Michael Reese Campus:

An Urban Development Challenge

IPRO 359

SPRING 2011

Executive Summary

As the question of a finalized redevelopment master plan still remains for the former Michael Reese Campus, the opportunity of providing a turning wheel to this Chicago neighborhood's economic revolution continues to be offered to the students in EnPRO359. Based on the initial information provided to the group, our proposed plan would need to be unique, yet financially viable. In addition, the group would be required to integrate this new anchor with the original master plan that includes a highly-regarded continued care facility. Through careful consideration, EnPRO359 felt that the relocation of the Chicago's Children's Museum to this specific site would be that catalyst for Bronzeville's thriving future.

Over the past few months, the group has conducted market research, assessed financial options and consulted various professionals on this topic. Additionally, certain group members performed building design calculations for the project in accordance with Capstone requirements. During the progression of the semester, the choice of this specific building for this site became even clearer. Due to extensive research, the presumed relationship between the Children's Museum and Bronzeville is believed to become mutually beneficial. Expansion opportunities and specific venue independence guarantees larger crowds of visitors to the museum and future surrounding developments. Revitalization and potential community involvement with the Museum can produce a new image for the Bronzeville area. Ultimately, this addition can help further define the direction of future anchors to the overall master plan.

Purpose and Objectives

At one time the Michael Reese Campus was a thriving mix of famous architecture and medical centers. Recently planned to be the home of the 2016 Olympic Village, with the loss of the bid the land has been abandoned. EnPRO 356 was tasked with the challenge of designing a plan to redevelop the site. Building on previous work established by EnPRO's 359 and 356, we used the first winning anchor and master plan created for the site and developed a second anchor, the new home of the Chicago Children's Museum. This second anchor and updated master plan aims at meeting the needs of the surrounding neighborhood while bringing life back to the area.

Objectives Set by the Team

- Review and confirm work established by previous EnPRO's.
- Integrate the Chicago street grid into the site
- Improve any downfalls of the first anchor
- Gather any new information of the area surrounding the site
- Develop a idea for a second anchor that meets the needs of the neighborhood
- Determine site location of the second anchor
- Design the structure and amenities of the second anchor
- Create a business plan for the second anchor
- Skillfully present the revised master plan to city representatives and judges

Organization and Approach

There were very logical steps and tasks that the group took to complete the project. These tasks are outlined below. The group believed that this plan would best maximize the efforts of the members and other resources and would allow the best chance for completion.

- Review Previous IPRO Work
- Familiarize with the Project Scope
- Research Market Opportunities
- Assemble and Review Options for a Second Anchor
- Decide on Second Anchor
- Form Initial Site Plan
- Design: Architectural Details
- Design: Structural System
- Design: Mechanical System
- Develop Site
- Cost Estimate Second Anchor
- Create Business Plan
- Complete Pro Forma

Evaluation of progress and quality took place throughout each stage of the project. Adjustments, when needed, were made in the process through which the problem was solved.

Team Structure

The group decided not to choose a team-leader. All members were motivated enough to contribute to the discussion and were dedicated to putting in valuable work, a team leader was not needed.

The first portion of the semester primarily involved research, so each individual with the direction of each meetings' discussions, took it upon themselves to share ideas and collect information. By the second half of the semester, the team was ready to split into separate groups to carry out the design and business objectives. The team breakdown was as follows:

Architectural Engineering Team: Fraser, Linnea V Miller, Nathan

Architectural Design Team: Ajose, Malik O. Liu, Fangpeng McNally, William T.

Structural Design Team: Martinez, Jocsan E. Masnaga, Masnaga Medina, Omar J. Steinys, Victoria J. Strandquist, Brad

Business Team: Nava, Fabian A.

Analysis and Findings

During our market research, the group discovered many informative points that influenced our decision. Some of the key findings showed that concerns of safety and accessibility have deterred redevelopment possibilities in recent years. Currently, break-ins at nearby apartment complexes have become an issue and as a result, the retention rates of residents in these buildings are down. To repair this problem, the group would have to redesign a well protected neighborhood to attract visitors and potential residents. Research on the Indianapolis Children's Museum also proved to be very influential in our decision. From this research we were able to show that the introduction of a well-renowned tourist attraction can impart a large financial impact on the commercial sector of the surrounding area.

For the design teams, the program layout within the building would be crucial to the interaction of the outside façade work. During our visit to the existing Chicago Children's Museum, we discovered that the exhibit layout had been somewhat predetermined due to the limitations of the pre-existing Navy Pier structure. With a more open floor plan, the visitor can be fully aware of every amenity offered to them and security issues can potentially be reduced. Having the doubleskin façade was not only an aesthetically pleasing option, but the low-e coated and colored spandrel glass would minimize insulation problems common to curtain walls. Based on the guidance of PCI representatives, the choice of precast prestressed concrete would save money in the construction phase due to faster assembly and resistance to adverse climates. Also, the group discovered numerous types of precast concrete forms to choose from including those of columns and beams.

The choice to place the museum on the corner of 31st and Cottage Grove allowed easier accessibility to nearby highways and other future transit stops. Currently, the South Lakefront Transit Corridor Transit Study is seeking improvements in the connection between the downtown area and southern Chicago neighborhoods. If all goes well, the Children's Museum would not only exist as a potential stop for a future rail-line, but would become a transition point for the downtown museum campus and the Museum of Science and Industry. This would expand the downtown appeal throughout the overall span of the lakefront. The reintroduction of the street-grid would allow downtown visitors, currently the largest group of Children's Museum attendees, to instantly identify the museum due to the orientation of the main entrance to the north. In accordance with the previous EnPRO's suggestions, the green space between the continued care facility and the museum would allow visitors and residents the perfect opportunity for outside leisure activity.

The Project and Pro Forma were based on projected incomes primarily from contributions from major corporations and third party donors; the majority of which came from contributed goods and services and rental revenues which will provide more than half of our established income. Additionally our initial start up costs is based on assumed grants and donated benefits, but also has included a given debt service schedule for a 30 year lease minus our projected income for the first year. Based on the debt service schedule of the loan, we can assume to break even and that the loan including interest would be paid off in between 6-7 years. Additional income will be used for employee salaries, events, and construction repairs for possible further development of the Museum.

Conclusion and Recommendations

With certainty, the students in EnPRO359 consider the relocation of the Chicago Children's Museum as the best possible new anchor to the current master plan. The proposed design, with its colorful and lively façade, will be the perfect persuasion to draw in visitors. The chosen location off of 31st Street is ideal for traffic from outside visitors and is currently part of the focus

for future Chicago transit development. Also, the location's close proximity to other types of venues such as McCormick Place, U.S. Cellular Field, and the future 31st Street Marina offers an additional revenue source from the family demographic. The paradoxical relationship between the current continued care anchor and the museum was resolved with the intention of possible involvement of residents at this facility through intergenerational activities and volunteering. Future expansion capabilities, lower costs, and less controversy give it a competitive edge over the current alternatives.

If this proposal is accepted, the future main focus should be on creating an appropriate environment to accommodate all types of visitors to the museum. This would include adding a hotel at the site's north end, a parking garage nearby, and suitable retail area that would compliment the museum. Once a safe, child-friendly atmosphere is constructed, we believe that a high demand for residential development nearby will follow. In regards to the design of the building, the incorporation of LEED requirements will reduce the costs even more and potentially gain additional popularity with prospective sponsors.

Acknowledgements

We would like to offer our appreciation to the following people for their contribution to our research:

John Anderson	President of Illinois Institute of Technology
Ray Hodges	Managing Director at CB Richard Ellis
Julia Kirsch	Associate at Jones Lang LaSalle
Marty McIntyre	Executive Director at PCI of Illinois and Wisconsin
Chuck Gilbert	Regional Sales Manager at Spancrete Industries
Jon Black	Consultant at The Structural Group
Brenda McGruder	Coordinating Planner for the Chicago Department of Transportation

Our advisors, Dr. Mark Snyder, Dr. Anatol Longinow, and Steve Beck

Market Research

Before the team decided to focus solely on the design of the children's museum as an anchor, other anchors were heavily considered to the point of even being included as a joint anchor with the museum. The economic impact of the museum has been made clear, but here is a summary of the real-estate research that helped our decision.

Data was first obtained showing the vacancy trends of a few types of properties in South Chicago. The vacancy rate for one type of property is the ratio of total vacant over the total space in that market. A high or rising vacancy rate can indicate a low absorption or demand and vice versa. Below is a vacancy graph of the industrial property market in South Chicago:

The current vacancy rate is around 10% while absorption is near zero. This means there is a low probability of a selling an industrial property in South Chicago right now. The situation is similar for the office market:

DELIVERIES, ABSORPTION & VACANCY Historical Analysis, All Classes

Retail properties however seem to be fairing better (Top of next page). Notice the falling vacancy and positive absorption. Out of industrial, office, and retail properties, retail has the most likelihood of being sold.

I different approach was used to look at residential properties. Below is data from a consumer spending report showing population growth in the area surrounding the proposed development site:

1 Mile	3 Mile	5 Mile
32,228	212,384	647,884
32,100	209,979	642,149
31,750	198,944	611,439
0.40%	1.10%	0.90%
1.10%	5.50%	5.00%
	32,228 32,100 31,750 0.40%	32,228212,38432,100209,97931,750198,9440.40%1.10%

This capysigniest report contains research Leonsed to Arregy Bank of Texas, N.A. - 100232

Within three miles of our site, the difference between the 2015 Projection and the 2010 Estimate (212,384 – 209,979) equals to 2,405 people. Within three miles of the site, there will be an estimated 2,405 more people. Next, below is list of recently finished and potential future residential developments within three miles to help gauge what will be available to shelter future residents:

Nearby Construction					
Updated: 20-Jan-2011					
Project	Construction Cost	Units	Date Last Updated	Phase	Distance (mi)
LEXINGTON PARK CONDOMINIUMS E 22nd St & S Indiana Ave, Chicago, IL 60616	\$10,000,000	300	26-May-10	Completed	0.82
WENTWORTH APARTMENT & RETAIL BUILDING 2136 S Wentworth Ave, Chicago, IL 60616-1520	\$800,000	6	17-Dec-10	Post Bid	1.19
FRANKLIN POINT MIXED USE DEVELOPMENT Polk St At The Chicago River 60605	\$500,000,000	3,485	09-Nov-10	Pre-Planning	1.65
LAKE PARK CRESCENT MIDRISE 1060 E 41st St, Chicago, IL 60653	\$1,000,000	81	14-Jan-11	Bidding	1.70
ONE MUSEUM PARK PLACE TOWER WEST E Roosevelt Rd & S Indiana Ave, Chicago, IL 60605	\$75,000,000	523	21-Apr-10	Completed	1.76
LAKE PARK CRESCENT LOWRISE E 42nd St, Chicago, IL 60653	\$2,300,000	16	14-Jan-11	Planning	1.81
THE ROOSEVELT COLLECTION MIXED USE E Roosevelt Rd, Chicago, IL 60605	\$100,000,000	697	26-May-10	Completed	1.83
Lofts at Roosevelt Collection 150 W Roosevelt Rd, Chicago, IL 60605	\$49,074,055	342	28-Jun-10	Completed	1.93
900 SOUTH MICHIGAN CONDOMINIUMS 900 S Michigan Ave, Chicago, IL 60605-2201	\$1,000,000	7	26-May-10	Completed	1.98
THE CURVE MIXED USE DEVELOPMENT 1000 S CLARK ST, CHICAGO, IL 60605	\$5,574,500	600	20-Oct-10	Pre-Planning	2.12
Sources: PPR; Reed Construction Opta					

Counting the units each of these properties will provide, it is apparent that there will be many more residential units available than actual people to fill them. It is likely that some of these will not ever be built, but the low population growth is coupled with vacancy rates of existing residential developments. Below is some info on nearby high rise apartments Lake

Meadows and York Terrace:

York Terrace 2701 S Indiana	Ave, Chicago, I	IL 60616			
Distance Built Subclass Units	0.43 mi 1969 HighRise 331	Asking Rent/Unit Effective Rent/Unit Floors Effective Rent/Sqft	\$1,057 \$867 21 \$1.21	Status Vacancy Concessions	Stabilized 12.3% Reduced Rent
Lake Meadows 500 E 33rd St, C		516			
Distance Built Subclass Units	0.56 ml 1952 HighRise 1,869	Asking Rent/Unit Effective Rent/Unit Floors Effective Rent/Sqft	\$1,005 \$890 22 \$1.20	Status Vacancy Concessions	Stabilized 8.3% Upfront Discount

These properties are offering concessions to try and offset their vacancies. If this is in indicator of the performance of other properties in the area, it becomes clear that at least for the near future, there is an oversupply of residential units. However, the location of the proposed development may become progressively desirable in the future which may give residential development on the site an edge against other planned residential developments. As an anchor to promote development of the area however, residential, manufacturing, and industrial space would not be feasible.

A retail type property was the most economically feasible choice from a real-estate point of view and the adjacent map of nearby retail properties clearly shows the need in the area, but it was decided that a children's museum would be the better option (discussed in the children's museum impact study section of this report.)

This copyrighted report contains research loansed to Amegy Bank of Texas. N.A. - 100232 Only properties with valid lattion display on map

Research Summary: 31st Street Marina Impact

Once finished, the 31st Street Marina (760 slip), which is currently under construction, will bring an extraordinary amount of vibrancy and attraction to the 31st street corridor. As the marina is just a mere 2 blocks from the proposed museum site we expect this project to bring many benefits to the development of Michael Reese Campus. These benefits include:

- Increased traffic throughout Bronzeville region
- Increased tourism throughout Bronzeville region
- Allows for safe, inviting outdoor space within walking distance of the museum
- Creates another attraction for families on day trips
- Introduces the possibility of boat owners and their families to use the museum
- Introduces the possibility of alternative museum programming at the marina

Lake Meadows Master Plan

Stretching from 31st to 35th Streets, between Lake Shore Drive and Martin Luther King Drive, the Lake Meadows Master Plan will rejuvenate the south lakefront; helping to bridge the gap between development in the South Loop, Bronzeville, Kenwood and Hyde Park.

The Vision

- Provide a wide range of quality residential alternatives, including market rate, affordable, and senior housing options; rental and for-sale.
- Enhance retail and dining alternatives for the community.
- Provide employment opportunities for the community (Construction & Permanent).
- Provide well-integrated open spaces and improved connectivity to the Lakefront parks.

Maintaining A Vibrant Community

- Implement a well-designed, long-term plan (20+ years) that provides existing residents the opportunity to stay within the Lake Meadows community.
- Add new residential options before any existing buildings are removed.
- Remove existing buildings slowly, over many years, so residents are given plenty of time to choose an alternative residence.
- Build a wide range of residential properties; providing options for residents of varying financial means, including market rate, affordable & senior housing.
- Provide a priority for existing residents who choose to rent or purchase a new home within Lake Meadows.
- Provide new retail and dining options early and enhance the Town Center over time, as the community grows.

Community Impact

- New 'Town Center' will become a premier retail, dining and residential district.
- Variety of housing options, including market and affordable, rental and for-sale and senior housing will accommodate a wide-range of resident needs.
- Use of multiple architects will ensure diversity of architecture and improve aesthetic appeal.
- Master Plan manages density and promotes vibrancy.

- Master Plan will improve traffic flow by reconnecting the street grid to the broader community
- Additional households will spur retail and restaurant growth.

Parks & Amenities

 The new Lake Meadows Master Plan includes a variety of parks, strategically placed within the community. There will be eight parks in total, including the new 14-acre lakefront park.

Project Summary

- Residential: 7,845 Units
 - Rental: +/- 2,000 units
 - Home Ownership: +/- 5,845 units (Single Family, Townhomes, Condominium)
- Town Center Retail: +/- 500,000 SF
- Parks
 - o 8 Parks
 - o 15 acres (on-site)
 - 14 acres (Burnham Park connection)
- Job Creation
 - Construction +/- 9,200

• Permanent (Retail) +/- 1,040

South Lakefront Corridor Transit Study

Upon looking at the proposed location of the Chicago Children's Museum, the group felt the lack of adjacent transit stops to the area could be problematic. Fortunately, after some research, we were able to locate a general consensus amongst the Chicago public hoping for necessary improvements of the South Lakefront area. Searching Chicago-based websites, we came across a proposed group of professionals designated to seek prospective CTA improvements for this disconnected portion of the city. The study would consist of market analysis of the area, seeking potential building redevelopment possibilities, and pinpointing the existing transit services and land use as a reference for further transportation development. On April 13th 2011, this group organized an open house for the public to voice their opinions and provide feedback to the initial research results. The overall theme that comprised the feedback portion of the meeting appeared to be over finding a longterm solution. Considering the extent to which people became involved in this concern, there is definitely a large possibility that the plans for redevelopment will be approved by a majority of the taxpayers in the area. Most likely, we can also assume that these new improvements will be beneficial to our own site plans. If these future plans involved connecting certain south side areas of the city to the downtown area, the Michael Reese campus could exist as the transition between the downtown museum campus and the isolated Museum of Science and Industry. Overall, this transit study reinforced the prospective changes in accessibility to the area of focus that could impact visitor/customer counts.

SILVEJOE

Public transit helps create jobs, save money and connect us to opportunities with less pollution than cars.

The Little Village Environmental Justice Organizati 2656 South Millard Ave. • Chicago, IL • 60623-45 Phone: (773) 762-6991 • Fax: (773) 762-6993 publictransit@lvejo.org • www.lvejo.org

Why The Chicago Children's Museum?

Relocating the Chicago Children's Museum (CCM) from Navy Pier to the current Michael Reese Hospital site allows for the CCM to tremendously expand its footprint. With the relocation and expansion of exhibit space, the CCM will be able to make a greater positive impact on the economy of the surrounding area and state and be a key leader in the revitalization of Bronzeville.

The table below is from the *Chicago Office of Tourism 2009 Statistical Information* report. As shown, Museums and Art Exhibits rank sixth out of eleven activities enjoyed in Chicago. This beats Concert, Play, and Dance by almost double the amount of responses.

Top Activities	in Chicago
Dining	31%
Shopping	30%
Entertainment	29%
Sightseeing	21%
Museum, Art Exhibit	17%
Night Life	14%
Watch Sports	11%
Concert, Play, Dance	9%
Visit Historic Site	4%
Festival, Craft Fair	3%

Statistics of the World's Children's Museums

- 30 million children and families visit children's museums annually
- Children's museums can be found in 22 countries

- Sixty-five percent of children's museums are located in urban areas
- Thirty-five percent of children's museums are flagships in downtown revitalization projects
- Approximately 38 children's museums existed in 1975; 80 more were created between 1976 - 1990; 125 were opened since 1990; finally, 78 children's museums are in the planning phase
- Forty-nine percent run after-school programs

The data in this section is provided by the Association of Children's Museums. www.childrensmuseums.org

The Impact

Economics

A museum contributes economically to a region in various ways. It acts as a consumer of local goods and services including purchases for the daily operation of the museum (including office supplies, repairs, utilities, landscaping, food, etc.). A museum also serves as an attraction to tourists. Visitors from outside the region will spend money beyond the museum at hotels, restaurants, and local stores. A museum is also a source of new jobs for local residents. New jobs provide a direct benefit to the region, as does the added local spending from these workers. Lastly, a museum can be an incentive for new businesses and individuals searching for new locations by increasing the quality of life in the region. (Information provided from the Cincinnati Children's Museum.)

Types of economic impacts made from a children's museum are clearly explained in *The Economic Impact of Omaha Children's Museum on the City of Omaha, 2006 – 2009.* These impacts are identical for the Chicago Children's Museum. Below are the report's findings:

Direct Economic Impacts

Spending by OCM visitors has direct economic effects on their local economies by making expenditures for goods and services and by paying employee salaries. The most obvious direct expenditures are payment of wages to workers employed by OCM. In addition, expenditures by business visitors to OCM produce direct impacts on the region, affecting primarily the wholesale and retail trade industries. Direct economic impacts are color coded blue in Figure B.1.

Indirect Economic Impacts

OCM also produces indirect economic effects on the area economy. OCM generates indirect effects by increasing: (a) the number of firms drawn to a community, (b) the volume of deposits in local financial institutions and, (c) economic development. Examples of indirect economic impacts are color coded yellow on Figure B.1.

Induced Economic Impacts

Induced impacts in the region occur as the initial spending feeds back to industries in the region when workers in the area purchase additional output from local firms in a second round of spending. That is, OCM increases overall income and population, which produces another round of increased spending adding to sales, earnings and jobs for the area. Examples of induced economic impacts are color coded pink in Figure B.1.

