IPRO 304-A: Compact Climatization Units for Automotive Applications

May 3, 2002

Arthur Anderson, Tamara Brooks, Janet Foster, Suneeta Julius, Matthew Luebbers, Vickie Mark, Eli Milam, Muhammad Salameh, Evelyne Schranz, Cari Youngblood

Introduction & Background

- On a hot, sunny day, cars can become unbearably hot.
- The temperature increases due to solar radiation.
- This radiation can be used as an energy source to cool the car.

Defining the System

Surroundings:

Temperature: 100 °F

Pressure: atmospheric

<u>Car:</u>

Temperature: 120 °F Pressure: atmospheric T_{DESIRED} = 90 °F

Calculation of Heat load

- P(atm) = 1.00 atm
- n = PV/RT = 108 moles air
- $\rho = MWn/V = 1.10 \text{ kg/m}^3$
- m = MW*n = 3.13 kg air
- $Q_{HL} = mC_p(T_{CAR} T_{DESIRED}) = 52 \text{ kJ}$

Solar Radiation

Insolation

- Variables: S, Zenith angle (Z), Latitude (Φ), Hour angle (H), Solar declination angle (δ)

Radiation heat load

– Variables: Angle from horizontal (θ), Emissivity (ϵ)

Φ	δ	Time	н	Z	I (W/m²)	Description	l _{window} (45º from horizontal)	Radiation (W/m ²)
33.4	23.5	8	-60.0	53.0	602	Phoenix, summer, 8am	426	400
33.4	23.5	12	0.0	9.9	985	Phoenix, summer, noon	697	655
33.4	23.5	17	75.0	65.3	418	Phoenix, summer, 5pm	295	278

Power System

- Solar Panel
 - Black body radiation
 - Windshield has a nonunit emissivity.
 - Aesthetics
- Battery (to regulate the solar panel)
 - Primary
 - Secondary

Power System: Description

- Solar radiation is variable
- Average power is 150 Watts
- Choices
 - NiCd,NiZn,Lead Acid, Li+
 - Memory Effect
 - Operating Temperature

Power System: Batteries

- What are they used for?
 - To power the compressor or freezer
- What is the voltage?
 - Approximately 12V
- For how long can the battery run?
 - 4 hours
- What is the current needed?
 - I = P/V → 150 Watts / 12 Volts = 12.5 A
 - $-12.5 A \times 4 hr = 50 Amp-hr$

Power System: Battery Choice

- NiZn
 - No Memory Effect
 - High Energy Density
 - 60 to 80 W h/kg
 - High Cycle Life
 - 500
 - Reasonable Cost
 - \$30/cell

Available Space

- This image represents the basic frame that is available for the refrigeration / heat pipe systems
- Note the positioning of the cooling chest and the compressor in the trunk of the car
- This is an isometric view from the rear driver's side of the car

Strategy 1: Refrigeration Cycle

Refrigeration: Description

- Refrigerant: Ethyl chloride
- Pressure in and out of evaporator: 1.361 atm
- Vapor pressure of Ethyl chloride @68.31°F is 1.36 atm

Refrigeration: Description

- Heat load absorbed into evaporator in 15 min.: 735.1 Watts (44.11 KJ)
- Compressor work: 150.0 Watts
- Pressure out of compressor: 4.590 atm
- Temp into condenser: 187.5 °F
- Temp out of condenser: 140.0 °F

Refrigeration: System Layout

Refrigeration: Specs

- Evaporator:
 - T_{IN} = 68.313 F
 - $T_{OUT} = 68.314 F$
 - Heat Duty = 735.1 W
- Condenser:
 - T_{IN} = 187.5 F
 - $T_{OUT} = 140 F$
 - Heat Duty = 885.1 W

Refrigeration: Heat transfer area

•
$$\Delta T_{LM} = (T_2 - T_1)/ln(T_2/T_1)$$

 $\Delta T_{LM, EVAP} = 293.3242 \text{ K}$
 $\Delta T_{LM, COND} = 346.1768 \text{ K}$

- Q = U*A* ΔT_{LM}
- Heat Transfer Coefficient = 2.8 W/m²*K
 - (Minimum value for still air)
- $A_{EVAP} = Q_{EVAP}/U^* \Delta T_{LM, EVAP} = 0.895 \text{ m}^2$
- $A_{COND} = Q_{COND}/U^* \Delta T_{LM, COND} = 0.913 \text{ m}^2$

Length of Steel Tubing

- $V = \pi r^2 L$
- V_{TOTAL} = 2.02 Liters Ethyl Chloride
- $A = 2\pi rL$
- L_{EVAP} = 26.86 m
- L_{COND} = 27.95 m
- L_{STRAIGHT} = 8 m

