IPRO 324

Enhancing the Functionality of Residential Garage Door Operators Using CCD Camera Technology

Sponsor: The Chamberlain Group, Inc.

Overview

3rd Iteration of IPRO 324

Ist semester: showed how hardware and software could be integrated

2nd semester: documented various issues, recommended improvements

Goals

- Use CCD camera
- Develop software package
- Solve skewing, lighting, scaling, and processing speed issues
- Determine feasibility of product for commercial use

Today's Presentation

- Hardware specification
- Software design and approach
- Project demonstration
- Conclusion

Hardware Specification

Parameters

- Problem Identification
- Possible Hardware Contribution
- Hardware Requirements
- Possible Hardware Configurations
- Hardware Selections

Problem Identification

Previous IPRO Attempts Camera - Web cam Interface - USB Port Problems Encountered 1) Lighting 2) Scaling 3) Skewing 4) Processing Speed

Possible Hardware Contribution

- Image Quality
- Reduction in Processing Speed
- Address Lighting Issues
 - Filters
 - Inferred

Hardware Requirements

- No user adjustment.
- Wide depth (must focus up to 20ft).
- Camera resolution to cover 20ft (640x480 and better).
- Needs own illumination (ideally <1/2 Watts).</p>
- Operation under extreme lighting conditions

Possible Hardware Configurations

Acoustic Sensors

Web cam

Inferred Camera

CCD Camera

Interface Selection

Dazzle Digital Video Creator

ADS USB Instant DVD

Integral Flashpoint 3dx PCI Frame grabber

CCD Camera Advantages

- High Spatial resolution
- Higher Sensitivity (SN ratio)
- Lower Smear Ratio
- Wider Dynamic Range

Integral Flashpoint 3dx

High Resolution

- Fast Image Acquisition
- Camera Control Interfaces
- Compatibility

Hardware Selections

JVC 1/3 CCD

- 1/3" interline transfer CCD
- Electronic shutter
- Auto IRIS
- Built in back light compensation
- Integral Flashpoint 3dx
 - PCI video frame grabber
 - Programmable C++ Interface

Attacking Design Problems With Software

Problems

- Skewing
- Scaling
- Lighting Issues

Running Independent of User Adjustments

Fix Skewing

- 1. Followed suggestion from previous IPRO
- 2. Circle can be moved or rotated but still have same aspects.

Initial Approach: Correlation

- How past IPROs attacked the problem
- Comparison between all aspects of an image. Obstruction determined by a correlation coefficient
- Idea was that correlation would fix all issues

Initial Approach: Correlation

Problems:

- □ What would the threshold value be?
- Small changes in the picture may not be noticed as much as change in light
- Other objects in picture, but in front of pattern would give bad correlation
- Could not get it to work

Final Answer

Comparison of the perimeter and area of multiple objects

Fix lighting issues

- Convert gray scale image to black or white image
- Threshold value used to determine whether gray value became white or black. Determined through testing
- □ Matlab function Edge used to find displacements between colors

Example

Example: Camera Images

No Obstruction

Obstruction

Example: Convert Black and White

No Obstruction

Obstruction

Example: Edge Detection

No Obstruction

Obstruction

Scaling & Running Independently

- Previous methods used cropped images
- Independently create circle in Matlab
- Compare created circle with Image
- Run a Loop comparing various circles
- No user or specific distance required prior to setup

Presentation

Computer Simulation C++ Interface created

- Controls camera Image
- Simulates operation of Garage Door
- Calls Image Processing Engine
- Event Log is created

Interface

Image Processing Engine

Project Demonstration

Conclusion

Issues Encountered

- Hardware driver compatibility
- Software integration difficulties
- Processing time of MATLAB engine
- Camera performance

Accomplishments

- C++ graphical interface effectively connected hardware to MATLAB
- MATLAB successful in pattern recognition, complex image processing
- Optics issues were resolved
- In-depth documentation of code, various issues encountered

Feasibility

Main purpose of project: to determine feasibility of system for consumer use

MATLAB algorithm too slow for practical use

High cost of CCD camera, capture card

Future of project

- End of this project, The Chamberlain Group, Inc. has software and hardware
- Skilled programmers could translate MATLAB functions to C++ code
- Have recommended optics requirements, now wait for cheaper camera technology

Acknowledgements

- Ed Laird, The Chamberlain Group, Inc.
- Ana Lukic, Faculty MATLAB imaging expert
- Ross Johnson, leader of 1st IPRO 324
- IPRO staff
- Philip Felber, Faculty Advisor