On a national scale, museums are economic engines:

- Museums employ 400,000 Americans according to American Association Museums
- U.S. museums contribute \$21 billion to the American economy each year (2008 estimate), encouraging economic growth in their communities.
- Museums rank among the top three family vacation destinations.
- Trips including cultural & heritage activities comprise one of the most popular and significant segments of the travel industry, accounting for 23% of all domestic trips.
- Visitors to historic sites and cultural attractions, including museums, stay 53% longer and spend 36% more money than other kinds of tourists.
- Quality of life issues contribute significantly to decisions businesses make in choosing to relocate, including access to cultural resources that includes a dynamic museum community.

http://www.museum4kids.net/Economic Impact Statement-Children's-Museum Utica-NY.pdf

Relocating the CCM to our site will significantly increase the quality of life in the neighborhood.

When responding to a series of statements about local museums derived from the literature review there was strong agreement that local museums:

- o develop pride in local traditions and customs
- o play an important role in tourism
- o should have exhibitions relevant to the local area
- o help people feel a sense of belonging and involvement
- o involve people in local projects

- o promote contact and cooperation across different cultures
- o develop community and social networks
- o develop contact across different age groups.

• A new and improved CCM can increase tourism to Chicago.

"The Children's Museum plays a significant role in attracting visitors to Central Indiana. When out-of-town tourists visit family and friends, they may also visit The Children's Museum. That visit to the museum increases their local spending and can extend the length of their stay in the region. In addition, the museum's presence also assists in keeping local residents from going elsewhere for a trip. The retention of their spending generates real economic development for Central Indiana," said Jeffrey H. Patchen, president and CEO of The Children's Museum of Indianapolis.

Summary of A Children's Museum Impact			
	Economic	Community Attractiveness	
Direct involvement	Wages paid to employees	Increases sense of collective identity Builds social capital; Learning opportunities	
Audience participation	Tourists spend money at local venues	Builds community pride; Personal interaction of diverse individuals	
Philanthropic and government support	Brings new dollars to the community from area non-professional users of the facility	Matching funds provide a multiple o the initial gift or grant	

Why the Michael Reese Site for Relocation?

In 2006, the Chicago Children's Museum began their battle to relocate to Grant Park in downtown Chicago. Once word got out, many strong opposing views surfaced. These views include many valid reasons as to why the CCM should not relocate to Grant Park.

• Restrictions of Grant Park

Fourteen learning and play experiences make up the museum galleries, which are placed along a spiraling series of ramps and level floor areas.

http://www.archdaily.com/113130/chicago-children%E2%80%99s-museum-krueck-sextonarchitects/

• Future expansion

"The CCM currently ranks 31 out of the top 50 children's museums in the U.S. With more space to expand their exhibits they will be able to increase their ranking."

http://www.parents.com/fun/vacation/us-destinations/the-10-best-childrens-museums/?page=13

The current location at Navy Pier and planned location at Grant Park both limit the amount of expansion of the CCM in future years. The location at Navy Pier is limited by establishments that directly surround it and by the actually width of the pier. At Grant Park, the proposed building is planned to be constructed underground in an existing portion of a parking garage. This leaves little room to expand considering their only option for increasing size is horizontally underground.

• Bronzeville currently needs more economic improvement than Grant Park

Children's Museum's mission is to create a community where play and learning connect. The museum's primary audiences are children up through fifth grade including their families, along with school and community groups that support and influence children's growth and development. In its current location at Navy Pier, the Museum lacks meaningful connections to the outdoors and is challenged with the heavily commercial environment of what has become Illinois' most popular tourist attraction. <u>http://www.archdaily.com/113130/chicago-children%E2%80%99s-museum-krueck-sexton-architects/</u>

Possible Relocation Sites:

Here are the alternative sites Ald. Brendan Reilly (42nd) suggested for a new Children's Museum: <u>http://forum.skyscraperpage.com/showthread.php?t=149735</u>

- Northerly Island
- Logan Square
- Garfield Park Conservatory
- Pritzker Park
- Bronzeville
- Calumet Park
- State and Van Buren
- Chicago Riverwalk (South Bank at Lake Michigan)
- Michigan and Roosevelt (South Loop)
- Notebaert Nature Museum (Lincoln Park)
- Lincoln Park Zoo (adjacent to zoo)
- Old U.S. Post Office

Preliminary Proposal

BUILDING FUNCTIONALITY

The building comprises of programs that are currently existing in the Chicago Children Museum located at Navy Pier. We have, however, increased the square footage of each program by at least thrice the current Chicago Children Museum while also adding other programs that currently doesn't exist in the current one at Navy Pier. The first floor of the museum serves as an intermediate zone between the parking lot in the basement and the second to fourth floors of the museum spaces. The front half of the museum's first floor comprises of the museum store, Kraft gallery, and a double floor height open lobby with an aquarium and a welcoming lobby. Once tickets are purchased at the ticket booth, visitors have the option to either check-in their coats or simply become immersed by the exciting activities of the museum. The second half of the first floor in order to have easy access to service cores, and drop off zones. Lastly, the Great Hall and performance space is also located on the first floor in order to have easy access to service core for the assemblage and disassemblage of performing equipment and stage sets. The Great Hall is scheduled to have hourly performances that cheer up children and their parents.

The second and third floor of the Children Museum consist of fun activity spaces such as the Skyline Workshop where children and their parents participate in building the tallest miniature skyscraper while learning how structural members function in unity. The Dinosaur Expedition explores the re-creation of the real Saharan expedition where Chicago paleontologist Paul Sereno discovered a NEW type of dinosaur. Children see a life-size skeleton of suchomimus (sue-co-MY-muss), dig for bones in the excavation pit, compare skulls, teeth, and claws with a T-Rex, and learn what it would be like to be part of Paul's expedition team. Some of the other fun activities in the Children Museum include the followings: Play it Safe, Kovler Family Schooner, Science Lab, Inventing Lab, Big Backyard, Rain Forest Trail, Water Ways, Early Learning Exhibits. The activities within the Children Museum were planned out in a fluid manner due to the flexibility that the core system affords in the design. The museum has a core system that consists of escalators, elevators, classroom, restrooms and mechanical and electrical service space. Hence, having all the service oriented programs in a compacted core free up spaces in the museum for the maximization of potential children activities. The core arrangement also allows selected views to the surrounding cityscape of the museum.

Lastly, the fourth floor consist of a general indoor playground which directly flows into the gorgeously planted roof garden. The roof garden is an attempt to connect the children with the nature that rarely exists in an urban context like the city of Chicago.

Welcome to Chicago Children's Museum!

at Michael Reese Campus

Welcome to Chicago Children's Museum!

at Michael Reese Campus

Structural Design

Jocsan Martinez, Masnaga Masnaga, Omar Medina

Introduction

The structural group was assigned the task of developing a structural system that would be cost effective and suitable for a Children's Museum. To do so, the group first investigated the types of systems currently used in construction and chose the most appropriate system based on subject matter expert advice. Through a combination of hand-calculations and computer applications like SAP 2000 and AutoCAD, the structural group was able to create an overall structural layout that best fits this type of building.

Structural System

The system chosen was appropriated based on subject matter expert advice. Representatives from the Precast/Prestressed Concrete Institute (PCI) advised the group on the reduction in costs that come with designing a building using precast/prestressed members and its applicability to the building use. Some of the benefits with using precast/prestressed concrete are: a reduction in project time by one third as compared with regular, reinforced concrete which attributes to about 1 month of construction time saved based on the museum building size; monetary savings of about one third as compared with regular, reinforced concrete since precast/prestressed concrete can be assembled in any weather, quality control is guaranteed by the precaster, and connections are simple and fast to affix. Furthermore, the use of precast/prestressed members for the museum is superior to using steel since steel requires additional fire-proofing costs and is not cost effective for the elevated spans required by the building type. Refer to Appendix S-2 for a list of Subject Matter Experts and their contact information.

Using a precast/prestressed handbook provided by the PCI representatives, the structural group designated the member types and sizes for the museum. Additionally a space frame was made to provide a visual/conceptual view of the structural system. Refer to Appendix S-1 for space frame details and S-3 for Precast/prestressed concrete member calculations.

Shear Wall

In order to simplify the design of the space frame for the museum, it was decided that shear walls would be required to handle all lateral loads induced by the wind. The wind load on the building was based on the American Society of Civil Engineers (ASCE-7) design standards. Refer to Appendix S-5 for details of the wind load calculation. As a preliminary design, two shear walls were appropriated for the building and found adequate to handle all induced lateral loads. Refer to Appendix S-4 for a detail design of the Shear Walls.

Roof Design

Traditionally, roof design gravity loads are significantly lower than the loads applied on all building floors. However, for the purposes of the museum it was decided that the building roof would be a designated green roof and accessible to the museum patrons. Thus, the roof was designed with the same elevated gravity loads acting on all floor spaces. Refer to Appendix S-5 for details on roof design loads standards.

Footings/Retaining walls

The footings for the building were designed using regular, reinforced concrete. The use of precast/prestressed concrete is not applicable to footings since they are susceptible to corrosion caused by direct contact to soil/water. Refer to Appendix S-6 for details on the footings design calculations. Similarly the retaining walls were also designed using regular, reinforced concrete. Refer to Appendix S-7 for details on the retaining wall design calculations.

Serviceability

The serviceability requirements for the museum were deemed adequate based on calculations from the PCI and ACI Design Standards. Refer to Appendix S-8 for the American Concrete Institute (ACI) maximum deflection standards and Serviceability design calculations.

Transportation/Parking Layout

The location of the parking for the museum was decided based upon knowledge from the previous IPRO projects. Based on the master plan for the site, a need for a high density, urban feel is required. Thus the parking for the facility must not take additional land use than the appropriated square footage for the museum. In order to make certain of this, the parking was designed beneath the building. Based on the Chicago Municipal code, a required amount of parking spaces was determined and satisfied by the parking layout. For structural purposes, the column grid was designed to fit the parking layout which would enable the use of appropriate clear spans as dictated by the architectural group. Refer to Appendix S-9 for details on the parking layout design.

Facade Support

For purposes of aesthetics and interior climate control, the Architecture group developed a design for a double skin façade sorrounding the North, West, and South portions of the building. It was then the task of the structural group to develop the supports of the façade using steel composite members. Refer to appendix S-10 for details on the façade support calculations.

Conclusion and Cost Estimate

The group began designing portions of the system to develop a cost estimate through R.S. Means and with the assistance of a PCI representative. The final cost for the structural estimate came out to be \$22 million. While this value is high, the estimation required some approximation due to limitations of the program. For more details and the final cost estimate spreadsheet, refer to Appendix S-11.

HVAC Design

Nathan Miller and Linnea Fraser

Introduction

The architectural engineering group was assigned the task of finding a cost effective and efficient HVAC system for the Children's Museum. Due to strict requirements by ASHRAE for this type of building, the group had to be careful not to undervalue the effect of this system on occupants overall health and well-being. Through two different resources, the group felt they would be able to provide a reasonable estimate for the largest and most energy consuming mechanical units in the proposed Children's Museum.

HVAC Load Explorer program

For some of the initial calculations, the architectural engineering group employed the help of HVAC Load Explorer offered in the Wiley Student Companion Site of McQuiston's 6th edition of *Heating, Ventilating, Air Conditioning Analysis and Design.* This program allows the user to input data for various sources and convective mediums of heat to receive a total cooling and heating load output for the overall building through the heat balance method. Once the architects and structural engineers provided the group with details on the building, the group researched the recommended values in the ASHRAE's 2009 Handbook of Fundamentals. The values were compared the Chicago Building Code to gather the most restrictive data for this particular building.

In the program, each zone is comprised of the entire floor area for each story of the building. Typically, the floor would be broken up into various zones and rooms, but considering the current lack of details in interior spaces, we decided to only account for the shell of the building. The heat sources that were considered included the lighting, the occupants, the radiation and convective heat transfer from the exterior walls and the floors and roof. Ventilation and

infiltration rates were also taken into account for the loads. Based on ASHRAE Standard 62.1-2007 values for a children's museum, we were able to provide default occupancies per floor to be 40 people/1000 sq. ft. with an expected outdoor ventilation rate of 7.5 cfm/person. While the exterior wall of the building was divided based on directional orientation, three of the four walls contained the same wall construction, a spandrel glass curtain wall with 2 in. insulation. The shear wall on the east end was comprised of a 12 in. precast concrete slab. The roof was assumed to be a concrete slab with insulation and each floor was a metal decking and raised floor. The properties of these wall constructions were found in ASHRAE's *2009 Handbook of Fundamentals* and in the 6th edition of *Principles of Heating, Ventilation, and Air Conditioning* tables found in Appendix H-2. The final loads and air supply rate were found and are provided in Appendix H-3.

RTS Calculation Spreadsheet

The heating and cooling requirements of the museum were calculated with the help of a Radiant Time Series spreadsheet included with *Principals of Heating, Ventilation, and Air Conditioning*, 6th edition, based on the 2009 ASHRAE Handbook-Fundamentals. Each major factor of internal heat gains and building transmission is represented by separate sheets with tabs named accordingly. Since the layout of the building was constantly changing, calculations were made for the entire building with heat transmission calculations being made for the entire building shell.

Heat transmission through the floor was calculated manually and added to the final tabulation. The entire floor was assumed to have an R value of 15 which was derived from Energy Star's Recommended R-Values. The specific details on values found to use in the spreadsheet are provided in Appendix H-1. With more opportunities to provide relevant details from the building design, the architectural group felt that the RTS spreadsheet displayed a more realistic capacity for the HVAC equipment.

HVAC Equipment Design

The chiller, boiler, and air handling unit were chosen in accordance to the cooling or heating load requirements of museum. The basic calculations are provided in Appendix H-4. A table of recommended fan speeds in fpm based on air rates in cfm was used to assign the main duct fan speed. The main duct air rate was divided by the fan speed to obtain the face area of the main duct. The terminal branch duct face areas were also obtained based on recommended values. A table of average weight per length of aluminum ductwork was used to obtain the weight per length of ductwork based on the average face area of the main duct and terminal branch ducts. Looking at the plans of the museum, a rough network of ductwork was drawn with consideration for all rooms and program areas. The total length of ductwork was measured and multiplied by the previously obtained weight/length ratio of ductwork to obtain the total weight of ductwork. The weight of aluminum could then be directly counted in R. S. Means Costworks. Costworks includes the cost of fittings, joints, supports, and allowance for flexible connections with the weight of ductwork. The insulation cost was based on the surface area of the ductwork and taken from the average face area of the duct assuming a square dimension. The amount of supply and return grilles was taken from average air throw distance based on supply air rates.

Conclusion and Cost Estimate

Through careful consideration and project comparisons the architectural engineering group was able to calculate out some of the larger units of this mechanical system and even some of the duct work within relation to the units. The calculations were computer generated due to extensive methods that required numerous values from the ASHRAE Handbook based on this specific project design. Detailed research was conducted to generate the best possible units that would work efficiently and require little maintenance over a large period of time. The units and ductwork were added to the cost estimate in Costworks to give a final cost estimate of about \$4 million. A detailed item report of the cost estimation is provided in Appendix H-5.

Square Foot Estimate

Nathan Miller and Linnea Fraser

Cost Summary

A square foot estimate was found using the data in R.S. Means Costworks by proportionally adding the different components to their respective building type. While this method is unconventional in the construction field, the limitations on building types in the program made it impractical to generalize this particular building. The unique square footage and building requirements applied to multiple building types including a restaurant, elementary school, community center, an auditorium and a retail store. A seventy-five percent increase in the median unit cost was applied to account for multiple story construction. The percentage of area per building type was determined by a schematic layout provided by the architects in addition to subjective decisions by the architectural engineering group. The overall final project cost came out to be \$59,408,869.32 with the included cost of an underground enclosed parking garage square foot estimate of \$8,479,500. While this value is considerable close to similar estimates of Children's Museums, the actual value will vary due to the addition of internal costs. Please see Appendix C for more details.

Structural Appendix Outline

- S-1: Space Frame
- S-2: Subject Matter Expert Contact Info
- S-3: Prestressed/Precast Concrete Member Calculations
- S-4: Shear Wall Design Calculation
- S-5: Wind Load Design Calculation
- S-6: Footing Design
- S-7: Retaining Wall Design
- S-8: ACI 318-08 (Serviceability)
- S-9: Parking Layout from AutoCAD
- S-10: R.S. Means cost estimate spreadsheet

HVAC Appendix Outline

- H-1: ASHRAE tables
- H-2: RTS Spreadsheet
- H-3: HVAC Load Explorer Calculations
- H-5: HVAC Equipment Calculations
- H-6: R.S. Means cost estimate spreadsheet

Square Foot Cost Outline

- C-1: Underground Parking Garage Cost
- C-2: Overall Building Cost Spreadsheet

APPENDIX: STRUCTURAL (S-1)

Space Frame

APPENDIX: STRUCTURAL (S-2)

SUBJECT MATTER EXPERT CONTACT INFORMATION

Proj: SME Contact INFO Page: / Date: 4/25/2011 ILLINOIS INSTITUTE Cals by: Jocan Marthez Checked by:
Marty McIntyre Executive Director, Recart/Prestnerred Concrete Institute 708-386-3715 Martymci@pci-iw.org
Chuck Gilbert
Regional Saler Manager, SPANCRETE, Stuctural & Architectural Precart 847 - 879 - 2130
cgilbert @ sponcrete.com
Join Block P.E. S.E.
Convitant, The Structural Group
jblock @ thertmictural group.com

APPENDIX: STRUCTURAL (S-3)

PRESTRESSED/PRECAST CONCRETE MEMBER CALCULATIONS

Masnaga	IPRO	359	April 17, 2010		
Prestressed Concrete					
All members are designed based on building code requirement for structural concrete (ACI 318 - 08), chapter 18.					
<u>General</u> The code specifies strength and serviceability requirements for all concrete members, prestressed or nonprestressed. All load stages that may be critical during the life of the structure, beginning with the transfer of the prestressing force to the member.					
ACI 318-08	11 :		issues that must be		
18.2.3 stress 18.13 requir 18.2.4 Compe Const 18.2.6 Sectio	ements for atibility ruction .	or post of deformation	tensioned anchorages tion with adjoining		
	, ,				

Design assumptions:

- LL= 125 psf

"ONTRAD"

- DL is calculated based on the weight of structural members and partitions (assumed 25psf) DL= 100 pst

- WL= 30,5 psf (HSCE7)

- For computation of strength (18.3.1), the basic assumption given for nonprestressed members in 10.2 apply, except that 10.2.4 applies only to nonprestressed reinforcement.
- The "elastic theory" (referring to the linear variation of stress with strain) is used.
- 1/2-in- diameter regular strands (fpu=270000psi) are used for all Members.

- fse is assumed to be 170 ksi.

2/ Double Tee (DT) Masnaga Preliminary design 30' X56' span 7 try Double tee 12 LD T32 No topping Service load : 125 16/42 188-s strand pattern - 12' fc = 5000psi fpy = 270000psi 431 Aps = 18 (0,153) = 2,754 in2 Try As = 0 = D non composite section dp = 32 - 1/5 = 32 - 10 = 22" assume for = 170 hsi Since the 7 0,5 fpu, ACI 308-05 may be used Cwpy = C Aps fu + d (w-wi)) $W = \frac{Asfy}{bdf} = 0 \quad W' = 0$ $C_{up} = C \frac{A_{ps} + f_{pu}}{b \, d_{s} + f_{s}} = 1.06 \frac{(2.754)(276)}{(h_{u})(272)(27)} = 0.0498$ From design aid ! tps= 268 hei a= <u>Aystp: 1Asty</u> = 2,75(268) - 1,2 in Mn = Aps fps (Jp - 1/2) + As fy(d - 1/2) = (2.75) (268) (22-12/2) = 15771.8 k. in = 1314 k. A \$ Mn = 0.9 (1314) = 1183 k. ++

"OVIEVE

3/ Masnaga Check Ø $C = \frac{9}{11} = \frac{1.2}{0.8} = 1.5$ $\ell t = 0.003 \left(\frac{d-c}{c}\right) = 0.003 \left(\frac{30.5-1.5}{1.5}\right) = 0.05870005$ OK tension control (\$=0,9) Required strength LL= 125 pst DL = [(690/144) (56) (150 Pcf)] / (10x56) = 71.88 psf ~ 75psf Partition = 25 psf total DL= 100 psf Qu = 125(12) + 100 (12) = 2700 16/44 My = (2700) (56) = 1058400 16. Ft = 1058.4 k. ft < OMn OK 12' 6' + 73" + Ι2" 32″ **** 43/4"

12 LDT 32 No topping 188 - s

But, There is 2" thick slab that need to be added on top off the double-tre. A bigger size double tee is needed.