Tubing

• Total Length of 0.21 inch Radius \cong 63 m

Refrigeration: Costing

Equipment	Size Range	Capacity Unit	Cost	
Compressor	150	Watts	\$119.15	
Valve	0.02	meters	\$6.50	
Solar Panel	150	Watts	\$700.00	
Ni-Zn Battery	12 x 2	Volts	\$400.00	
Stainless steel tube	63	meters	\$339.00	
Ethyl Chloride	2000	Grams	\$141.50	
		Total	\$1706.15	

Refrigeration: Safety

• Ethyl Chloride:

- Toxicity Levels: 30,000 μ g/m³
- Effects: Simple asphyxiant; anesthetic effect in high concentrations; forms toxic substances upon heating of combustion.
- Corrosive in moist conditions; need to use stainless steel material.

Heat Pipes: Cooling Source

- Cooling/freezing ability from 40°F to 0°F
- Inside Dimensions: L 13.75" x W 7.5" x H 7.5"
- Power consumption:
 0.9 3.9 Amps on a
 12-Volt DC adapter

Heat Pipes: Cooling Source

- Power consumption: 3.0 Amps in refrigerator 12Volt AC adapter
- Cooling/freezing ability from 75°F to 25°F
- Self-contained and sealed against the environment
- Inside Dimensions: L 8.7" x W 5.3" x H 2.6"

Heat pipes: Working fluid

- Key properties
 - High latent heat
 - High surface tension

• Possible fluids

Fluid	Boiling point at 1 atm (°C)	Surface tension, σ _I , at 50 °C (N/m)	Liquid density, ρ _ι , at 50 °C (kg/m³)	Liquid viscosity, µ _I , at 50 °C (cP)	Latent heat, L, at 50 °C (kJ/kg)
R-11 (CCl ₃ F)	24	0.0153	1414	0.35	172
Pentane (n-C ₅)	28	0.0127	596.0	0.187	348.9

Heat pipes: Wick material

• Pore size vs. permeability

Wick material and mesh size	Pore radius, r (mm)	Wire diameter, d _w (mm)	Porosity, ε(%)	Permeability, K (m²)
Stainless steel, 403 mesh	0.019	0.025	36	1.9 ×10 ⁻¹¹
Stainless steel, 101.6 mesh	0.08	0.09	41	4.3 ×10 ⁻¹⁰
Copper powder, sintered, 45-56m	0.009		52	1.74 ×10 ⁻¹²

Heat pipes: Heat flow

- From pressure balance, $(\Delta P_{o})_{max} = \Delta P_{I} + \Delta P_{g}$
- Mass flow rate,

 $m = \rho A_w K \mu I_{eff} (2\sigma r - \rho gI_{eff} \sin \phi)$

Heat flow = mass flow * Latent heat

Description	m (kg/s)	Q (W)	W/1.5m ²	Total W	Layers
4 layers 400 ss wick, ga, 45°	2.9E-06	1.05	157	471	3
6 layers 400 ss wick, ga, 45°	4.3E-06	1.57	236	707	3
8 layers 400 ss wick, ga, 45°	5.8E-06	2.09	314	628	2
10 layers 400 ss wick, ga, 45°	8.7E-06	3.14	471	943	2

Placement of Heat pipes

Heat Pipes: Costing

Equipment	Size Range	Capacity Unit	Number	Cost
Aluminum pipe	0.4	meters	300	\$1594.49
Stainless steel Mesh	0.915 x 30.49	meters		\$7.00
n-pentane	0.00379	m ³		\$50.00
Cooler	0.22 x 0.134 x 0.066	m	1	\$400.00
			Total	\$2051.49

Heat Pipes: Safety

- n-Pentane
 - Extremely flammable liquid and vapor
 - Vapor may cause flash fire
 - Harmful or fatal if swallowed or inhaled
 - Affects central nervous system
 - Causes irritation to skin, eyes and respiratory tract
 - Toxicity in 8-Hour Time Weighted Average (TWA), 1000 ppm

Results and Conclusions

- In the refrigeration system, 735.1 Watts of heat is being extracted while only 655 Watts are coming into the car.
- It is possible to design the heat pipe system to match the heat load. It would require 300 – 400 heat pipes of ~ 2 Watts each.
- Both systems are feasible but not cost efficient.

Recommendations

- Find a Better Refrigerant.
- Find a Less Expensive Battery.
- Better Integration of the Refrigeration Cycle in the Car's Frame.
- Further optimize the heat pipe system.