# IPRO - 362

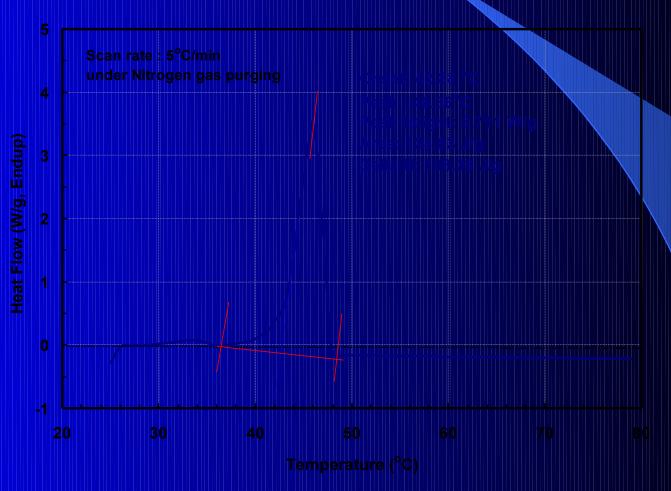
Design & Testing of a
Lithium-Ion Battery for
Electric/Hybrid Vehicle Applications

Sponsors: IIT, All Cell Technologies & JBRO Batteries

Instructor: Prof. Said Al-Hallaj

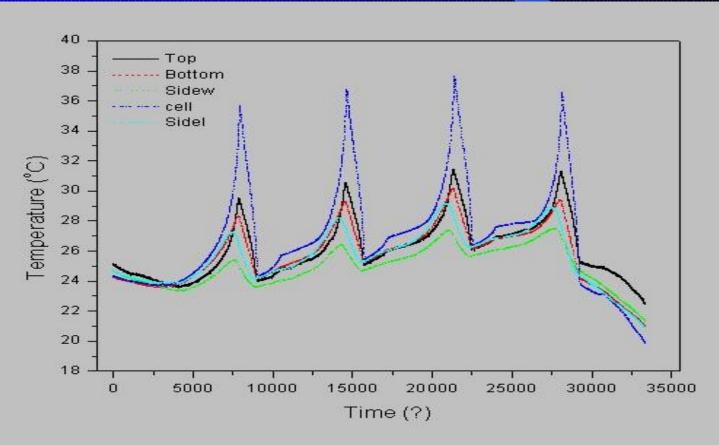
Business Consultant: Dr. Leonard Stark

# COMPARISON


|                                   | Lead Acid  | Li-Ion    |
|-----------------------------------|------------|-----------|
| Gravimetric Energy Density(Wh/kg) | 30-50      | 110-160   |
| Cycle Life                        | 200-300    | 500-1000  |
| Fast Charge Time                  | 8-16 hours | 2-4 hours |
| Cell Voltage                      | 2V         | 3.6V      |
| Maintenance Reqd/                 | 3-6 months | Not Reqd. |
| Cost per Cycle(\$)                | 0.10       | 0.14      |

### Selection of appropriate PCM

- Criteria:
  - Melting point at practical range of operation
  - High latent heat & heat of fusion
  - Thermal conductivity
  - Minimum super cooling
  - Non toxic & non corrosive


# Testing of PCM Material: Paraffin wax Melting range: 42 °C -46 °C





# Bench Scale Experiment To determine thermal behavior of Li-ion battery

- Tested 2 Li-ion cells with paraffin wax as PCM in a plexi-glass chamber



#### Advantages of the Li-Ion Battery

- Considerably lighter than Lead Acid
   Batteries
- Longer operating life
- Environment Friendly
- Maintenance Free

#### **Electric Scooters**

- Fun to ride
- No noise or air pollution
- Allowed on public conveyances

#### **Electric Bikes**

- Allow for extended trips
- Useful for senior citizens
- In use by police & security squads
- By 2005, sales are predicted to be 6.6 million units (0.4% of total bike market)!!!

# Why change??

- Increased speeds
- Increased range
- Lower weight
- Faster charging time
- Longer Life

## A Novel Application



- IT scooter from Dean Kamen
- 65-80 pounds
- 12 mph
- Six hours of travel for a dime
- Concerns weight and price

## **Hybrid Cars**

- Fuel cost savings (50-75%)
- No dependence on foreign oil
- Lesser pollution
- Reduced Maintenance costs
- Less vibration and fatigue
- 30-50% consumers would pay upto 25% more for this benefits

## Hybrid Cars:Li-Ion vs NiMH

|                     | NiMH Battery of<br>Toyota Prius | Li-lon Battery (estimated) |
|---------------------|---------------------------------|----------------------------|
| Cells               | D Size                          | 18650                      |
| Weight of cells     | 140 gms                         | 42 gms                     |
| Nominal Voltage     | 1.2 V                           | 3.6 V                      |
| 1 Hr Charge Current | 4.5 A                           | 1.8 A                      |
| Cost per cell       | ~ \$ 5                          | ~ \$ 3                     |
| Cost in kWh         | ~ \$ 694                        | ~ \$ 460                   |

#### Wheelchairs

- Wheelchairs weigh in at about 200 pounds
- Add 50-100 pounds for the batteries
- Battery is 25-30 % of total weight
- Lead Acid Wheelchairs not allowed on most airlines
- Recharge time 12-24 hours
- Maintenance requirements

#### Wheelchairs & Li-ion

- Drastically reduces weight (Li-Ion-9 lbs, U1-50 lbs, NF22-100 lbs)
- Increased operating range (25 vs 15 miles)
- No maintenance requirements
- Costs may be eligible for Medicare reimbursements

#### Lawn Mowers

- Replacing gas with electric reduces harmful emissions by 99%
- Noise pollution is vastly reduced (90dB to 70dB)
- Cordless Electrics use \$3-4 of electricity per year
- No tune ups
- Using Li-Ion, weight is reduced by 25 lbs
- Charging time reduced from 24 to 5 hours

#### Other Applications

- Neighbourhood Electric Vehicles
- One Person Cars
- Electric Pedicabs
- Electric Go-Karts
- Golf Carts

# Intellectual Property Issues

- Patents
- Trademarks
- Trade Secrets

#### Conclusion

• Essentially, with a lower weight, improved performance plus maintenance free & environment friendly characteristics make Li-Ion a viable alternative to Lead Acid Batteries.

# Thank You