DAMPAD'

"ONPAD"

41

"ONTRAD"

5/

"ONIMA

$$M_{a strange} = \frac{8/}{0.85 \text{ fb}_{b} + 8.4 \text{ y}_{b}} = \frac{(3.346)(2(2) + (4))(40)}{0.85 (6)(12)} = 22''$$

$$M_{n} = \frac{1}{10.85 \text{ fb}_{b}} = \frac{22''}{100}$$

$$M_{n} = \frac{1}{10.85 \text{ fb}_{b}} (4p - \frac{9}{2}) + \frac{1}{10.85 (2)(12)} = 22/2 \text{ fb}_{b}} = 22''$$

$$M_{n} = \frac{1}{10.84 \text{ fb}_{b}} (4p - \frac{9}{2}) + \frac{1}{10.85 (2)(140 - \frac{22}{2})} = 2312 + 706 \pm 3012 \text{ fb}_{b} + 41 \text{ (bo)} (416 - \frac{22}{2}) = 2312 + 706 \pm 3012 \text{ fb}_{b} + 41 \text{ (bo)} (416 - \frac{22}{2}) = 2312 + 706 \pm 3012 \text{ fb}_{b} + 41 \text{ (bo)} (416 - \frac{22}{2}) = 2312 + 706 \pm 3012 \text{ fb}_{b} + 41 \text{ (bo)} (416 - \frac{22}{2}) = 2312 + 706 \pm 3012 \text{ fb}_{b} + 41 \text{ (bo)} (416 - \frac{22}{2}) = 2312 + 706 \pm 3012 \text{ fb}_{b} + 41 \text{ (bo)} (416 - \frac{22}{2}) = 2312 + 706 \pm 3012 \text{ fb}_{b} + 41 \text{ (bo)} (416 - \frac{22}{2}) = 2312 \text{ fb}_{b} + 248 - 444 \text{ fb}_{b} + 2312 \text{ fb}_{b} + 248 - 444 \text{ fb}_{b} + 2312 \text{ fb}_{b} + 248 - 4492 \text{ fb}_{b} + 24313 \text{ fb}_{b} + 2432 \text{ fb}_{b} +$$

"CIVILVEL

$$\begin{array}{l} Maxing 0 \\ w=0 \quad \omega = 0 \\ Cwp = 1.06 \quad \frac{(6.732)(270)}{(24)(23,13)(5)} = 0.351 \\ fps = 254 \ ksi \\ a = \frac{(6.732)(250)}{0.85(5)(20)} = 16.76^{\prime\prime} \\ M_n = Aps \quad fps (dp - a/2) \\ = (6.732)(250)(43.15 - 16.76/2) = 41952 \ \lambda.44 \\ \frac{d}{C} \\ c = \frac{11.76}{0.8} = 20.95^{\prime\prime} \\ E+ = 0.003 (\frac{d-c}{C}) = \frac{416 - 20.95}{20.95} = 0.0036 \quad 20.005 \\ \phi = 0.48 + 83(0.0036) = 0.78 \\ dM_n = 0.78 (4952) = 3863 \ k.47 \ 2589 \ k.44 \ ot. \end{array}$$

T

9/

"ANPAD"

Masnaga	column design				
Mxu, Myu, and Pu are analyzed conservatively by assuming that					
the building are not shewed, 'It means					
36'equally in x direction and 38'equ	vally in y direction.				
Myu = 0 > Since Prestressed and precast members are used.					
$M_{YY} = 0$					
17.92 MA X 34 ++ = 609.28 kips					
Pu= 4 × 609.28 = 2437. Lips					
(riteria: 1. Concrete f'c= cocopsi, normal weight 2. Reinforcement ty = 60000psi 3. Curve shown for full development of reinforcement 4. Horizontal portion of curve is the maximum for tied column = 0.8 \$\overline{P_0}\$ 5. All strands assumed 1/2" diameter, fpy = 270 ksi \$\overline{P_0}\$ (kip)_{\overline{A}}\$					
$ \begin{array}{c} 21000 \\ 2900 \\ 380 \\ 3200 \\ 3200 \\ 3200 \\ 3200 \\ 3200 \\ 3200 \\ 2400 \\ 2400 \\ 2400 \\ 2400 \\ 2400 \\ 2200 \\ 15" \\ 2400 \\ 2200 \\ 15" \\ 1400 \\ 1400 \\ 1400 \\ 1200 \\ 1200 \\ $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				
Use 32" × 32" with 20# 11 bors for co	lumns				

"ONAMA

10/

APPENDIX: STRUCTURAL (S-4)

SHEAR WALL DESIGN CALCULATIONS

Proj: SHEAR WALL DESIGN Page: 2/ Date: 1/20/2011 ILLINOIS INSTITUTE Cals by: Journ Marthez Checked by: Determining Center of Rigidity : $\overline{X} = \frac{300(300)}{300} = 300 \text{ ft} \text{ from left}$ $\overline{y} = \frac{72'(172)}{72} = 172'\text{ ft} \text{ from bottom}$ torrional Moment = 585 (eccentricity) = 585 (150') = 87750 Kipift Accidental Eccentricity = 0.05 (300) = 15.0 ft Mt (ACCIDENTAL) = 15 (585) = 8775 Kip.ft Me(total) = 87750 + 8775 = 96525 Kip .ft Determining the polar moment of Stiffnerr of the Shear Wall group: Ip = Ixx + Iyy where Inx = Ely2 of eart - wert walls = 72(222) = 34848 ft3 Iyy = Elx2 of North-South Walls = 300 (150 - 300) = 6750,000 ft3 Ip = 34848 + 6750000 = 6784848 At3 Shear in North - South Walls = $\frac{V_{y}l}{Gl} + \frac{M_{T}\chi l}{I_{P}} = \frac{585(300)}{300} + \frac{96525(150)(300)}{6784848}$ Shear in N-S Wall : 1225, Z Kips Shear in East - Wert Walls = $\frac{M_{y}yl}{L_{P}} = \frac{96525(+2)(22)}{6784848}$ Shear in E-W Wall: 22.5 Kips Design for lateral load in Earthourd Direction - Determination of Shear @ each wall W = PH = 1.95 kir/+Total Latural Load = 1.95 (200) = 585 Kips

Date: 4/20/2011 ILLINOIS INSTITUTE OF TECHNOLOGY SHEAR WALL DESIGN Page: 3/ Proj: Cals by: Jown Marthez Checked by: Bared on the attained Shears. The appropriated dimensions of the Shear Walls are as follows. TIII \$ 32" 300' k 72'-+ KX The height of both Shear wells extend from the foundation to the top of the fourth flass of the moreon. That their height is 76ft. Howing spoken with a rubject matter expert regarding the applied shear on the walls if the dimensions appropriated to them he determined that the walls would suffice all lateral load requirements oning conforcement only necerrary for thermal expansion. It is important to note that the Shear walls use designed as nonload bearing menberr & ruch become rimple in derign. Furthermore, since there walls will be constructed of precost/prestructived concrete it is receiving to divide each wall into rections which will make transportation of the nall r viable by the general contractor. A rlandourd block nize nor recommended C 12At X 40ft.

4

neglect flexural stiffness. Since walls are the same thickness and material, distribute in proportion to length. Total lateral load, $V_v = 0.20 \times 200 = 40$ kip

Determine center of rigidity:

$$\overline{X} = \frac{40(75) + 30(140) + 40(180)}{40 + 30 + 40} = 130.9$$
 ft from left

Y = center of building, since walls D and E are placed symmetrically about the center of the building in the north-south direction.

Torsional moment, $M_T = 40(30.9) = 1236$ kip-ft Section 12.8.4.2 of ASCE 7-05 requires that for diaphragms that are not flexible (therefore rigid), an accidental torsion be added to this. The eccentricity to be used for the accidental torsion is 5% of the building dimension perpendicular to the direction of the applied forces.

Then:

Accidental eccentricity = (0.05)(200) = 10 ft $M_{Taccidental} = (10)(40) = 400$ kip-ft = 1236 + 400 = 1636 kip-ft M_{T total}

EXAMPLE 4.5.7.1 Design of Unsymmetrical Shear Walls (cont.)

Determine the polar moment of stiffness of the shear wall group about the center of rigidity:

Since the height-to-length ratios for the east-west walls are greater than 0.3, the polar moment of inertia should more correctly consider the flexural stiffness of the east-west walls. This is negligible in this example and has been omitted.

$$\begin{split} I_p &= I_{xx} + I_{yy} \\ I_{xx} &= \Sigma \ell y^2 \text{ of east-west walls} = 2(15)(15)^2 = 6750 \text{ ft}^3 \\ I_{yy} &= \Sigma \ell x^2 \text{ of north-south walls} = 40(130.9 - 75)^2 + 30(140 - 130.9)^2 + 40(180 - 130.9)^2 = 223,909 \text{ ft}^3 \\ I_p &= 6750 + 223,909 = 230,659 \text{ ft}^3 \end{split}$$

Shear in north-south walls = $\frac{V_y \ell}{\sum \ell} + \frac{M_T x \ell}{I_p}$

Wall A =
$$\frac{40(40)}{110} + \frac{1636(130.9 - 75)(40)}{230,659}$$
 = 14.5 + 15.9 = 30.4 kip

Wall B =
$$\frac{40(30)}{110} + \frac{1636(130.9 - 140)(30)}{230,659} = 10.9 - 1.9 = 9.0$$
 kip

Wall C =
$$\frac{40(40)}{110} + \frac{1636(130.9 - 180)(40)}{230,659} = 14.5 - 13.9 = 0.6$$
 kip

Shear in east-west walls =
$$\frac{M_T y \ell}{l_p} = \frac{1636(15)(15)}{230,659} = 1.21$$
 kip

$$F_{y} = \frac{V_{y}K_{y}}{\sum K_{y}} + \frac{e_{x}V_{y}(x)K_{y}}{\sum K_{y}(x^{2}) + \sum K_{x}(y^{2})}$$
(Eq. 4-47)

Force in the X direction is distributed to a given wall at a given level due to an applied force in the Y direction at that level:

$$F_{x} = \frac{e_{x}V_{y}(y)K_{x}}{\sum K_{y}(x^{2}) + \sum K_{x}(y^{2})}$$
(Eq. 4-48)

where:

$$V_y$$
 = lateral force at the level being considered
 K_x, K_y = rigidity in the X and Y directions, respec-
tively, of the wall under consideration

- ΣK_x , ΣK_y = summation of rigidities of all walls at the level in the X and Y directions, respectively
- x = distance of the wall from the center of stiffness in the X direction
- y = distance of the wall from the center of stiffness in the Y direction
- e_x = distance between the center of the load in the Y direction and the center of stiffness measured in the X direction

For most single-story buildings subjected to wind loads, a simplified, approximate analysis is commonly used to determine torsion in asymmetrically located shear walls. This type of analysis assumes a unit thickness for all shear walls, as described in Example 4.5.7.1.

4.5.8 Coupled Shear Walls

Two individual shear walls separated by large openings may be connected with structural components that can resist axial and/or flexural loads. The combined stiffness of the two coupled shear walls is greater than the sum of their uncoupled stiffnesses. Coupling shear walls can reduce the lateral deflection (drift) in a building and reduce the magnitude of the moments for which a shear wall must be designed.

Figure 4.5.4 shows two examples of coupled shear walls. The effect of coupling is to increase the stiffness by transfer of shear and moment through the coupling beam. The wall curvatures are altered from that of a cantilever because of the frame action that is developed. Figure 4.5.5 shows how the deflected shapes differ in response to lateral loads.

Several approaches may be used to analyze the response of coupled shear walls. A simple approach is to ignore the coupling effect by considering the walls as independent cantilevers. This method results in a conservative wall design.

APPENDIX: STRUCTURAL (S-5)

WIND LOAD DESIGN CALCULATION

Proj: Wind Load Calculation Page: 2/ Date: 4/20/11 ILLINOIS INSTITUTE Cals by: Jocan Mouthner Checked by: Baric Wind Speed => V is determined by ASCE figure 6-1 for CHICAGO region V = 90 mph bared on 3 record gort speeds ther ! $q_2 = 0.00256(0.87)(1.0)(90^2)(1.15) \Rightarrow q_2 = 20.75(\frac{14}{f_1^2})$ Fort Effect Factor 6 per exponent area "B" in derignated ar => 6= 0.8 for wedward wall => Cp = 0,8 By table 6-3 in ASCE Leenard well => Cp = -0.5 Side walls $\Rightarrow C_p = -0.7$ from table 6-4 => for partially enclored bldg. 5 Cpi = -0.30 thur: p=q=GCp - qnGCpi - qnGCpiw - qnGCpsw = 20.75 (.8) (.8) - 20.75 (.8) (-13) - 20.75 (.8) (-15) - 20.75 (.8) (0.7) P = 38.18 14/4+2 Now appropriating forctor for roof uplift force: By ASCE figure 6-3 for Surface Area of Roof = 300'x 300' = 90000 5.Q. => reduction factor = 0.8 thor p = 38.18 (.8) => "p = 30.5 15/642 Wind load

APPENDIX: STRUCTURAL (S-6)

FOOTING DESIGN

Proj: FOOTING LESIGN Page: 2/ Date: 1/2/2011
Cals by: Jocom Martnez Phage: 2/ Date: 1/2014
Checked by:
Calculation of Put on hoting by typical column:
Put = Put (12) + Put (135)
Put = 2: Wat = 8107 + 171360 + 52812 = 232279 165
Put = 252,000 16r
Put = 1.2 (232279) + 1.6 (252,000)
Put = 682 klpr
By Continuor footing method: Anumptons: No movement acting at column
bare take loberal load (ceter to Shear Wall berga)
Diagram of footing:
Put =
$$\frac{1}{2626}$$

Put = $\frac{1}{262}$ $\frac{1}{2627}$ $\frac{1}{2647}$ $\frac{1}{2647}$

Proj: Footmas DETIGN
Cals by: Joon Machinez
Page: 3/ Date: 4/2/2011
LILINOS DETIGN
EP = Som of all Machinez
EP = som of all moments about & of footing (J+)
= 682(150) + 682(120) + 682(84) + 682(12)
- 652(24) - 622(60) - 622(96) - 692(122.25) - 682(150)
= 26087 16.44)
e = GM/GP = 21087/6820 = 3.825 ft (h the right of
$$E$$
)
A = $\frac{206'}{6} = 51' > E$ ox (No Opliff)
 $\frac{1}{46} = \frac{206'}{6} = 51' > E$ ox (No Opliff)
EVE = $\frac{1}{266'} = \frac{1}{16} = \frac{1$

APPENDIX: STRUCTURAL (S-7)

RETAINING WALL DESIGN

	STITUTE TECHNOLOG	19/2011 ILLINOIS IN OF Transformed Law	Page: ² / Date: Checked by:	Tocran Marthez	-
$\frac{1}{2} (0.3) (40) (14^{2}) \qquad \frac{1}{3} (14) \\ \frac{1}{2} (14) (14) (14) (14) (14) (14) (14) (14)$	~		DIST. FROM TOE	VALUE (16/44)	FORCE
$26 46 \frac{14}{44} + \frac{1667}{4} \frac{44}{467} + \frac{1}{2350} = \frac{26}{46} \frac{16}{44} + \frac{1}{45} + \frac{1}{4} + \frac{1}{4$			1 H	1/2 Ka 8/3 H2	Pa
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1/14)	$\frac{1}{2}(0.3)(90)(14^2)$	
$\begin{array}{rcl} 0.3(125)(14) & \frac{1}{2}(14) \\ 525 & \frac{11}{2}/44 & 7.0 & f4 \\ F_{5} & (conflever dirf.) F_{5} & \frac{457}{2}+1'+1'-3'' \\ & \left[(2^{2}-q^{2}-(1'+1'2^{2})^{2}\right] 125 \\ & 212.5 & \frac{11}{2}/44 & 5.5 & f4 \\ F_{2} & \left(1^{2}-q^{2}-(1'+1'2^{2})^{2}\right) \\ & 6.5 & (90)(12^{2}) \\ & 702.0 & \frac{11}{2}/44 & 5.5 & f4 \\ F_{2} & \left(1^{2}-2^{2}+1^{2}\right) Y_{c}(12^{2}) & 1'-3''+1'/_{2} \\ & 4050 & \frac{11}{2}/44 & 1.35 & f4 \\ F_{4} & 1.35 & f4 \\ F_{4} & 1.35 & f4 \\ F_{5} & \left(8^{2}-q^{2}\right) Y_{c}(2^{2}) & 8'-q^{2}/_{2} \\ & 2625 & \frac{11}{2}/f_{4} & 4335 & f4 \\ F_{4} & 1.355 & f4 \\ F_{5} & \left(8^{2}-q^{2}\right) Y_{c}(2^{2}) & 8'-q^{2}/_{2} \\ & 2625 & \frac{11}{2}/f_{4} & 4335 & f4 \\ F_{5} & 114844, 0 \\ \hline & GF_{4} & 5.5 & 148626 & \frac{114844}{11} \\ F_{5} & 5ubmode & = \frac{M}{2} \frac{GF_{4}}{F_{4}} & = \frac{0.6}{2646} (\frac{14508}{2}) \\ & = 2.745 > 1.5 \\ \hline \end{array}$	16.4/4)	12350	4,667 ft	2646 16/ft	
$525 \frac{11}{44}$ From Figure 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			12 H	Kaps H	Ps
Fs (contilever dirt.) Fs $\frac{45^{5}}{2} + 1^{2} + 1^{2} = 3^{11}$ $[g^{1}-g^{n}-(1^{2}+1^{2})]_{125}$ $g_{12.5} = 1^{12}/44$ S.5 ft $4468.25 = 10^{12}$ $g_{12.5} = 1^{12}/44$ S.5 ft $4468.25 = 10^{12}$ $g_{12.5} = 1^{12}/44$ S.5 ft 10^{12} $g_{12.5} = 1^{12}/44$ S.5 ft $10^{12}/44$ $g_{12.5} = 1^{12}/44$ S.5 ft $10^{12}/44$ S.5 ft $10^{12}/44$ S.5 ft $10^{12}/44$ S.5 ft $10^{12}/44$ S.5			$\frac{1}{2}(14)$	0.3(125)(14)	
$\begin{bmatrix} 9'-9^{n} - (1'+1'-3') \end{bmatrix}_{125}$ $g_{12.5} \frac{1}{1'}/44 \qquad 5.5 ft \qquad 4468.75 \frac{1}{1}$ $F_{3} 6.5 \; \frac{1}{7_{c}} \; (12') \qquad 5.5 ft \qquad 38610 \frac{1}{1}$ $F_{2} (1'-3''+1') \; \frac{1}{7_{c}} \; (12') \qquad 1'-3''+1'/_{2}$ $4050 \frac{1}{7_{c}}/44 \qquad 1.75 \; 44 \qquad 7087.5 \frac{1}{7_{c}}$ $F_{1} (8'-9'') \; \frac{1}{7_{c}} \; (2') \qquad 8'-9''/_{2}$ $2625 \frac{1}{7_{c}}/44 \qquad \frac{1}{7_{c}} \; \frac$	··ft/ft	3675 1	7.0 ft	525 ¹⁶ /44	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			$\frac{65}{2}$ + 1 + 1 - 3	(contilever dirt.) fs	Fs
$6.5 (90)(12') = 7020 \frac{16}{14} + 5.5 ft = 38610 \frac{16}{14} = 5.5 ft = 38610 \frac{16}{14} = 5.5 ft = 38610 \frac{16}{14} = 1.35 ft = 7087.5 \frac{16}{14} = 1.35 ft = 1.1484.0 \frac{11484.0}{14} = 1.1484.0 \frac{11484.0}{14} = 1.1484.0 \frac{16}{14} = 1.1484.0 $	16.ft/ft	4468,75	2'2 tt	0	
$\begin{array}{rcl} & 7020 & \frac{16}{14} & 5.5 \ ft & 38610 & \frac{16}{14} \\ F_2 & \left(\frac{14}{1+2} + 1\right) Y_c \left(\frac{12}{12}\right) & \frac{14}{3} + \frac{14}{2} \\ & 4050 & \frac{16}{14} & \frac{1}{1+3} + \frac{14}{2} \\ & 4050 & \frac{16}{14} & \frac{1}{1+3} + \frac{14}{2} \\ F_1 & \left(\frac{8^{1}-9^{2}}{2625}\right) Y_c \left(\frac{2}{2}\right) & \frac{8^{1}-9^{2}}{2} \\ & 2625 & \frac{16}{14} + \frac{4}{3355} \ ft & 11484.0 \\ \end{array}$ $\begin{array}{rcl} & GF_1 & = \ sum \ of \ Verhical \ bircer & = \ F_1 + \ F_2 + \ F_3 + \ F_5 & = \ 14508 & \frac{16}{14} \\ GM_{\lambda} & = \ run \ of \ all \ momentr \ \left(\frac{9}{2}+\right] & = \ -\ 45626 & \frac{16}{16} \\ \hline 16.64 / \ ft \\ \end{array}$ $\begin{array}{rcl} & F_1 S_{SUDMOS} & = \ \frac{M}{P_a} + P_s & = \ \frac{0.6 \left(\frac{14508}{2646}\right)}{2646 + 525} & = \ 2.745 \ > \ 1.5 \end{array}$				6,5 Yr (12')	F3
$F_{2} = (1'-2''+1') Y_{c}(12') \qquad 1'-3''+1'/_{2}$ $\frac{1}{4050} \frac{1^{b}}{44} \qquad 1.35 44 \qquad 7087.5$ $F_{1} = (8'-q'') Y_{c}(2') \qquad 8'-q''/_{2}$ $\frac{2625}{1^{b}}\frac{1^{b}}{44} \qquad 4.375 64 \qquad 11484.0$ $GF_{4} = sum of Vertical Parcer = F_{1} + F_{2} + F_{3} = 14508 \qquad 1^{b}/_{4}4$ $GM_{4} = sum of all momentrs [3+] = -4562.6 \qquad 1^{b}\frac{1^{b}}{44} + 14$ $F_{1}S_{SUDMS} = \frac{416F_{3}}{P_{a} + P_{s}} = \frac{0.6(14508)}{2646 + 525} = 2.745 > 1.5$	1.11/				
$\frac{4050 \ {}^{16}/f4}{P050 \ {}^{16}/f4} = \frac{1175 \ {}^{175} \ {}$	**/ff)	38610			
$F_{1} = (8^{1}-9^{1}) Y_{c}(2^{1}) \qquad 8^{1}-9^{1}/2 2625 \frac{12}{4} \qquad 4.375 \text{ ft} \qquad 11484.0 GF_{a} = sum of Verhical Purcer = F_{1} + F_{2} + F_{3} + F_{5} = 14508 \frac{16}{4} \\ GM_{k} = run of all momentr [3+] = -4562.6 \frac{16.44}{44} \\ F_{1}S_{SUDNG} = \frac{MGF_{3}}{P_{a} + P_{5}} = \frac{0.6(14508)}{2646 + 525} = 2.745 > 1.5$	16.441				Fz
$2625 \frac{12}{f_{+}} = \frac{4375}{F_{+}} + \frac{4375}{F_{+}} + \frac{11484.0}{11484.0}$ $GF_{i} = sum of Verhical Forcer = F_{1} + F_{2} + F_{3} + F_{5} = \frac{14508}{16.44} + \frac{16}{f_{+}}$ $GM_{i} = sum of all momentr [3+] = -\frac{4562.6}{16.44} + \frac{16.44}{f_{+}} + \frac{16}{F_{+}} + \frac{11484.0}{F_{+}} = \frac{16}{F_{+}} + \frac{11484.0}{F_{+}} = -\frac{14508}{16.44} + \frac{16}{f_{+}} + \frac{11484.0}{F_{+}} = \frac{14508}{16.44} + \frac{14508}{1$	/\$+	7087.5			
$GF_{i} = sum of Vertical Forcer = F_{1} + F_{2} + F_{3} + F_{5} = 14508 \frac{16}{44}$ $GM_{i} = run of all momentr [3+] = -45626 \frac{16\cdot44}{44}$ $F_{i}S_{SUBMG} = \frac{MGF_{i}}{P_{a} + P_{s}} = \frac{0.6(14508)}{2646 + 525} = 2.745 > 1.5$	11 A. 1		8'-9"/z	$(8'-9'') Y_{c}(z')$	F,
$GM_{i} = \text{num of all moments} \left[9+ \right] = -45626 \frac{16.44}{44}$ Fissuere = $\frac{MGF_{i}}{P_{a} + P_{s}} = \frac{0.6(14508)}{2646 + 525} = 2.745 > 1.5$	15.ft/f+	11484,0	4.375 64	2625 12/f+	
F.S. OVERTURNING @ HDE! OFia: = 4469 + 38610 + 7087 + 11484 = 385	OK	·/++	[]+] = -45626 16	run of all moments	GMi =
Ma + Mp 12350 + 3675 3183	; > /,5	17 + 11484 75 = 3,8°	$= \frac{4469 + 38610 + 71}{12350 + 3}$	Ma + Mp	F.S. OVERTION
	OK				

