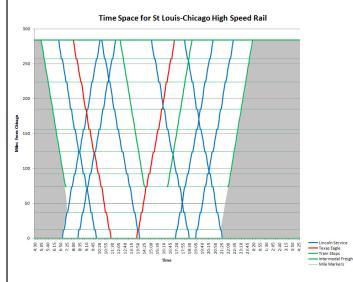
OVERVIEW

IPRO 307 has followed the path of its predecessors in order to help improve the shipping transportations and facilities in the immediate region, specifically Crete, IL.

PROJECT OBJECTIVES

- To integrate high speed rail and intermodal freight systems
- To design a space in Crete, Illinois, that would support an intermodal freight rail yard that will undergo one million lifts per year
- To design a viaduct system that stacks and includes three different modes of transportation (high speed passenger rail, freight rail, and automobile highway)
- To incorporate these three preceding objectives in order to create a newer and more efficient mode of transporting and shipping using an ATMS system

ATMS


ATMS utilizes a crane that spans over 4 lanes of track. Lining the 4 lanes of track are container storage racks that stack 2 high like the trains. ATMS reduces inefficiencies in crane lifting by making sure each lift has a container. It reduces the footprint of unloading and storage areas for containers waiting to be picked up. It reduces confusion in finding your container to pick up and speeds up the process of dropping a new container off.

HIGH SPEED

Members:

John Allen (Arch. Engineer) Jeremy Levin (Mech. Engineer) Izydor Radzik (BME)

The high speed rail team determined, by use of the Davis Equation, that in order to move a 10,000 foot double-stacked intermodal train, 4 Acela Express Engines would be required.

Adding Intermodal Freight routes to Amtrak Illinois/Missouri Corridor route at times when no trains are in use.

SITE DESIGN

Members: Anca Gruita (Arch.) Aaron Pollack (Arch.) Gabriel Williams (Arch.) Bryan Woods (Arch.)

Site Efficiency:

	Old Site Design	New Site Design
Site Size in Acres	1000 Acres	1000 Acres
Site Size in Million SqFt	43.5 Million SqFt	43.5 Million SqFt
Intermodal Area in Acres	300 Acres	86.8 Acres
Intermodal Area in Million SqFt	13 Million SqFt	3.75 Million SqFt
Total Building in Acres	137.75 Acres	220.5 Acres
Total Building in Million SqFt	6 Million SqFt	9.6 Million SqFt
Acres of Intermodal to one Acre of Building	2.17 Acres per building Acre	.39 Acres per building Acre

- The capacity of the intermodal area (in lifts per day) stays the same in both designs.
- The original design had no room for future alterations.
- The original design had no room for trucks on site to alleviate traffic isssues.
- The ratio of intermodal to building acres was made 5.5 times better.