Proj: RETAINING WALL Page:
$$\frac{1}{2}$$
 Date: $\frac{1}{2}/\frac{1}{2}$ Introduction Marking Checked by:

$$p_{k} = \frac{R}{A \cdot b} \left(1 + \frac{b}{C}\right) = \frac{14508}{8.75(1)} \left(1 + \frac{b}{2}\left(\frac{1+23}{8.75}\right)\right)$$

$$p_{k} = 3056.51 \text{ psf}$$

$$p_{n} = \frac{R}{A \cdot b} \left(1 - \frac{6e}{A}\right)$$

$$p_{n} = 259.6 \text{ prf}$$

$$p_{n} \leq beang equarity$$

$$\left(\frac{3056.51 - 3000}{3000}\right)100 = 1.88\% + 2.5\%$$

$$\frac{0}{2} \text{ for deep}$$

$$\frac{1450\%}{3000} \text{ for ensing to concerns}$$

$$\frac{1}{1405} \text{ too fing Dimensions Ox for Stability concerns}$$

$$\frac{1}{1405} \text{ too fing Dimensions Ox for Stability concerns}$$

$$\frac{1}{1405} \text{ too fing Dimensions Ox for Stability concerns}$$

$$\frac{1}{1405} \text{ pressure to concluster is blig, would require 35500 M3 of concete for balling to enside the set of the light of the light of the set of the light of the light of the set of the light of the light of the set of the light of the set of the light of the set of the light of the$$

Proj: letaining wall
Cals by: factor Mathen Page: 5/ Date:
$$\frac{1}{2}/\frac{1}{2}/\frac{1}{2}$$
 Introduction Mathen Page: 5/ Date: $\frac{1}{2}/\frac{1}{2}/\frac{1}{2}$
Arraning $\frac{1}{2} = 0.9$ (will verify later)
 $R = \frac{M_{w}}{bd^{2}} = \frac{16\frac{3}{6}(1.6(12))O.9}{12(9.65)^{2}} = 250.06 \text{ pr}^{1}$
 $m = \frac{P_{w}}{bd^{2}}, gff'_{w} = \frac{60000}{9}, gf(4000) = 17.65$
 $g = \frac{1}{m} \left[1 - \sqrt{1 - \frac{2mR}{f_{w}}}\right] = \frac{1}{17.65} \cdot \left[1 - \sqrt{1 - \frac{2(11.65)}{60000}}\right]$
 $g = 0.00423$
 $A_{T} = gbd = 0.00423 (12)(3.65) = 0.448 \frac{\ln^{2}}{144}$
Spacing = $\left(\frac{Arcons}{A_{T}}\right) \times 12 \ln = \frac{449}{144} (12) = 11.9 \ln^{2}$
"Those one #6 C 11.74 into 0.0."
Verify $\Phi = 3 a = \frac{A_{T}F_{W}}{.87E^{2}} = \frac{49.9}{.12} (12) = 0.657$ $x = \frac{a}{B_{1}} = \frac{.6558}{.157} = .775$
 $E_{4} = 0.002 \left(\frac{a-x}{x}\right) = 0.005 \left(\frac{14.53}{.2977}\right) = 0.03 > 0.005 \implies \Phi = 0.9 \text{ Ox}$
for $\frac{1}{3} = 60025 \ln(12) = 0.216 \frac{10^{2}}{.2977} = 0.03 > 0.005 \implies \Phi = 0.9 \text{ Ox}$
for $\frac{1}{3} = 60025 \ln(12) = 0.216 \frac{10^{2}}{.2977} = 0.03 > 0.005 \implies \Phi = 0.9 \text{ Ox}$
for $\frac{1}{3} = 60025 (12)(12) = 0.216 \frac{10^{2}}{.2977} = 0.03 > 0.005 \implies \Phi = 0.9 \text{ Ox}$
Arranov with $= 0.0015 (\ln)(12) = 0.216 \frac{10^{2}}{.2977} = 0.03 > 0.005 \implies \Phi = 0.9 \text{ Ox}$
Arranov with $= 0.0015 (\ln)(12) = 0.216 \frac{10^{2}}{.2977} = 0.03 > 0.005 \implies \Phi = 0.9 \text{ Ox}$
Arranov with $= 0.0015 (\ln)(12) = 0.216 \frac{10^{2}}{.2977} = 0.03 > 0.005 \implies \Phi = 0.9 \text{ Ox}$
Arranov with $= 0.0015 (\ln)(12) = 0.216 \frac{10^{2}}{.2977} = 0.03 > 0.005 \implies \Phi = 0.9 \text{ Ox}$
Arranov with $= 0.0015 (\ln)(12) = 0.216 \frac{10^{2}}{.2977} = 0.03 > 0.005 \implies \Phi = 0.9 \text{ Ox}$
Arranov with $= 0.0015 (\ln)(12) = 0.216 \frac{10^{2}}{.2977} = 0.03 > 0.005 \implies \Phi = 0.9 \text{ Ox}$
Arranov with $= 0.0015 (\ln)(12) = 0.216 \frac{10^{2}}{.2977} = 0.03 \approx 0.005 \implies \Phi = 0.9 \text{ Ox}$
Arranov with $= 0.0027 (12)(12) = 0.36 \frac{10^{2}}{.2977} = 0.03 \approx 0.005 \implies \Phi = 0.9 \text{ Ox}$
 $Arranov migning = \frac{11}{.216} (12) = 3.62 \sin 1$
 $V_{A} = 1.6 (X_{A} (10) (12 - \frac{1.6}{12})^{2}/2 + .3 (125)(12 - \frac{1.6}{12})$
 $V_{A} = 1.6 (X_{A} (10) (12 - \frac{1.6}{12})^{2}/2 + .3 (125)(12 - \frac{1.6}{12})$
 $V_{A} = 1.6 (3(90) (12 - \frac{1.6}{$

	RETAINING I: Jocan M		age: ^{6/} D necked by:	ate: 4/20/2	D1/ ILLINOIS INS OF 7 Fourier 91 of 1	TITUTE ECHNOLOGY wennig the Future www.ikadu
Ø Vc	= 0.75(z) Jfc bd	= 0.75 (2) J4	000 (12)(8	.63)	
¢Vc	= 9824,6	15/tt >	Vu <u>OK</u>			
Footing	Reinforceme	nt				
- Need refe	to apply ring to tak	lactored Values	for rein borcement	derign of E of foo	footing by	
Fonce	Value (15/4)	Dirt from & (fi	1) Moment (15, 4/4)	ACT Load Factor	Factored Force	Factored Moment
Pa	2646	4.667	12350 5	1,6	4234	19760)
Ps	525	7.0	3675 3		840	5880)
Fs	813	1,125	915 2	1.6	1301	1464 2
F3	7020	1,125	7898)	l, 2	8424	9478)
F2	4050	2.63	10650 2	1.2	4860	12780)
F,	2625	0	0	1, 2	3150	0
SMn=	sum of al	I Fuchared Mome	nts => & Mu =	1918 16.ft/ft	5	
			SPm = 17735			
		<u>1918</u> = 0,103				
-			Since $e' < \frac{A}{6}$			
			$\frac{7.35}{8.75} (1 + \frac{8.75}{8.75})$			
(Ph) ₄ =	<u>GPM</u> (1-	$\frac{6e'}{A} = \frac{17}{8}$	$\frac{735}{77} \left(1 - \frac{6(,108)}{8,75} \right)$) = 1876.7	25 prf	
Wh =	factored vert	rical load from	sail, overburden,	I weight of	footing o	n heel span
Wn =	1.6 Ps +	1,2 Yshs + 1,2	8cht = 1.6(125)	+ 1.2(90)(12) + 1,2(150)(z)
	1856 psf					
		ertical load fro	m booting on t	oe span = 1	opst (nee	jlected)

Proj: le TAINING WALLS Page: 8/ Date: 4/20/2011 INNOVEMENTARY
Cals by: form Muther Checked by:

$$g = \frac{1}{m} \left[1 - \int 1 - \frac{2mR}{T_{0}} \right] = \frac{1}{n} \left[1 - \int 1 - \frac{2(n+1)(2\pi)(2\pi)}{1 - 2(n+1)(2\pi)} \right]$$

$$g = 0.000832$$
Since S is using small Ar(max) will be used to compute Ar
Arcmus = $\frac{4}{3}gbd = \frac{4}{3}(.000932)(12)(2003) = 0.235 in^{3}/ct$
Spacing = $\frac{0.31}{0.275}(12) = 13.53$ in >12" "Hor over $\#5 C$ 12 In o.c.
(Mm)k = Moment for L_{4} continuer

$$= \left(\frac{(ML_{4}}{2} - \frac{2}{3})L_{4} + \frac{1}{2}(\frac{L_{5}}{2})(\frac{1}{2})L_{4} \right]$$

$$= 2177(127)(\frac{4}{3})(1.25) + 2(34)(\frac{1127}{2})(\frac{1}{2})(1.25) = 1689.6 II.44/ct$$

Obecker M hared on normal valuer

$$p_{22} = 259.6 + \left(\frac{3056.7 - 259.6}{8.97} \right)(9.5) = 2656.9 \text{ pr}6$$

Ma = $\frac{2059.5(1.25)}{2} \left(\frac{2}{2} \right)I.25 + 2656.9 (\frac{1177}{2})(\frac{1}{2})(1.25) = 22.84 II.44/ct$
Sourcewing $\frac{4}{10}5$ hars $-3 d = 20.69$ in
R = $\frac{MN}{12} = \frac{1284(12)}{(\frac{10}{2})} = 5.93$
 $g = \frac{1}{m} \left(1 - \int 1 - \frac{2mR}{R_{0}} \right] = \frac{1}{17.65} \left[1 - \int 1 - \frac{2(19.65)(5.97)}{6000} \right] = .000099$
oring $Ar(mN) = \frac{4}{3}(000099)(12)(20.69) = 0.0327$
Spacing = $\frac{0.73}{1.0259}(12) = 113.6 > 12^{-11} \frac{4Nr}{4r}$ ore $\#5$ hars $C = 12^{-10}$.
(Leoking Shear In Fronting Muther Interval Interv

APPENDIX: STRUCTURAL (S-8)

ACI 318-08 (SERVICEABILITY)

Masnaga
Service ability
ACI 318-08
table 9,5(b) - Maximum permissible computed deflection
l/480 = 56(12)/480 = 1.41"
$\begin{array}{rcccccccccccccccccccccccccccccccccccc$
$W_{d} = 110(12) = 1320 \frac{16}{44} = 1.32 \frac{4}{44}$ $W_{1} = 125(12) = 1500 \frac{16}{44} = 1.5 \frac{4}{44}$
$M_{d} = W_{d} \frac{R^{2}}{R^{2}} = \frac{1.32(56)^{2}(12)}{1.5(56)^{2}(12)} = 6397 \text{ Å.in}$ $M_{L} = W_{L} \frac{R^{2}}{R^{2}} = \frac{1.5(56)^{2}(12)}{1.5(56)^{2}(12)} = 7056 \text{ Å.in}$
Mext = Md + ML = 13453 k. in
Prestruss force: Apps = 20(0.153) = 3.06 in ² Apps = 270 hsi initial prestress $ v = 0.75$ fpu Estimated loss = 2000 Appe = 270(0.75)(1-0.2) = 162.4si Pe = 3.06(162) = 495.72 hip
e = 27,75 - 6,23 - 21,52
$f_b = \frac{P_e}{A} + \frac{P_e e}{S_b} - \frac{Mex}{S_b}$
$= \frac{(495.72)(1000)}{690} + \frac{(495.72)(21.52)(1000)}{2840} = \frac{13453(1000)}{2048}$
= 718 + 3756 - 6569 = 2095 psi
fb = stress at bottom fiber
fr = 7.5 15000 = 530 psi 2 2095 psi
Tension caused by live load = Mi = 7056 × 1000 = 2485 psi
Portion of live load will result in cracking (530Psi)
2095-530 = 1565 psi

"ONPAD"

11/

Masnaga $\frac{2485 - 1565}{2485} (1,5) = 0,56 \text{ k/44}$ $D_{g} = \frac{5WR''}{384} = \frac{5(\frac{0.56}{12}) [(56)(12)]''}{384(4031)(64620)} = 0,47 \text{ in } (1,4'')$ (0K)Ec= 57000 VFc = 4031 hsi

"CIATRAD"

12/

"ONIMA

13/

1/41

APPENDIX: STRUCTURAL (S-9)

PARKING LAYOUT FROM CAD FILE

uding king the rthe een rthe	ЗY	OUT	DEVELOPMENT	Sheet #:	1 0f: 1
ed - 240 ed - 258 (Incl ed - 258 (Incl r to fit the park onstraints of t for cars to nav for navel for of for navel for of for navel for of	F TECHNOLOO	INARY PARKING LAY	IPRO 359 - MR DEVELOPMENT	App By:	03/29/2011
-Amount of Parking Spots Required - 240 -Amount of Parking Spots Provided - 258 (Including 10 Handicap Spots) -This design was chosen in order to fit the parking garage into the given structural constraints of the building. -This layout provides the maximum number of parking spots while still allowing for cars to navigate through the aisles with ease. -Since the parking garage is underneath the Museum, an entry and exit ramp have been provided. Both include a flat transition landing at the top to make it easier for cars to merge safely into oncoming traffic. -Two separate elevators and stairwells have been provided which both lead to the ground floor of the Museum	ILLINOIS INSTITUTE OF TECHNOLOGY CHICAGO, ILLINOIS	CHILDREN'S MUSEUM PRELIMINARY PARKING LAYOUT	Dn By: OMAR MEDINA	Ck By:	Scale: NONE Date:
-Amount of Parki -Amount of Parki 10 Handicap Spc -This design was garage into the g building. -This layout prov parking spots wh through the aisle -Since the parkin Museum, an entr provided. Both in top to make it ea oncoming traffic. -Two separate el provided which b Museum	J ~>				
	E				

APPENDIX: STRUCTURAL (S-10)

FAÇADE SUPPORT CALCULATIONS

APPENDIX: STRUCTURAL (S-11)

R.S. MEANS COST ESTIMATE SPREADSHEET

IPRO359-Structural estimate

City of Chicago 2929 South Ellis Avenue Chicago

60616

⊒

Data Release : Year 2011

Unit Cost Estimate

	6,056.00	1 135 00	12.445.00	1 99	221.25	1,344.50		317.00	288	27.95	232.81	68.10	214.84
Total	\$	e.	69	6	6	69	69	\$	69	69	69	6	÷
Equipme	\$ 136.00		\$ 159.00	0.28	13.25	65.50	,	32.00	1.04	2.48	0.31	1.90	1.51
Equ	-	64	+		69	69	69	\$	69		6		6
Labor	\$ 245.00		\$ 286.00	\$ 0.79	1 "	\$ 204.00	י א	\$ 186.00	\$ 1.84	1	\$ 61.50		\$ 3.33
Material	\$ 5,675.00	\$ 1.135.00	\$12.000.00	0.85	1	\$ 1,075.00		00.66		21.00	171.00		210.00
ž	69	64	69		- 69	69	63	↔	69		69	ن ه	\$
Unit	5.143 Ea.	ш а	6 Ea.	0.021 S.F.	0.5 L.F.	4.8 Flight	0	4.15 L.F.	0.045 B.C.Y.	0.094 S.F.	1.493 C.Y.	0.088 L.F.	0.07 L.F.
Labor					10	4.8		4.15	0.04	0.09	1.490	0.086	0.0
Daily Output	14		12	2685	144	10	0	20	352	768	75	912	1150
Crew	C11		c11	පී	C11	C12		C17C	B12E	C11	C14C	ES	ES
1000	Precast tees, double, floor, 60' span, 32" x 10' wide, prestressed	Precast beam, inverted tee, large, add to above, includes material only	⁵ recast beam, L shaped, 24" x 52", ncludes material only	Structural concrete, in place, elevated slab (4000 psi), floor fill, 2-1/2" thick, includes finishing, excl forms, reinforcing	Precast column, large, square, to 24' nigh, 3000 psi, includes material only	Precast stairs, front entrance, 5 risers, 7' wide, 48" platform	Factor for double tees	Cast-in place retaining walls, reinforced concrete cantilever, 33 degree slope embankment, 10' high, includes excavation, backfill & reinforcing	Excavating, bulk bank measure,sandy clay/loam, open site, 1/2 C.Y. capacity = 44 C.Y./hour, backhoe, hydraulic, wheel mounted, excluding truck loading	Precast wall panel, smooth, gray, uninsulated, high rise, 16' x 8' x 4" thick, 3000 psi	Structural concrete, in place, spread ooting (3000 psi), over 5 C.Y., includes orms, reinforcing steel, concrete, placing and finishing	Structural steel member, 100-ton project, 1 to 2 story building, W18x50, 4992 steel, shop fabricated, incl shop primer, bolted connections	Structural steel member, 100-ton project, 1 to 2 story building, W36x170, A992 steel, shop fabricated, incl shop primer, bolted connections
SubCd				<u> </u>				0000		<u> </u>		<u> </u>	
Sour		٩					_						
LineNumber	034133601500	034133601500	034105100500	033053403250	034105150350	034123500750	666666666666666666666666666666666666666	323213103100	312316425610	034513500700	033053403850	051223753700	051223757600
Quantity	608	~	06	391500	4125	19	~	1200	54778	89376	2040	222	8

Total

Ext. Mat.		Ext.	Ext. Labor	Ext.	Ext. Equip.	Ext.	. Total	Mat. O&P		Labor O&P		Equip. O&P		Total O&P		Ext. N	Ext. Mat. O&P	Ext.	Ext. Labor O&P
69	3,450,400.00	\$	148,960.00	÷	82,688.00	69	3,682,048.00	\$	6,225.00	\$ 420	420.00	69	150.00	\$	6,795.00	\$	3,784,800.00	¢	255,360.00
ŝ	690,080.00	ø	,	\$		\$	690,080.00	Ś	1,245.00	÷		ن	,	ب	1.245.00	69	756.960.00	65	
69	1,080,000.00	÷	25,740.00	÷	14,310.00	\$	1,120,050.00	\$	+		490.00		175.00		13,765.00	1	1.179.000.00	69	44.100.00
69	332.775.00	ы	309.285.00	69	109.620.00	69	751.680.00	u	0 0	e.	ő, t	e.	000	e e	CF C	1	264 DOE DO		16E 00E 00
69	759,000.00		99,000.00		54,656.25		912,656.25	- 6	1			69	14.55		257.55	÷ 69	833,250.00		169.125.00
÷	20,425.00	ь	3,876.00	÷	1,244.50	ф	25,545.50	€9	1,200.00	\$ 310		\$	72.00	*	1,582.00	69	22,800.00	\$	5,890.00
ŝ		в		ക		θ		÷		\$	1	\$		\$ 441	441,846.00	69	L	69	1
\$	118,800.00	\$	223,200.00	\$	38,400.00	\$	380,400.00	÷	109.00	285	285.00	÷	35.00	ю	429.00	69	130.800.00	69	342 000 00
¢	I	\$	100,791.52	\$	56,969.12	\$	157,760.64	÷		× ا	2.78	Ф	4. 41.	60	3.92			н Ө	152.282.84
ф	1,876,896.00	÷	399,510.72	ь	221,652.48	69	2,498,059.20	ø	23.00	\$		6	2.73	69	33.38		2.055,648.00	69	683.726.40
÷	348,840.00	÷	125,460.00	÷	632.40	÷	474,932.40	ፁ	188.00	92 &	95.00	69	0.34	e e e e e e e e e e e e e e e e e e e	283.34		383,520.00	69	193,800,00
G	13,764.00	ω	932.40	ф	421.80	Ф	15,118.20	\$	68.00	2	7.20	÷	2.09	ø	77.29	\$	15,096.00	ф	1,598.40
\$	13,230.00	\$	209.79	\$	95.13	\$	13,534.92	¢	231.00	a w	5.70	ю	1.66	ы	238.36	ee ee	14.553.00	69	359 10
	\$8704210.00		\$1436965.43		\$580689.68		\$10721865.11]				\$9540522.00		\$2314126.74

e Notes		[Adjusted by 03410510 1050]												
Zip Code														
Data Release	Year 2011	Year 2011	Year 2011	Year 2011	Year 2011	Year 2011	Year 2011	Year 2011	Year 2011	Year 2011	Year 2011	Year 2011	Year 2011	
Labor Type	STD	STD	STD	STD	STD	STD	USER	STD	STD	STD	STD	STD	STD	
Ext. Total O&P	#######################################	\$756,960.00	#######################################	\$947,430.00	#######################################	\$ 30,058.00	\$441,846.00	\$514,800.00	\$214,729.76	<i>#####################################</i>	\$578,013.60	\$ 17,158.38	\$ 15,016.68	\$12931987.05
Ext. Equip. O&P	91,200.00		15,750.00	117,450.00	60,018.75	1,368.00	r	42,000.00	62,446.92	243,996.48	693,60	463.98	104.58	\$635492.31
Ext.	¢	\$	க	\$	в	÷	⇔	69	69	ь	÷	မာ	ø	

APPENDIX: HVAC (H-1)

ASHRAE TABLES

Home

You are here:	Home	Resources	Tips	Type and numb	per of chillers Ashare 90.1

Tutorials

Type And Number Of Chillers Ashare 90.1

Support

Table G3.1.3.7 of ASHRAE 90.1-2004 says that for a building with conditioned area equal to more than 240,000 square feet, "2 centrifugal chillers minimum with chillers added so that no chiller is larger than 800 tons, all sized equally" should be the size and number of chillers.

Resources

Testimonials

Contact

1) ASHRAE 90.1-2004, Appendix G, G3.1.2.2: Equipment Capacities, Page 178:

G3.1.3.7 Type and Number of Chillers (Systems 7 and 8). Electric chillers shall be used in the baseline building design regardless of the cooling energy source, e.g., direct fired absorption, absorption from purchased steam, or purchased chilled water. The baseline building design's chiller plant shall be modeled with chillers having the number and type as indicated in Table G3.1.3.7 as a function of building conditioned floor area.

Table G3.1.3.7 Type and number of chillers

Building Conditioned floor area	Number and type of chillers
<= 120,000 sq ft	1 screw chiller
> 120,000 sq ft, <240,000 sq ft	2 screw chillers sized equally
>=240,000 sq ft	2 centrifugal chillers minimum with chillers added so
	that no chiller is larger than 800 tons, all sized equally

2) ASHRAE 90.1-2004 User Manual Appendix G ,Type and Number of Chillers (§ G3.1.3.7), G-30:

For baseline building systems 7 and 8, which have chilled water plants, electric chillers shall be used for the baseline building no matter what the cooling energy source in the proposed building. Even though the proposed building may have gas engine driven chillers or absorption chillers, the baseline building shall be modeled with electric chillers.

The type of chillers that are placed in the baseline building depends on the conditioned floor area of the baseline building, which is the same as the proposed building. If the building has an area of 120,000 ft² or less, then a single screw chiller is modeled. For floor areas greater than 120,000 ft² but less than 240,000 ft², then two equally sized screw chillers are modeled in the baseline building. For buildings that are 240,000 ft² or larger, the baseline building is modeled with two or more centrifugal chillers. In this case at least two equally sized centrifugal chillers are always modeled, but additional equally sized chillers are added as necessary so that all chillers are 800 tons are smaller.

Explanation

Understanding/Interpreting/Calculating the number of chillers and chiller size:

In the table above, when the conditioned area of the building is more than or equal to 240,000 sq ft, it is specified that "2 centrifugal chillers minimum with chillers added so that no chiller is larger than 800 tons, all equally sized", in this specification the standard is not clear in specifying the minimum size of chiller which is to be used.

It specifies the minimum number as two and maximum tonnage as 800 tons, which may lead to a confusion as in the following example:

Suppose a non residential building more than 6 floors with a conditioned area greater than 3, 00,000 sq ft, following ASHRAE 90.1 Appendix G. ASHRAE 90.1-2004 Table G3.1.3.7 (Type and number of chillers) says that it should be "2 centrifugal chillers minimum with chiller added so that no chiller is larger than 800 tons, all sized equally."

After a sizing run of the model, the tonnage came out to be approximately 1000 tons. I can divide this into 2×500 tons chiller or into 4×250 tons chillers. In each case the COP of the chiller is different as per Table 6.8.1C.

This is to be understood such that, depending on the total tonnage there are a minimum of two (but not less than two) chillers equally sized with a maximum of 800 tons each and over that for the remaining tonnage the chillers are further added which are not greater than 800 tons in size, such that all the chiller tonnages are adjusted to be equally sized.

This specifies that the number of chiller is the base case should be as low as possible but not less than two and none of it more than 800tons, all equally sized.

There is a building with total tonnage T. The number of chiller is first known by dividing the total tonnage by maximum tonnage allowable, which is T/800 (say X). Round off this X on to its higher side which is Y. This tells that there are Y numbers of chillers which are equally sized. Size of each chiller S, now is total tonnage T divided by Y, (S=T/Y). If Total tonnage T: 2700 tons, than

First step; X= T/800= 3.75 (round it on higher side) Y= 4 Number of Chillers= 4 Size of each Chiller S = T/4 Main Menu Home Tutorials Support Resources Tutorial Authors Training Workshops Useful Links Weather Tool Tips Testimonials Contact

Latest News	Popular	Newsflash
ECOTECT to EnergyPlus	ECOTECT Tutorials	
Energy Plus getting started Tutorial	What if two authors end up working on same	 VIBYOR is the first player, who advises Green Building
Design Builder Tutorials	tutorial topic	 product manufacturers, how to detail and describe their products so that its easier for Green Building industry to
eQUEST Tutorials and handbook	Training workshops	 products so marks easier or oreen building industry to quickly assess the product for usage.
ECOTECT Tutorials	t≍change	- quickly assess the product for daage.
	Energy Plus getting started Tutorial	

About Us | Terms of use | Privacy policy | Disclaimer | sitemap

	Total II	eat, Btu/h	Sensible	Latent	% Sensible Heat that is		
	Adult.	Adjusted,	Heat,	Hent,	Rad	liant ^b	
Location	Male	M/F ^a	Btu/h	Btu/h	Low F	High V	
Theater, matinee	390	330	225	1115	anna an Canadan an Anna an Anna an Anna		
Theater, night	390	350	245	105	60	27	
Offices, hotels, apartments	450	400	345	155			
Offices, hotels, apartments	475	450	250	200			
Department store, retail store	550	450	250	200	58	38	
Drug store, bank	550	500	250	250			
Restaurant ²	490	550	275	275			
Factory	800	750	275	475			
Dance hall	900	850	305	545	44	35	
Factory	1000	1000	375	625			
Bowing alley	1500	1450	580	870			
Factory	1500	1450	580	870	54	19	
Factory	1600	1680	635	965			
Gymnasium	2000	1800	710	1090			
	Theater, night Offices, hotels, apartments Offices, hotels, apartments Department store, retail store Drug store, bank Restaurant ⁴ Factory Dance hall Factory Bowling alley Factory Factory	AdultLocationAdultTheater, matinee306Theater, might390Offices, hotels, apartments450Offices, hotels, apartments475Department store, retail store550Drug store, bank550Restaurant ² 496Factory800Dance hall900Factory1000Bowing alley1500Factory1500Factory1500Factory1600	Location Male M/F* Theater, matinee 390 330 Theater, might 390 350 Offices, hotels, apartments 450 400 Offices, hotels, apartments 475 450 Department store, retail store 550 450 Drug store, bank 550 500 Restaurant ² 490 550 Factory 800 750 Dance hall 900 850 Factory 1000 1000 Bowing alley 1500 1450 Factory 1500 1450 Factory 1600 1600	Adult Male Adult Male Adjusted, MJ/F* Beat/ Heat, Bau/h Theater, matinee 300 330 225 Theater, might 300 350 245 Offices, hotels, apartments 450 400 245 Offices, hotels, apartments 475 450 250 Department store, retail store 550 450 250 Drug store, bank 550 500 250 Restaurant ² 490 550 275 Factory 800 750 275 Dance hall 900 850 305 Factory 1500 1450 580 Factory 1500 1450 580 Factory 1500 1450 580 Factory 1500 1450 580 Factory 1600 1600 635	Adult Adult Male Maly Meat, Male Heat, Heat, Heat, Btu/h Heat, Btu/h Heat, Btu/h Heat, Btu/h Btu/h	Adult Adjusted, M/F* Heat, Btu/h Heat, Heat, Btu/h Heat, Heat, Btu/h Heat, Heat, Btu/h Heat, Low F Heat, Btu/h Heat, Low F Heat, Low F Heat, Btu/h Heat, Low F Heat, Low F Heat, Btu/h Heat, Low F Heat, Low F Heat, L	

Table 1 Representative Rates at Which Heat and Moisture Are Given Off by Human Beings in Different States of Activity

 Voles:
 Tabulated values are based on 75°F moni dry-bubb temperature. For 80°F noon dry bubb temperature. For 80°F noon dry bubble temperat Adjusted heat gain includes 60 Brich for food per individual (30 Brich sensible and 30 Brich lacen).

Table 15	Solar Absor	ptance Values of	Various Surfaces
----------	-------------	------------------	------------------

Table 5 Ground Reflectance of Foreground Surfaces

Surface	Absorptance
Brick, red (Purdue) 8	0.63
Paint	
Red	0.63
Black, matte ^b	11.94
Sandstone ^b	0.50
White acrylic*	0.26
Sheet metal, galvanized	
New ²	0.65
Weathered ^a	(1.80)
Shingles	0.82
Gray ^b	
Brown ^b	0.91
Bhukh	0.97
Whiteb	0.75
Concrete	0.60 to 0.83

Foreground Surface	Reflectance
Water (large angle of incidences)	0.07
Coniferents forest (winter)	0,07
Bituminous and gravel roof	0.13
Dry bare ground	0.2
Weathered conscrete	0.22
Green grass	0.26
Dry grassland	0.2 to 0.3
Desert sand	(1.4
Light building surfaces	0.0
Snow-covered surfaces:	
Typical city centre	11.2
Typical urban site	0.4
Typical rural site	0.5
Isolated rural site	0.7

"Incropera and DeWitt (1996).

^bParker et al. (2000), 'Miller (1971)

Source: Adapted from Thesenard and Haddad (2006).

Surface	Total Hemispherical Emissivity	Solar Absorptivity
Alaminum	name of the second second definition of the second s	hannand a bayan Albahar bi Coley Shara a shabbaaan
Foil, bright dipped	0.03	0.10
Alloy: 6061	0.04	0.37
Roofing	0.24	
Asphalt	0.88	
Brass		
Oxidized	0.60	
Polished	0.04	
Brick	0.90	
Concrete, rough	0.91	0.60
	012.4	
Copper	11 (13	0.47
Electroplated Black oxidized in Ebanol C	0.03 0.16	0.91
Plate, oxidized in Ebanoi C	0.76	0.91
	0.76	
Glass		
Polished	0.87 to 0.92	
Pytex	0.80	
Smooth	0.91	
Granite	0.44	
Gavel	0.30	
lee	0.96 to 0.97	
Lamestone	0.92	
Marble		
Polished or white	0.89 to 0.92	
Smooth	0.56	
Mortar, lime	0.90	
Nickel		
Electroplated	0.03	0.22
Solar absorber, electro-oxidized	0.05 to 0.11	0.85
on copper		
Paints		
Black		
Parsons optical, silicone high	0.87 to 0.92	0.94 to 0.97
heat, epoxy	0.01 0.02	0.74 10 0.77
Gloss	0,90	
Enamel, heated 1000 h at 710°F		
Silver chromatone	0.24	0.20
White		
Actylic resin	0.90	0.26
Gloss	0.85	0.20
Epoxy	0.85	0.25
aper, toofing or white	0.88 to 0.86	Set of the set
laster, tough	0.89	
rasier, nough Refractury	0.90 to 0.94	
iand	0.75	
sand sandstone, red	0.59	
sanastone, red Silver, polished	0.02	
snow, fresh	0.82	0.13
snow, tresti Soti	0.94	0.13
sou Water	0.90	0.98
White polassium zirconiam silicate	0,87	0.13

Table 5 Emissivities and Absorptivities of Some Surfaces

Source: Mills (1949) *Values are for extraterresitial conditions, except for concrete, snow, and water.

Table 1 Surface Conductances and Resistances for Air

		Surface Emittance, c					
Position of Surface	Direction of Heat Flow	Nonreflective c = 0.90		Reflective			
				c = 0.20		a = 0.05	
		h,	R	h,	R	k _i	R
Still Air							
Horizontal	Upward	1.63	0.61	0.91	1.10	0.76	1.32
Sloping at 45°	Upward	1.60	0.62	0.88	1.14	0.73	1.17
Vertical	Horizontal	1.46	0.68	0.74	1.35	11.59	1.70
Sloping at 45°	Downward	1.32	0.76	0.60	1.67	0.45	2.22
Horizontal	Downward	1.08	0.92	0.37	2,70	0.22	4.55
Moving Air (any	position)	h,,	R				
15 mph wind (for winter)	Any	6.00	0.17				
7.5 mph wind (for summer)	Апу	4,00	0.25				

Notes:

Notes:
Serface conductance h₁ and h₂ measured in Bta h ft². F, resistance R in h-ft². F Bto.
No surface has both an air space resistance value and a surface resistance value.
Conductances are for surfaces of the stated emittance facing virtual black-body surroundings at same temperature as ambient air. Values haved on surface air temperature difference of 10°F and surface temperatures of 70°T.
See <u>Charter 4</u> for more detailed information.
Condensate can have significant effect on surface emittance (see <u>Table 2</u>)

TABLE 505.5.2 INTERIOR LIGHTING POWER ALLOWANCES

Building Area Type "	(W/ft2)
Automotive Facility	0.9
Convention Center	1.2
Court House	1.2
Dining: Bar Lounge/Leisure	1.3
Dining: Cafeteria/Fast Food	1.4
Dining: Family	1.6
Dormitory	1.0
Exercise Center	1.0
Gymnasium	1.1
Healthcare-Clinic	1.0
Hospital	1.2
Hotel	1.0
Library	1.3
Manufacturing Facility	1.3
Notel	1.0
Motion Picture Theater	1.2
Multi-Family	0.7
Museum	1.1
Office	1.0
Parking Garage	0.3
Penitentiary	1.0
Performing Arts Theater	1.6
Police/Fire Station	1.0
Post Office	1.1
Religious Building	1.3

2009 ASHRAE Handbook—Fundamentals

Fiberglass, Insulated VInyl 0.40 0.35 0.32 0.35 0.88 0.48 0.45 0.47 0.49 0.43 0.36 0.38 0.30 0.51 0.42 さ 0.96 0.55 0.52 0.44 0.41 0.45 041 Wood! VInvi 0.98 0.84 0.56 0.50 0.52 0.47 0.53 0.47 610 0.44 0.43 0.46 040 0.47 0.39 0.42 0.35 0.45 0.37 0.39 0.32 140 16.0 12.0 Aluminum Aluminum Reinforced Aluminum Clad Wood Fixed VIntell 0.45 140 0.49 0.46 0.40 0.48 0.39 0.42 0.35 0.45 0.37 0.39 0.84 0.56 0.50 0.53 0.54 0.44 4.0 0.33 044 0.98 16.0 0.51 Thermal Break WIth 0.55 0.45 0.42 0.56 0.59 0.50 0.49 0.52 0.46 0.47 0.45 0.38 050 1.07 0.92 0.99 0.53 0.59 0.53 0.53 0.62 0.57 0.41 0.51 Without Thermal Vertical Installation Break 0.55 0.58 0.52 1.12 86.0 0.62 0.65 0.60 0.66 0.59 0.61 0.56 0.63 式:0 0.47 0.49 中:0 0.56 1.05 0.68 0.60 0.51 0.51 0.51 Fiberglass/ Insulated Operable (including sliding and swinging glass doors) Vinyl 0.45 0.39 0.74 0.79 0.45 0.47 0.43 0.43 0.40 0.42 0.37 0.37 0.34 0.37 041 0.85 0.50 0.48 0.41 0.46 0.43 0.33 0.41 0.31 Wood/ VINY 0.800.86 0.55 0.52 0.48 0.53 0.48 0.50 0.45 0.45 0.47 0.42 0.480.41 0.43 0.38 0.46 0.39 0.36 0.45 0.91 0.41 0.51 Aluminum Clad Wood Aluminum Aluminum Reinforced VIII'V 0.87 0.54 0.50 0.49 0.51 0.47 0.47 0.49 0.44 0.43 0.45 039 0.41 0.43 0.37 047 0.93 0.57 0.55 0.53 0.50 0.480.81 Thermal Break WHI AL 0.55 0.54 0.53 0.58 0.57 0.59 0.52 0.49 0.56 0.48 0.51 0.45 0.46 0.48 0.42 1.07 0.94 0.61 0.56 0.53 0.54 10.1 0.64 0.61 WIthout ['hermal Break I.10 1.17 0.760.73 0.79 0.72 0.75 0.76 0.69 0.72 0.66 0.65 0.68 0.63 0.65 0.70 0.70 0.73 1.23 0.81 0.61 0.71 Edge Glass 1.04 0.90 0.59 0.50 0.58 0.54 0.54 0.56 0.57 0.50 0.52 0.55 0.48 0.50 0.44 550 0.61 0.57 0.02 0.60 0.51 0:40 0.04 -Glass Only Double Glazing, e = 0.60 on surface 2 or 3 Double Glazing, e = 0.40 on surface 2 or 3 Double Glazing, e = 0.20 on surface 2 or 3 Double Glazing, e = 0.10 on surface 2 or 3 Double Clazing, e = 0.05 on surface 2 or 3 Center Glass 0.44 0.47 0.40 0.40 0.43 0.36 0.45 0.35 0.38 0.30 0.32 0.35 0.27 0.55 0.48 0.45 0.52 0.41 0.42 1.04 0.51 170 00.00 5 1/8 in. acrylic/polycarbonate 1/4 in. acrylic/polycarbonate 1/2 in. argon space 1/2 in. argon space 1/2 in. argon space 1/4 in. argon space 1/2 in. argon space 1.4 in. argon space 1/4 in. argon space 1/4 in. argon space 1/4 in. argon space 1/2 in. argon space Double Glazing 1.4 in. air space 1/2 in. air space 1/2 in. air space 1/2 in. air space 1/4 in. air space 1/2 in. air space 1/4 in. air space 1./2 in. air space 1/4 in. air space 1/4 in. air space 1/4 in air snare **Glazine Type** Single Glazing 1./8 in. glass Product Type Frank Type 9 the 10 T 2 12 4 5 10 18 22 23 9 2 0 1-00 C1 ς†

Table 4 U-Factors for Various Fenestration Products in Btu/h· ft^{2, o}F

15.8

Fenestration

OI 8 6 0 1 1412 13 13 - nm 4 5 0 1-22 21 22 Site-Assembled Sloped/Overhead Glazing Structural Glazing 1.25 1.10 1.18 0.66 0.65 0.62 0.62 0.58 0.58 0.59 0.54 0.56 0.62 0.63 0.60 0.56 0.56 0.50 0.54 0.47 0.49 0.54 0.51 Thermal Break Aluminum With 0.82 0.80 0.80 0.77 0.78 0.78 0.74 0.75 0.75 1.20 0.83 0.80 0.80 0.70 0.74 0.74 0.68 0.69 U-Factors for Various Fenestration Products in Btu/h. ft². °F (Concluded) Aluminum Without Thermal Break 1.35 62.0 0.76 0.77 0.76 0.72 0.73 0.76 七.0 0.70 0.70 19.0 0.68 0.68 0.63 0.80 0.64 Wood/ Vinyl 1.42 1.31 1.39 0.84 0.80 0.80 0.80 0.76 0.78 0.77 0.72 0.74 0.74 0.68 0.68 0.72 0.65 0.84 0.74 0.67Sloped Installation 0.81 naunim uk. Aluminum Aluminum Reinforced Clad Wood Manufactured Skyllght VIIIV 1.61 1.45 1.53 0.91 0.87 0.87 0.88 0.87 0.83 0.83 0.85 0.84 0.780.80 0.80 0.80 0.74 0.75 0.78 0.78 0.92 0.71 0.73 Thermal Break With 0.95 0.89 0.88 0.85 0.78 1.54 0.87 0.87 0.83 0.79 0.75 0.96 0.91 0.92 16'0 0.85 0.83 0.83 16.0 Without Thermal Break 1.77 1.60 1.68 0.98 0.38 1.10 1.09 1.05 1.05 I.05 1.03 1.02 0.96 0.98 0.92 0.96 0.96 16.0 10.1 0.98 **Glass Only (Skylights)** Edge Glass 1.19 0.65 0.03 0.03 0.03 0.60 0.00 0.58 1.03 0.00 0.03 0.01 0.61 0.56 0.58 0.58 0.53 15.0 0.50 0.50 0.51 Center Glass 0.49 1.19 1.11 0.58 0.57 0.53 0.53 0.54 0.53 0.49 0.50 0.44 0.40 0.40 0.39 040 0.44 0.36 0.38 0.440.51 0.40 30 Structural Glazing 0.59 1.10 0.96 0.57 0.53 0.56 0.50 0.52 0.46 0.45 0.48 0.45 0.63 0.54 0.60 0.58 0.54 0.43 0.51 0.41 0.51 Curtain Wall Aluninum Aleminum Thermal Break Table 4 With 1.10 0.96 0.63 0.57 0.60 0.54 0.56 0.50 0.50 0.58 0.50 0.52 0.67 0.61 0.58 0.61 0.55 0.62 0.45 0.56 0.47 0.50 0.43 Vertical Installation Thermal Without Break 1.13 0.77 0.74 0.68 0.74 0.68 01.0 0.65 0.64 0.67 0.61 0.68 0.60 0.62 0.55 0.66 0.57 0.60 0.72 1.21 Wood/ **Garden Windows** VIRV 2.10 1.91 1.17 1.28 1.16 1.11 1.10 1.04 1.32 1.07 1.13 0.98 1.03 0.90 1.17 0.95 Aluminum. **Fhermal** Without Break 2.50 1.66 1.57 1.S 1.5 2.24 1.60 1.72 1.68 1.56 I.63 5 .43 1.47 1.53 1.43

15.9

APPENDIX: HVAC (H-2)

RTS SPREADSHEET

RTS Method Spreadsheet

Cooling	Btu/h	
July, 3pm	Sensible	Latent
Internal Heat Gain		
People	1,750,000	1,554,000
Lighting	670,870	
Transmission		
South Wall	243,983	
West Wall	233,634	
North Wall	201,085	
East Wall	24,098	
Roof	100,329	
Green Roof	51,837	
Floor	177,000	
Roof Window	273,957	
Total	3,726,793	1,554,000

Heating	Btu/h	
January, 7pm	Sensible	Latent
Transmission		
South Wall	-169,675	
West Wall	-150,309	
North Wall	-168,544	
East Wall	-16,221	
Roof	-67,435	
Green Roof	-49,022	
Floor	-408,000	
Roof Window	-44,630	
Total	-1,073,836	

Total Cooling cfm	114,847											
Total Heating cfm	67,793											
COOLING L	OAD CO	OMPON	ENTS				DE	SIGN	WEAT	HER P	ROFIL	ES
----------------------	--------------	----------------	---	------------	---	------------------------------	-------------	------------	-------------	-----------	-----------	-----------
#REF!				-	#REF!	1						24-Apr-11
OUTSIDE AIR PROFIL	ES - PEAK DI	RY BULB A	ND MEAN C	OINCIDENT	Participation and Participations	в				Hours		Standard
1			and the second	IL - CHICA	And the second se		Latitude	Longitude	Elevation,f		Time Zone	
			00/1		Index =		41.79	-87.75	617	-6		-90
USA - IL	CHICAGO MIDW	AY AP - 0.4%		-	mater -	1000	41.75	01.10	017	-0	Central	-30
Inside Heating I	Design Tempe	erature. F = [70	Design O	A heating:		Inside Cool	ina Desian	Conditions			
Outside Heating			-1.6		Btuh/cfm		DB, F	RH	DBR	PWS	PW	w
Outside Heating			4.3	72.27	Btuh/cfm	1	68	50%	527.67	0.3392147	0.1696073	0.007262
	1											0.007.202
Month	- 1	2	3	4	5	6	7	8	9	10	11	12
Monthly Design DB	= 55.6	60.6	74.6	84.2	88.7	93.4	97.5	94.6	90,6			62.9
Mean Coincident WB		51.3	61.1	65.3	70.6	74.7	78.4	77.1	72			59.3
Daily Range, DB	= 15.9	18.4	23.4	24.9	22.6	20.5	19.1	18.3	19.8	22.2		16.6
Daily Range, WB		14.1	15.7	14.6	11.9	9.5	8.6	8.3	9.4	12.7		14.3
SOLAR TAU-	B 0.305	0.349	0.397	0.42	0.446	0.464	0.457	0.457	0.416	0.368	0.339	0.311
SOLAR TAU-	D 2.344	2.123	2.004	1.986	1.97	1.982	2.043	2.03	2.13	2.248	2.29	2.363
WBR	= 510.77	510.97	520.77	524.97	530.27	534.37	538.07	536.77	531.67	525.97	517.77	518.97
PWS	= 0.185531	0.186910	0.266564	0.308949	0.370781	0.425784	0.481405	0.461180	0.388819	0.319870	0.239501	0.250022
WST	= 0.007953	0.008013	0.011490	0.013356	0.016099	0.018558	0.021065	0.020151	0.016903	0.013839	0.010304	0.010765
l w	= 0.006925	0.005893	0.008383	0.008992	0.011886	0.014178	0.016563	0.016033	0.012565	0.010089	0.007574	0.009935
Peak Design OA cooli	ng load,					ana senten sa tarri Galilla.						
sensible, Btuh/cfm =		-8.14	7.26	17.82	22.77	27.94	32.45	29.26	24.86	15.95	2.20	-5.61
latent, Btuh/cfm =	-1.63	-6.63	5.43	8.37	22.38	33.47	45.01	42.45	25.67	13.68	1.51	12.94
Total, Btuh/cfm =	-15.27	-14.77	12.69	26.19	45.15	61.41	77.46	71.71	50.53	29.63	3.71	7.33

		OAD C	UNIFU	JNL				PEO	PLE
<u>#REF!</u>						#REF!			
COOLING	LOAD - PEF	PERSON		-					24-Apr-1
								II	
INPUT DAT	A:			300 -		Peo	ple Load		
250	Btuh/persor			250		A-4-4-	*****		<u> </u>
62%	% Convectiv	ve		200					
38%	% Radiant			200 -		T			
	[]		Btu/h	150					
250	Btuh/persor	latent	m						
				100 -					
				50 -				1	
MW no Carp	et 90% glass			50					Lan -
				- 4					
12	RTS Zone 1	уре		1	3	579	11 13 15	5 17 19 2	1 23
MW no				He	at Ga	in 🚽	Sancibla	Cooling Lo	be
Carpet	52 503.M				al Ga		- Sel ISIDIE	Cooling Lo	au
90% glass								Г <u> </u>	
						Non-Solar		Total	Late
	Input			t Gain		RTS	Radiant	Sensible	Coolin
Llaur	Usage		nvective %			Zone Type	Cooling	Cooling	Loa
Hour	Profile	Heat Gain	62%	•	38%	12	Load	Load	Btu
		3tuh/person						Btuh/pers	perso
1	0%	-	-		-	35%	17	17	-
2	0%	-	-		-	15%	15	15	-
3	0%	-	-		-	10%	14	14	-
4	0%	-	-		-	7%	13	13	-
5	0%		-		-	5%	11	11	-
6	0%	-			-	4%	10	10	-
7	100%	250	155		95	3%	42	197	25
8	100%	250	155		95	3%	55	210	25
9	100%	250	155		95	2%	64	219	25
10	100%	250	155	-	95	2%	69	224	25
11	100%	250	155		95	2%	73	228	25
12	100%	250	155	-	95	2%	76	231	25
13	100%	250	155		95	1%	78	233	25
14	100%	250	155		95	1%	80	235	25
15	100%	250	155	-	95	1%	81	236	25
16	100%	250	155		95	1%	82	237	25
17	100%	250	155		95	1%	84	239	25
18	100%	250	155		95	1%	86	241	250
19	0%	-	-		-	1%	53	53	-
20	0%	-	-		-	1%	40	40	-
21	0%	-	-		-	1%	31	31	
22	0%	-	-		-	1%	26	26	-
23	0%	-	-		-	0%	22	22	-
24	0%	-	-		-	0%	19	19	=
		3,000	1,860	1 4	,140	100%	1,140	3,000	

#REF!				NENT:	#REF!		LIGH	IINC
					#LUSL:			24-Apr-
COOLING	LOAD - LIG	HTING						
INPUT DAT	 ΤΔ·		80000	0 7	Lightin	ng Load		
212000	watt peak li	iahtina	70000	0	* * *	* * * * * *	* * *	
722,920		ble peak gain				8-8-8-8-8-8		
122,920		le peak gain						
52%	% Convect	ivo	<i>₹</i> ⁵⁰⁰⁰⁰	1	Π			
48%	% Radiant		100000					
40 /0	70 nauiarii		\$00000	0				
Multi-		L	200000					
	et 90% glass		10000	J-8-8-8-8				
12	RTS Zone	Туре		1 3 5	7 9 1	1 13 15	17 19 21	23 25
MW no				1 0 0	1 3 1		17 17 21	20 20
Carpet			μ			Hour		
90% glass			┦┤	Heat (Gain		le Cooling I	_oad
				T				
					Non-Solar		Total	
	Input			t Gain	RTS	Radiant	Sensible	
Llaura	Usage		onvective %		Zone Type	Cooling	Cooling	
Hour	Profile	Heat Gain	52%	48%	12	Load	Load	
	001						Btuh/lightir	ig watt
1	0%		-	-	35%	62,460	62,460	
2	0%		-		15%	55,520	55,520	
3	0%		-	-	10%	52,050	52,050	
4	0%		-	-	7%	48,580	48,580	
5	0%	-	-	-	5%	41,640	41,640	
6	0%		-	-	4%	34,700	34,700	
7	100%	722,920	375,918	347,002	3%	152,681	528,599	
8	100%	722,920	375,918	347,002	3%	201,261	577,179	
9	100%	· · · · · · · · · · · · · · · · · · ·	375,918	347,002	2%	232,491	608,409	
10	100%	722,920	375,918	347,002	2%	253,311	629,230	
11	100%	722,920	375,918	347,002	2%	267,191	643,110	
12	100%	722,920	375,918	347,002	2%	277,601	653,520	
13	100%	722,920	375,918	347,002	1%	284,541	660,460	
14	100%	722,920	375,918	347,002	1%	291,481	667,400	
15	100%	722,920	375,918	347,002	1%	294,951	670,870	
16	100%	722,920	375,918	347,002	1%	298,421	674,340	
17	100%	722,920	375,918	347,002	1%	305,361	681,280	
18	100%	722,920	375,918	347,002	1%	312,301	688,220	
19	0%	-	-	-	1%	194,321	194,321	
20	0%	-	-	-	1%	145,741	145,741	
21	0%	-	-	-	1%	114,511	114,511	
22	0%	-	-	-	1%	93,690	93,690	
23	0%	-	-	-	0%	79,810	79,810	
24	0%	-	-	-	0%	69,400	69,400	
		9 675 040	##########	########		нициции	лициции	
1		8,675,040	########	########	1	########	########	

	LUUL	ING L	UAU L	UNIPU		2						1 20011	ı vvan
	#REF!						<u>#REF!</u>						24-Apr-11
	WALL - COO	DLING LO	AD PER SQU	ARE FOOT			WALL DES	SCRIPTION	Spandrel (Glass Wall			
_					_		Area, s	square feet =	14400				
			Azimuth =	0]			Input U =	0.45	Btu/hr/sf F			
			Tilt =	90				CTS TYPE:				1	
					-				Spandrel Gl	ass, R-10 Bd, (Syp Bd 🛨		
		Locatio	n and design	weather %	6:		C	TS Wall ID:	1			2	
			CHICAGO MIDV					CTS Desc:	Spandrel G	lass, R-10 I	nsulation Bo	oard, Gyp Bo	bard
			Latitude =	41.79		Outsid	e Surface At		0.45				
			Longitude =	84.43			Outside :	Surface h =	5				
			Time Zone =	-6		Out	side Surface	Emittance	0.91				
				Central		(Dutside surfa	ce delta R	0				
	Loc	al Standard	d Meridian =	75			RTS Z	ONE TYPE			AD ALCONO COLO]	
									MW no Carp	et 90% glass			
							R	TS Zone ID	: 12			•	
		Ground	Reflectivity =	20%	1			RTS Desc:	MW no Can	oet 90% ala	ISS		
				Contract Contract (Second Second			%	Convective		j.			
		Boom Te	emperature =	68	ו			% Radiant:	And the second s	1			
								/o machant.	1070				
				LOADS -	Btuh/sf of wa	11							
1	Month =	1	2	3	4	5	6	7	8	9	10	11	12
	Hour $= 1$	-10.28	-8.84	-4.21	-0.46	2.24	5.02	7.33	6.36	4.14	-0.28	-4.69	-7.28
	2	-10.74	-9.35	-4.84	-1.12	1.64	4.48	6.82	5.86	3.60	-0.87	-5.19	-7.74
	3	-11.10	-9.76	-5.34	-1.66	1.16	4.03	6.41	5.47	3.17	-1.35	-5.59	-8.12
	4	-11.39	-10.10	-5.75	-2.09	0.77	3.67	6.09	5.14	2.82	-1.75	-5.92	-8.42
	5	-11.64	-10.37	-6.10	-2.46	0.48	3.42	5.83	4.87	2.52	-2.08	-6.18	-8.67
	6	-11.79	-10.56	-6.34	-2.64	0.43	3.41	5.78	4.74	2.35	-2.30	-6.36	-8.83
1	7	-11.78	-10.46	-6.11	-2.26	0.79	3.75	6.09	5.06	2.71	-2.02	-6.28	-8.81
	8	-11.07	-9.43	-4.67	-1.02	1.73	4.56	6.90	6.06	4.21	-0.31	-5.22	-8.07
1	9	-8.51	-6.74	-1.97	1.44	3.68	6.14	8.54	8.11	6.72	2.71	-2.24	-5.47
	10	-5.12	-3.48	1.25	4.43	6.23	8.41	10.81	10.61	9.62	6.03	1.16	-2.02
ĺ	11	-2.01	-0.42	4.33	7.31	8.75	10.72	13.10	13.04	12.31	9.02	4.15	1.08
	12	0.38	2.05	6.87	9.70	10.85	12.68	15.05	15.04	14.44	11.34	6.39	3.42
	13	1.90	3.66	8.58	11.31	12.26	13.99	16.35	16.36	15.80	12.76	7.70	4.82
1	14	2.51	4.40	9.40	12.09	12.95	14.64	17.00	16.96	16.34	13.28	8.08	5.28
	15	2.15	4.18	9.31	12.02	12.87	14.60	16.94	16.81	16.05	12.85	7.45	4.71
	16	0.69	2.97	8.24	11.07	12.02	13.83	16.16	15.89	14.91	11.43	5.68	2.92
	17	-1.84	0.81	6.34	9.39	10.64	12.63	14.88	14.36	13.07	9.16	3.11	0.23
	18	-4.44	-1.75	4.07	7.53	9.35	11.54	13.63	12.67	11.05	6.84	1.22	-1.74
	19	-5.89	-3.65	2.03	5.91	8.06	10.39	12.44	11.30	9.38	5.36	0.03	-2.93
	20	-6.95	-4.98	0.48	4.38	6.66	9.11	11.20	10.05	8.11	4.07	-1.02	-3.92
	21	-7.79	-5.98	-0.72	3.15	5.51	8.01	10.16	9.09	7.09	3.00	-1.93	-4.75
1	22	-8.52	-6.82	-1.73	2.10	4.56	7.13	9.32	8.30	6.24	2.06	-2.72	-5.48
	23	-9.18	-7.57	-2.65	1.15	3.68	6.34	8.58	7.58	5.45	1.19	-3.45	-6.15
	24	-9.78	-8.25	-3.49	0.29	2.90	5.62	7.91	6.92	4.75	0.40	-4.12	-6.76

LUUL	ING L	UAU L	UNIFU	<u>INEN I</u>	2						west	IIIS VV
<u>#REF!</u>						<u>#REF!</u>					Received and an and a second se	24-Apr-1
WALL - CO		D PER SQU	ARE FOOT				SCRIPTION	And and a subscription of the subscription of	alass Wall			
l						Area, s	quare feet =	CONTRACTOR OF A				
		Azimuth =	70				Input U =	0.45	Btu/hr/sf F		-	
		Tilt =	90				CTS TYPE:	Spandrel Gl	ass, R-10 Bd, (Syn Bd	1	
								opendrer Or	133, IC 10 DU, C	39p bd -		
		n and design				C	TS Wall ID:	1				
	USA - IL - C	HICAGO MIDV		5					lass, R-10 I	nsulation Bo	oard, Gyp Bo	bard
		Latitude =			Outside	Surface At		0.45				
		Longitude =	84.43		0.1		Surface h =	5				
		Time Zone =	-6			ide Surface		0.91				
1			Central		C	utside surfa		0			1	
Loc	al Standard	Meridian =	75			RIS Z	ONE TYPE	MW no Carp	et 90% glass		İ	
						р	TS Zone ID:	12			1	
	Cround	Deflectivity	000/	1		n			ant 000/ ala			
	Ground	Reflectivity =	20%			9/	RTS Desc:	the second s	pet 90% gia	ISS		
	D T .		68	1		70	Convective	54%				
	Room le	mperature =	68				% Radiant:	46%				
		T COOLING		tublet of w	all							
Month =	1	2	3	4	5	6	7	8	9	10	11	12
Hour = 1	-10.45	-8.95	-4.21	-0.30	2.49	5.30	7.59	6.51	4.15	-0.38	-4.84	-7.45
2	-10.89	-9.45	-4.85	-0.99	1.85	4.72	7.04	5.99	3.60	-0.97	-5.33	-7.90
3	-11.24	-9.86	-5.36	-1.55	1.34	4.24	6.60	5.57	3.16	-1.46	-5.73	-8.27
4	-11.54	-10.21	-5.79	-2.01	0.92	3.85	6.25	5.22	2.79	-1.86	-6.06	-8.58
5	-11.80	-10.49	-6.16	-2.41	0.60	3.56	5.96	4.92	2.47	-2.21	-6.33	-8.83
6	-11.95	-10.69	-6.41	-2.61	0.52	3.52	5.87	4.77	2.28	-2.43	-6.51	-8.98
7	-11.93	-10.63	-6.30	-2.32	0.85	3.83	6.16	5.03	2.45	-2.34	-6.46	-8.95
8	-11.56	-10.11	-5.52	-1.47	1.63	4.56	6.86	5.71	3.13	-1.67	-5.98	-8.57
9	-10.63	-8.99	-4.09	0.03	3.00	5.81	8.05	6.88	4.34	-0.37	-4.91	-7.62
10	-9.43	-7.60	-2.39	1.80	4.62	7.30	9.45	8.24	5.80	1.21	-3.58	-6.41
11	-8.15	-6.21	-0.70	3.57	6.22	8.78	10.83	9.59	7.30	2.96	-2.04	-5.02
12	-6.49	-4.57	1.19	5.51	7.96	10.33	12.29	11.11	9.15	5.29	0.14	-3.09
13	-4.13	-2.09	3.87	8.14	10.27	12.34	14.24	13.28	11.71	8.03	2.62	-0.73
14	-1.77	0.50	6.64	10.90	12.77	14.66	16.54	15.69	14.25	10.55	4.83	1.46
15	-0.04	2.52	8.85	13.11	14.83	16.64	18.54	17.69	16.18	12.24	6.14	2.82
16	0.32	3.37	9.92	14.25	15.95	17.78	19.74	18.77	16.96	12.46	5.70	2.49
17	-1.46	2.30	9.31	13.94	15.82	17.80	19.82	18.60	16.08	10.50	3.27	0.14
18	-4.53	-0.71	6.69	11.96	14.37	16.64	18.69	16.94	13.41	7.20	1.05	-2.02
19	-6.18	-3.43	2.99	8.54	11.56	14.23	16.24	13.97	10.25	5.31	-0.25	-3.27
20	-7.27	-5.07	0.76	5.47	8.25	11.11	13.07	11.16	8.38	3.92	-1.31	-4.25
21	-8.08	-6.13	-0.64	3.66	6.27	8.97	11.05	9.60	7.19	2.84	-2.19	-5.05
22	-8.78	-6.97	-1.70	2.42	5.04	7.70	9.84	8.60	6.28	1.91	-2.96	-5.75
23	-9.41	-7.71	-2.65	1.38	4.05	6.75	8.96	7.80	5.46	1.05	-3.65	-6.38
24	-9.97	-8.38	-3.49	0.47	3.20	5.96	8.21	7.10	4.76	0.28	-4.29	-6.95

	LUUL	ING L	UAU L	UNIPU	JINEIN I J								i vvan j
	#REF!						#REF!					A.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C	24-Apr-11
	WALL - COO		AD PER SQU	ARE FOOT			WALL DE	SCRIPTION	Snandrel	Glass Wall			
	ALL AND ALL AND A		the i mit header	addaddinadauddadaa '				square feet :	Contraction of the local division of the loc	arabb fran			
			Azimuth =	180	1		· · · · · · · · · · · · · · · · · · ·	Input U =	public line of the line of the line of the	Btu/hr/sf F			
			Tilt =	90	1			CTS TYPE:	Contraction of the local division of the loc	Bioninger		7	
1					3			••••	Spandrel G	ass, R-10 Bd, 0	Gyp Bd 🗕 🗕	1	
		Locatio	n and design	weather %	-			CTS Wall ID:	1			1	
			CHICAGO MIDW							lass, R-10 I	nsulation B	oard, Gyp Bo	oard
			Latitude =			Outsi	de Surface A		0.45	1			
			Longitude =	84.43			Outside	Surface h =	5	1			
			Time Zone =	-6		Ou	tside Surfac	e Emittance	0.91	1			
				Central			Outside surf	ace delta R	0	1			
	Loc	al Standard	d Meridian =	75			RTS	ZONE TYPE:				1	
									MW no Car	pet 90% glass		1	
							1	RTS Zone ID	: 12			-	
		Ground	Reflectivity	20%	1			RTS Desc:	MW no Car	pet 90% gla	ISS		Í
1					•		9	6 Convective	No. of Concession, Name of Street, or other Designation, or other	i č			
		Room Te	emperature =	68	1			% Radiant:					
	1	WALL UNI	T COOLING	LOADS - I	Btuh/sf of wal	I							
	Month =	1	2	3	4	5	6	7	8	9	10	11	12
1	Hour $= 1$	-10.73	-9.28	-4.59	-0.71	2.12	4.96	7.22	6.12	3.79	-0.68	-5.08	-7.68
	2	-11.13	-9.74	-5.18	-1.34	1.54	4.43	6.73	5.65	3.29	-1.23	-5.54	-8.10
í	3	-11.45	-10.11	-5.65	-1.86	1.06	3.98	6.33	5.28	2.88	-1.68	-5.91	-8.45
	4	-11.72	-10.42	-6.03	-2.28	0.68	3.63	6.01	4.97	2.55	-2.05	-6.21	-8.72
1	5	-11.95	-10.68	-6.37	-2.64	0.48	3.50	5.81	4.70	2.27	-2.37	-6.47	-8.96
	6	-12.10	-10.86	-6.60	-2.74	0.82	4.02	6.09	4.65	2.10	-2.58	-6.64	-9.11
1	7	-12.07	-10.79	-6.48	-2.25	1.49	4.77	6.81	5.09	2.28	-2.50	-6.59	-9.08
	8	-11.70	-10.27	-5.69	-1.49	2.08	5.32	7.39	5.69	2.96	-1.83	-6.11	-8.69
	9	-10.78	-9.15	-4.27	-0.08	3.14	6.12	8.23	6.78	4.17	-0.53	-5.04	-7.75
	10	-9.57	-7.76	-2.57	1.65	4.61	7.39	9.46	8.10	5.62	1.05	-3.72	-6.53
	11	-8.39	-6.40	-0.89	3.39	6.13	8.76	10.76	9.43	7.05	2.60	-2.41	-5.33
1	12	-7.36	-5.19	0.60	4.94	7.52	10.01	11.95	10.61	8.29	3.97	-1.25	-4.27
	13 14	-6.57 -5.99	-4.27	1.75 2.59	6.14	8.60	10.98	12.87	11.51	9.25	5.01	-0.38	-3.47
i	14	-5.99 -5.67	-3.59 -3.21	2.59	7.03 7.56	9.40 9.87	11.71 12.16	13.55	12.17	9.95	5.78	0.25	-2.88
	15	-5.67	-3.21	3.09	7.61	9.87 9.94	12.16	13.96 14.02	12.55 12.56	10.34 10.34	6.22 6.23	0.60 0.57	-2.56
1	17	-5.06	-3.63	2.67	7.18	9.66	12.24	13.79	12.56	9.92	5.77	0.57	-2.58 -2.95
-	18	-6.62	-4.31	1.85	6.44	9.34	11.90	13.79	12.19	9.92 9.20	5.04	-0.39	-2.95 -3.45
1	19	-7.22	-5.12	0.75	5.38	8.42	11.16	12.84	10.79	8.28	4.21	-0.39	-3.45
ļ	20	-7.94	-6.01	-0.41	3.91	6.70	9.54	11.36	9.61	7.31	3.20	-1.87	-4.03
	21	-8.60	-6.80	-1.42	2.72	5.38	8.09	10.10	8.69	6.46	2.28	-2.63	-4.75
	22	-9.20	-7.50	-2.31	1.73	4.40	7.09	9.19	7.94	5.70	1.45	-3.32	-6.10
	23	-9.77	-8.16	-3.15	0.83	3.54	6.28	8.44	7.27	4.99	0.66	-3.97	-6.69
1	24	-10.29	-8.76	-3.92	0.00	2.77	5.56	7.79	6.65	4.35	-0.06	-4.56	-7.22

1	LUUL	ING L	UAU L	UNITU	INCINI	2						Easi	wan
	#REF!						#REF!						24-Apr-11
	WALL - COO	DLING LO	AD PER SQU	ARE FOOT			WALL DE	SCRIPTION	Concrete	Wall			
ľ								square feet =	Report of the local division of the local di				
			Azimuth =	-70	1			Input U =	0.068	Btu/hr/sf F			
			Tilt =	90	1			CTS TYPE:					
					•				8" LW Conc	rete. R-11 Batt	, Gyp Bd 🖛		
		Locatio	on and design	weather %			C	CTS Wall ID:	31			1	
			CHICAGO MIDV					CTS Desc:	8" LW Cond	crete. R-11	Batt Insulatio	n, Gyp Boa	ard
			Latitude =	41.79		Outside	Surface A		0.6				
			Longitude =	84.43			Outside	Surface h =	5				
			Time Zone =	-6		Outs	ide Surface	Emittance	0.91				
				Central		C	utside surfa	ace delta R	0				
1	Loc	al Standan	d Meridian =					ONE TYPE					
	_50								MW no Carp	et 90% glass			
							F	TS Zone ID:	: 12	Contract of such life the success			
1		Ground	Reflectivity =	20%	1			RTS Desc:		net 90% ala	SS		
		0.00.00			1		%	Convective	Contract and the second second	gict be to gic			
		Room To	emperature =	68				% Radiant:	46%	1			
1				00	1			76 Hadiani.	4070				
	,		IT COOLING	LOADS - P	Rtuh/ef of w	all							
1	Month =	1	2	3	4	5	6	7	8	9	10	11	12
	Hour = 1	-1.00	-0.67	0.19	0.83	1.21	1.58	1.90	1.71	1.35	0.67	-0.12	-0.56
	2	-1.05	-0.73	0.12	0.76	1.14	1.52	1.84	1.65	1.29	0.61	-0.12	-0.61
	3	-1.10	-0.79	0.05	0.69	1.07	1.46	1.77	1.59	1.23	0.55	-0.23	-0.66
	4	-1.15	-0.85	-0.03	0.61	1.00	1.39	1.71	1.52	1.16	0.49	-0.28	-0.71
	5	-1.20	-0.91	-0.09	0.54	0.93	1.32	1.65	1.47	1.11	0.42	-0.33	-0.76
	6	-1.25	-0.96	-0.16	0.47	0.86	1.26	1.59	1.41	1.05	0.37	-0.38	-0.80
	7	-1.29	-1.01	-0.22	0.40	0.80	1.21	1.53	1.35	0.99	0.31	-0.43	-0.84
	8	-1.33	-1.06	-0.28	0.34	0.76	1.17	1.50	1.31	0.94	0.25	-0.47	-0.89
	9	-1.37	-1.10	-0.33	0.32	0.75	1.17	1.49	1.30	0.92	0.20	-0.51	-0.93
1	10	-1.39	-1.11	-0.32	0.34	0.78	1.20	1.52	1.32	0.93	0.21	-0.53	-0.94
1	11	-1.36	-1.08	-0.28	0.40	0.85	1.26	1.58	1.38	0.99	0.26	-0.50	-0.93
	12	-1.30	-1.00	-0.19	0.50	0.94	1.34	1.67	1.47	1.07	0.34	-0.44	-0.87
1	13	-1.22	-0.90	-0.08	0.60	1.03	1.43	1.76	1.57	1.17	0.43	-0.35	-0.79
	14	-1.12	-0.80	0.03	0.70	1.12	1.51	1.84	1.66	1.27	0.53	-0.26	-0.70
	15	-1.04	-0.71	0.12	0.79	1.19	1.58	1.91	1.73	1.34	0.61	-0.19	-0.62
	16	-0.97	-0.64	0.20	0.86	1.26	1.64	1.97	1.79	1.40	0.68	-0.13	-0.56
	17	-0.93	-0.59	0.26	0.92	1.31	1.69	2.01	1.83	1.45	0.73	-0.08	-0.52
	18	-0.89	-0.55	0.31	0.97	1.35	1.72	2.05	1.86	1.49	0.77	-0.04	-0.48
	19	-0.88	-0.53	0.34	1.00	1.38	1.75	2.07	1.88	1.51	0.80	-0.02	-0.46
	20	-0.87	-0.52	0.36	1.02	1.39	1.76	2.08	1.89	1.52	0.82	-0.01	-0.45
	21	-0.87	-0.52	0.35	1.01	1.39	1.76	2.07	1.88	1.51	0.81	-0.01	-0.45
	22	-0.89	-0.54	0.33	0.99	1.36	1.73	2.05	1.85	1.49	0.80	-0.02	-0.47
	23	-0.92	-0.58	0.29	0.95	1.32	1.70	2.01	1.81	1.45	0.76	-0.05	-0.49
	24	-0.96	-0.62	0.25	0.90	1.27	1.64	1.96	1.77	1.40	0.72	-0.08	-0.52

#BEF!												Z4-Apr-11
DF- COC	MUNG LOA	ROOF- COOLING LOAD PER SQUARE FOOT	ARE FOOT			ROOF DES	ROOF DESCRIPTION: Metal Deck	Metal Deck				
						Area, s	Area, square feet =	45000				
		Azimuth =	0				Input U =	0.05	Btu/hr/sf F			
		Tilt=	0				CTS TYPE:	Metal Roof,	Metal Roof, R-19 Batt Insulation	ation		
	-		:					1				
	USA - IL - C	Location and design weather %: SA - IL - CHICAGO MIDWAY AP - 0.4%	Weather %: VAY AP - 0.4%				CTS Roof ID: CTS Desc. 1	3 Metal Roof	R-19 Batt Inculation	culation		
		atituda -	11 70		Chinter C	Contono						
		onditude -	07.70		Cuiside	50		C†.0				
		Time Zong	61.10-			CUISIDE		0 0				
			- lontro					10.0				
Local	al Standard	Meridian =	-90			RTS ZONF TVPI	RTS ZONF TYPF	8				
		5	<u>}</u>					MW no Carp	MW no Carpet 90% glass			
						E E	RTS Zone ID:	12				
	Ground F	Ground Reflectivity =	20%				RTS Desc:	MW no Carl	Carpet 90% glass	S		
						%		4%				
	Room Ter	Temperature =	68				% Radiant:	46%				
	ROOF UNIT	T COOLING LOADS	I OADS - Rti	- Rhib/ef of roc	of							
Month =	-		0000	2	5	ų	7	8	σ	01	44	10
Hour = 1	-1.36	-1.19	-0.66	-0.22	0.10	0.42	0.67	0.54	0.27	-0.24	-0.73	-1.02
2	-1.40	-1.24	-0.73	-0.29	0.03	0.35	0.61	0.49	0.21	-0.30	-0.79	-1.07
က	-1.44	-1.28	-0.78	-0.35	-0.02	0.30	0.56	0.44	0.17	-0.35	-0.83	-1.11
4	-1.47	-1.32	-0.82	-0.40	-0.07	0.26	0.53	0.41	0.13	-0.39	-0.86	-1.14
£	-1.49	-1.35	-0.86	-0.44	-0.09	0.24	0.50	0.38	0.10	-0.43	-0.89	-1.16
9	-1.51	-1.36	-0.88	-0.43	-0.04	0.30	0.54	0.38	0.09	-0.45	-0.90	-1.18
~	-1.50	-1.34	-0.83	-0.30	0.12	0.46	0.69	0.50	0.16	-0.41	-0.89	-1.17
ω	-1.43	-1.23	-0.63	-0.04	0.39	0.72	0.93	0.73	0.36	-0.25	-0.79	-1.10
0	-1.24	-0.98	-0.30	0.32	0.73	1.04	1.24	1.03	0.66	0.04	-0.57	-0.92
9	-0.98	-0.67	0.06	0.69	1.07	1.36	1.56	1.35	0.98	0.36	-0.30	-0.67
-	-0.74	-0.39	0.38	1.01	1.37	1.65	1.84	1.63	1.26	0.64	-0.06	-0.44
12	-0.54	-0.16	0.64	1.27	1.61	1.87	2.06	1.84	1.47	0.85	0.13	-0.26
13	-0.42	-0.02	0.80	1.43	1.75	2.01	2.20	1.97	1.60	0.98	0.24	-0.15
14	-0.38	0.03	0.87	1.50	1.81	2.07	2.26	2.02	1.64	1.02	0.26	-0.12
15	-0.42	0.00	0.84	1.47	1.78	2.04	2.23	1.99	1.59	0.97	0.21	-0.16
16	-0.54	-0.13	0.71	1.33	1.65	1.92	2.11	1.86	1.45	0.83	0.08	-0.28
2	-0.71	-0.33	0.48	1.10	1.43	1.72	1.91	1.65	1.24	0.63	-0.07	-0.42
8	-0.85	-0.54	0.23	0.82	1.16	1.46	1.66	1.40	1.01	0.46	-0.17	-0.52
6	-0.94	-0.68	0.00	0.55	0.88	1.19	1.39	1.16	0.83	0.34	-0.26	-0.60
20	-1.03	-0.80	-0.16	0.34	0.64	0.94	1.16	0.97	0.70	0.21	-0.37	-0.69
21	-1.11	-0.90	-0.28	0.19	0.49	0.78	1.01	0.86	0.59	0.10	-0.45	-0.77
22	-1.18	-0.98	-0.39	0.07	0.37	0.67	0.91	0.76	0.50	0.00	-0.53	-0.84
23	-1.25	-1.06	-0.49	-0.04	0.27	0.57	0.82	0 GR	111	-0.00	-0 61	-0 01
176	10					1010	:::::	00.0	- +. >	0.00	-0.0-	2.5

DE-CO	ROOF- COOLING LOAD PER SOUARE FOOT	D PER SQU	ABE FOOT			ROOF DES	ROOF DESCRIPTION:	Metal Deck				
						Area, si	Area, square feet =	45000				
		Azimuth =	0				Input U =	0.05	Btu/hr/sf F			
		Tilt =	0				CTS TYPE:	Memb, R-15	Memb, R-15 Bd, 8" LW Conc			
	Location	Location and design weather %:	weather %:				CTS Roof ID.	4				
	USA - IL - (- IL - CHICAGO MIDWAY AP - 0.4%	WAY AP - 0.4%				CTS Desc:	Membrane,		Sheathing, R-15 Insulation Board.		8" LW Concr
		Latitude =	41.79		Outside	Surface	Absorptance =	0.45				
		Longitude =	-87.75				Outside Surface h =	5				
	F	Time Zone =	-9		Outside	0.	Surface Emittance =	0.91				
			Central		0	Outside surface delta R	ce delta R =	20				
Γo	Local Standard	Meridian =	06-			RTS Z(RTS ZONE TYPE:	MW no Carp	MW no Carpet 90% glass			
						Ξ	RTS Zone ID:	12				
	Ground R	Ground Reflectivity =	20%				RTS Desc:	MW no Carl	MW no Carpet 90% glass	S		
						%	Convective:	54%				
	Room Ter	Room Temperature =	68				% Radiant:	46%				
	ROOF UNIT	T COOLING	- LOADS -	Btuh/sf of ro	of							
Month =		2	3 S	4	2	9	7	8	6	10	+	12
Hour $= 1$		-0.69	-0.01	0.54	0.88	1.17	1.39	1.19	0.85	0.29	-0.32	-0.66
N		-0.71	-0.03	0.51	0.85	1.14	1.36	1.16	0.83	0.27	-0.34	-0.67
ε		-0.73	-0.06	0.48	0.81	1.11	1.32	1.13	0.80	0.25	-0.36	-0.69
4 1		-0.76	-0.10	0.44	0.77	1.07	1.29	1.10	0.77	0.22	-0.38	-0.71
20		-0.79	-0.13	0.40	0.73	1.03	1.25	1.06	0.74	0.19	-0.40	-0.73
10		-0.81	-0.17	0.35	0.68	0.99	1.21	1.03	0.71	0.16	-0.42	-0.75
0	RO.1-	-0.84	-0.21	0.31	0.64	0.94	1.17	0.99	0.67	0.13	-0.45	-0.77
		10.00	GZ.0-	0.26	0.60	0.90	1.13	0.95	0.64	0.10	-0.47	-0.79
D C		-0.90	87.0-	77.0	992.0	0.87	1.09	0.92	0.61	0.06	-0.50	-0.82
217	-1.12	-0.30	-0.32	0.10	0.53	0.84	10.1	0.89	0.58	0.04	-0.52	-0.84
12		-0.95	-0.34	0.18	0.52	0.83	90.1	0.00	10.0	100	-0.54	C8.U-
13		-0.94	-0.33	0.19	0.54	0.85	801		0.0	0.0	-0.04	-0.00
14		-0.92	-0.30	0.23	0.58	0.88	1 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	0.03	190	0.05	-0.04	10.0-
15	-1.13	-0.89	-0.26	0.27	0.62	0.93	1.15	0.97	0.65	0.08	-0.49	-0.81
16		-0.85	-0.21	0.33	0.68	0.98	1.20	1.02	0.69	0.13	-0.46	-0.78
17		-0.80	-0.15	0.39	0.74	1.04	1.26	1.07	0.74	0.17	-0.42	-0.75
18		-0.76	-0.10	0.45	0.80	1.10	1.31	1.12	0.79	0.22	-0.39	-0.72
19		-0.73	-0.05	0.50	0.85	1.15	1.36	1.17	0.83	0.25	-0.36	-0.69
20	-0.98	-0.70	-0.02	0.54	0.89	1.18	1.40	1.20	0.86	0.28	-0.34	-0.67
21		-0.68	0.01	0.57	0.91	1.21	1.42	1.22	0.87	0.30	-0.32	-0.66
22		-0.67	0.02	0.58	0.92	1.22	1.43	1.22	0.88	0.31	-0.31	-0.65
	0000										and a state of the second s	

OF-CO	ROOF- COOLING LOAD PER SQUARE FOOT	D PER SOU	ARE FOOT			ROOF DES	ROOF DESCRIPTION:	Metal Deck				
						Area, si	Area, square feet =	45000				
		Azimuth =	0				Input U =	0.05	Btu/hr/sf F			
		Tilt =	0				CTS TYPE:	Memb, R-15	Memb, R-15 Bd, 8" LW Conc			
	Location	Location and design weather %:	weather %:				CTS Roof ID:	16				
	USA - IL - C	- CHICAGO MIDW/AY AP - 0.4%	NAY AP - 0.4%				CTS Desc:	Мел	Sheathing, F	Sheathing, R-15 Insulation Board,	on Board, 8'	8" LW Concr
		Latitude =	41.79		Outside	Surface	Absorptance =					
	-	Longitude =	-87.75			Outsi	Outside Surface h =	5				
	F	Time Zone =	9-		Outside	105	Surface Emittance =	0.91				
			Central		0	q	ce delta R =	20				
Loc	Local Standard	Meridian =	06-			RTS Z(RTS ZONE TYPE:	MW no Carp	MW no Carpet 90% glass			
						ία.	RTS Zone ID:	12				
	Ground Re	Reflectivity =	20%		-		RTS Desc:	MW no Carl	MW no Carpet 90% glass	SS		
						%	Convective:	54%				
	Room Temperature	nperature =	68				% Radiant:	46%				
	ROOF UNIT	COOLING	- SOADS -	Btuh/sf of ro	of							
Month =	1	2	က	4	5	9	7	8	6	10	11	12
Hour = 1		-0.69	-0.01	0.54	0.88	1.17	1.39	1.19	0.85	0.29	-0.32	-0.66
N		-0.71	-0.03	0.51	0.85	1.14	1.36	1.16	0.83	0.27	-0.34	-0.67
ε Γ		-0.73	-0.06	0.48	0.81	1.11	1.32	1.13	0.80	0.25	-0.36	-0.69
4		-0.76	-0.10	0.44	0.77	1.07	1.29	1.10	0.77	0.22	-0.38	-0.71
2		-0.79	-0.13	0.40	0.73	1.03	1.25	1.06	0.74	0.19	-0.40	-0.73
91		-0.81	-0.17	0.35	0.68	0.99	1.21	1.03	0.71	0.16	-0.42	-0.75
		-0.84	-0.21	0.31	0.64	0.94	1.17	0.99	0.67	0.13	-0.45	-0.77
		-0.87	-0.25	0.26	0.60	0.90	1.13	0.95	0.64	0.10	-0.47	-0.79
ימ		-0.90	-0.28	0.22	0.56	0.87	1.09	0.92	0.61	0.06	-0.50	-0.82
2;		-0.93	-0.32	0.19	0.53	0.84	1.07	0.89	0.58	0.04	-0.52	-0.84
= ;		0.80	-0.34	0.18	0.52	0.83	1.06	0.88	0.57	0.02	-0.54	-0.85
<u>v</u> Ç		CR.0-	-0.34	0.18	79.0	0.83	1.06	0.88	0.57	0.01	-0.54	-0.86
5-10		-0.94	-0.33	0.19	0.54	0.85	1.08	0.90	0.58	0.03	-0.54	-0.85
		-0.92	-0.30	0.23	80.0	0.88		0.93	0.61	0.05	-0.52	-0.84
<u>c</u>		-0.89	-0.26	0.27	0.62	0.93	1.15	0.97	0.65	0.08	-0.49	-0.81
91		-0.85	-0.21	0.33	0.68	0.98	1.20	1.02	0.69	0.13	-0.46	-0.78
		-0.80	-0.15	0.39	0.74	1.04	1.26	1.07	0.74	0.17	-0.42	-0.75
18		-0.76	-0.10	0.45	0.80	1.10	1.31	1.12	0.79	0.22	-0.39	-0.72
19		-0.73	-0.05	0.50	0.85	1.15	1.36	1.17	0.83	0.25	-0.36	-0.69
20		-0.70	-0.02	0.54	0.89	1.18	1.40	1.20	0.86	0.28	-0.34	-0.67
21		-0.68	0.01	0.57	0.91	1.21	1.42	1.22	0.87	0.30	-0.32	-0.66
22	-0.96	-0.67	0.02	0.58	0.92	1.22	1.43	1.22	0.88	0.31	-0.31	-0.65
										10000000		

APPENDIX: HVAC (H-3)

HVAC LOAD EXPLORER CALCULATIONS

IPRO359 Spring 2011

Program Cooling Loads.txt Summary Report(Peak Loads) Chicago Children's Museum Name Of Building: Building Location Details Building City: Chicago Ohare International Airport Building State: Illinois Latitude: 42.0 BUILDING SUMMER CONDITIONS Dry Bulb Temperature: 88.0 F Daily Range: 19.6 F Wet Bulb Temperature: 73.0 F Clearness: 1.0000 Ground Reflectivity: 0.2 Atm. Pressure: 14.6 PSI Wind Direction: 270.0 degrees clockwise from North Wind Speed: 17.6 mph BUILDING WINTER CONDITIONS Dry Bulb Temperature: -1.0 F Daily Range: 32.0 Wet Bulb Temperature: -6.0 F Clearness: 0.0000 Ground Reflectivity: 0.2 Atm. Pressure: 14.6 PSI Wind Direction: 270.0 degrees clockwise from North Wind Speed: 14.6 mph ##Cooling Load Calculations## Coil Loads Load Total CLg Sensible CLg Latent CLg Air Flow Hour 1 Coil Load Coil Load Coil Load (BTU/Hr) (BTU/Hr) (BTU/Hr) (CFM) 195841.9 3054866.3 2027135.4 1027730.9 First Floor 17 Second Floor 2715114.0 1687469.4 1027644.6 161176.6 16 Third Floor 1687469.4 1027644.6 16 2715114.0 161176.6 375375.3 784946.3 Fourth Floor 17 1160321.6 75647.6 9645415.9 6187020.5 3458395.4 593842.8 Sum

Program Heating Loads.txt Summary Report(Peak Loads) Name Of Building: Chicago Children's Museum Building Location Details Building City: Chicago Ohare International Airport Building State: Illinois Latitude: 42.0 BUILDING SUMMER CONDITIONS Dry Bulb Temperature: 88.0 F Daily Range: 19.6 F Wet Bulb Temperature: 73.0 F Clearness: 1.0000 Ground Reflectivity: 0.2 Atm. Pressure: 14.6 PSI Wind Direction: 270.0 degrees clockwise from North Wind Speed: 12.0 mph BUILDING WINTER CONDITIONS Dry Bulb Temperature: -1.0 F Daily Range: 0.0 Wet Bulb Temperature: -6.0 F Clearness: 0.0000 Ground Reflectivity: 0.2 Atm. Pressure: 14.6 PSI Wind Direction: 270.0 degrees clockwise from North Wind Speed: 10.0 mph ##Heating Load Calculations## Coil Loads Load Sensible Htg Air Flow Hour Total Htg Latent Htg 1 Coil Load Coil Load Coil Load (BTU/Hr)(BTU/Hr) (CFM) (BTU/Hr)4747.0 175975.2 First Floor 1 486503.4 310528.2 4747.0 Second Floor 175975.2 1 310528.2 486503.4 4747.0 1 Third Floor 486503.4 310528.2 175975.2 1 72228.6 Fourth Floor 199684.1 127455.5 1948.4 1659194.4 1059040.0 600154.1 16189.4 Sum

APPENDIX: HVAC (H-4)

HVAC EQUIPMENT CALCULATIONS

IPRO359 Spring 2011

HVAC Equipment Sizing

Based on our final cooling loads, heating loads, and air flow supply rates from HVAC Load explorer, we were able to size the larger HVAC units for the building.

For our chiller, the capacity was based on our total cooling load for the building:

(Total Cooling Load) 5,238,673.01Btu/h x 1 ton/12,000 Btu/h = 436 ton

We used one 450 ton centrifugal chiller for the museum.

For our cooling tower, the capacity was also based on our total cooling load, but at a 80% efficiency:

(Total Cooling Load) 5,238,673.01Btu/h x 1 ton/15,000 Btu/h = 349 ton

We used one

For our boiler, the capacity was based on our total heating load for the building:

(Total Heating Load) 1,126,987Btu/h x 1 MBH/1000 Btu/h = 1127 MBH

We used a 1000 MBH gas-fired boiler.

For our air handling unit, the supply flow rate was based on the largest flow rate of the building: (Total air supply flow rate) = 113,549 CFM

We divided this flow rate into a 15,000 CFM air handlers to supply the fourth floor, one 20,000 CFM unit on the second and third floors, and two 30,000 CFM air handler on the first floor.

U.S. Department of Energy - Energy Efficiency and Renewable Energy Federal Energy Management Program

Energy Cost Calculator for Water-Cooled Electric Chillers

Vary equipment size, energy cost, hours of operation, and /or efficiency level.

	INPUT S	ECTION	
Input the following data (if an calculator will set it to t			Defaults
Chiller Project Type	New In	stallation	New
Existing Efficiency * Full Load		kW/ton	_
Existing Capacity *		tons	_
New Chiller Type (by compressor type)	Cen	trifugal	Centrifugal
New Capacity	800	tons	500 tons
New Efficiency Full Load	0.56	kW/ton	0.56 kW/ton
Energy Cost	\$.15	per kWh	\$0.06 per kWh
Quantity of Chillers to be Purchased	2	unit(s)	1 unit
Annual Hours of Operation**	1900	hours	2000 hours

* Existing values should only be entered when Project Type is a replacement. ** Value entered should be equivalent full load hours (e.g., 1000 hours @ 50% load

equals 500 hours.) Calculate Reset

OUTPUT SECTION

Water-Cooled Chiller Performance	Your New Chiller	Existing Chiller	Base Model	FEMP Recommended Level	Best Available
Efficiency	0.56 kW/ton		0.68	0.56	0.47
Annual Energy Use	851200 kWh		1033600	851200	714400
Annual Energy Cost	\$ 127680	\$	\$ 155040	\$ 127680	\$ 107160
Lifetime Energy Cost	\$ 2019898	\$	\$ 2452733	\$ 2019898	\$ 1695271
Lifetime Energy Cost Savings	\$ 432835	\$	\$ 0	\$ 432835	\$ 757462
Lifetime Energy Cost Savings for 2 Chiller(s)	\$ 865670	\$	\$ 0	\$ 865670	\$ 1514924

Your selection of a 800ton centrifugalchiller unit will have a\$ 432835energy cost savings per chiller (over its estimated 23 year lifeexpectancy compared to the base model).

Assumptions

- "Base model" has an efficiency that just meets ASHRAE Standard 90.1.
- Calculator assumes user is entering efficiency ratings based on ARI's 1998 Standard 550/590.
- Lifetime energy cost is the sum of the discounted value of the annual energy cost based on assumed chiller life of 23 years.
- Future electricity price trends and a discount rate of 3.2% are based on Federal guidelines.
- \$0.06 for electricity is the Federal average price in the U.S.

Disclaimer

This cost calculator is a screening tool that estimates a product's lifetime energy cost savings at various efficiency levels. Maintenance and installation costs do not vary significantly among the same product having different efficiencies; so, these costs are not included in this calculator tool. For a detailed life-cycle cost analysis, FEMP has developed a tool called <u>Building Life-Cycle Cost (BLCC)</u>. This downloadable tool allows the user to vary interest rates, installation costs, maintenance costs, salvage values, and life expectancy for a product or an entire energy project.

Contacts | Web Site Policies | U.S. Department of Energy | USA.gov Content Last Updated: 11/03/2010 U.S. Department of Energy - Energy Efficiency and Renewable Energy Federal Energy Management Program

Energy Cost Calculator for Commercial Boilers (Closed Loop, Space Heating Applications Only)

Vary equipment size, energy cost, hours of operation, and /or efficiency level.

	INPUT SE	CTION	
Input the following data (if any calculator will set to c			Defaults
Project Type	New In:	stallation	New Installation
Deliverable Fluid	W	ater	Water
Fuel Used	Gas	5	Gas
Existing Capacity *		MBtu/h	
Existing Thermal Efficiency *		% Et	-
New Capacity	1875 MBtu,	/h**	5000 MBtu/h
New Thermal Efficiency	80	% Et	80% Et
Energy Cost	\$ 0.86 therms	per	\$0.60 per therm
Quantity of Boilers to be Purchased	1	unit(s)	1 unit
Annual Hours of Operation***	1800	hours	1500 hours

* Existing values should only be entered when Project Type is a replacement.
** 1 MBtu/h = 1000 Btu/h; 1 Therm = 100,000 Btu; 1.4 Therms = 140,000 Btu
*** Value entered should be equivalent full load hours (e.g., 1000 hours @ 50% load equals 500 hours).

Calculate Reset

OUTPUT SECTION

Performance per Boiler	Your Choice	Existing Boiler	Base Model	FEMP Recommended Level	Best Available
Thermal Efficiency	80 Et		75	80	86.7
Annual Energy Use therms	42187		45000	42187	38927
Annual Energy Costs	\$ 36280	\$	\$ 38700	\$ 36280	\$ 33477
Lifetime Energy Costs	\$ 625104	\$	\$ 666801	\$ 625104	\$ 576808
Lifetime Energy Cost Savings	\$ 41697	\$	\$ 0	\$41697	\$ 89993
Lifetime Energy Cost Savings for 1 Boiler(s)	\$ 41697	\$	\$ 0	\$41697	\$ 89993

Your selection of a 1875 MBtu/h water boiler will have an energy cost savings of \$ 41697 over an estimated life of 25 years as compared to the base model.

Assumptions

- \$0.06/kWh is the Federal average electricity price in the U.S.
- \$0.60/therm is the Federal average gas price in the U.S.
- \$0.66/gallon is the Federal average fuel oil price in the U.S.
- Future electricity price trends and a discount rate of 3.2% are based on Federal guidelines.
- Lifetime energy cost is the sum of the discounted value of annual energy costs based on assumed boiler life of 25 years.
- The average heating value for No. 2 oil is 140,000 Btu/gallon.

Disclaimer

This cost calculator is a screening tool that estimates a product's lifetime energy cost savings at various efficiency levels. Maintenance and installation costs do not vary significantly among the same product having different efficiencies; so, these costs are not included in this calculator tool. For a detailed life-cycle cost analysis, FEMP has developed a tool called <u>Building Life-Cycle Cost (BLCC)</u>. This downloadable tool allows the user to vary interest rates, installation costs, maintenance costs, salvage values, and life expectancy for a product or an entire energy project.

Contacts | Web Site Policies | U.S. Department of Energy | USA.gov Content Last Updated: 11/03/2010

Extended-Size Vision[™] Indoor Air Handlers Up to 160 sq.ft. coil face area and 100,000 cfm

What alternative do I have to specifying multiple air handlers or purchasing an expensive custom unit when the air handling requirements surpass the maximum sizes available from most manufacturers?

McQuay now offers Vision indoor air handlers in capacities up to 100,000 cfm with coil face areas up to 160 square feet. These are not only the largest indoor air handling units available in a standard platform, but also the largest units that are AHRI certified. Best of all, they offer the same features, benefits, options and accessories that have made Vision such a popular air handler platform.

Features

• Standard units in sizes up to 100,000 cfm and 160 square feet of coil face area. AHRI certification provides added assurance that these units will perform as designed.

- Custom-size units of up to 122 inches in height and 228 inches in width. Our Variable Dimensioning[™] feature allows cabinet sizing in increments of 4 inches in width and 2 inches in height up to these maximums. A short-and-wide unit can be configured that is ideal for low-height ceilings and high-air-volume projects.
- Heavy-duty, patent-pending base rail to handle heavier component loads.
- Retractable lifting lugs provide a balanced, even load for easy rigging. Together with our patented splice collars, they make installation and assembly of unit sections fast and easy.
- DWDI fans up to 49 inches in diameter, Class III.
- Plenum fans up to 66 inches in diameter, Class III .

- 100, 125 and 150 horsepower motors.
- Center-split coils option to minimize fluid pressure drop and coil pull length.

Benefits

- An economical alternative to installing multiple air handlers or a custom system for high-cfm applications.
- A patented product platform that gives you the flexibility to build the exact air handling system to meet your project's demands for operating efficiency, indoor air quality, quiet operation and low cost installation and maintenance.
- The Vision air handler's unique, custom-modular platform and Variable Dimensioning[™] feature provide tremendous component and sizing flexibility, allowing

you to configure the optimal air handling system for your client's environment.

- Choose from a wide variety of unit sizes, fan assemblies and motors, plus many options to custom-build the best Vision air handler for your application. See our Vision Customized Indoor Air Handlers brochure for details on all of the options available.
- User-friendly McQuay SelectTools[™] selection software makes it easy to design your customized unit, and it generates drawings and specifications in minutes.

For more information

For more information on Vision Extended Size air handlers for your next project, contact your local McQuay representative. To locate your representative, visit www.mcquay.com or call (800) 432-1342.

Technical Specifications

Description	Unit Size				
	107	124	141	160	169
Airflow range, cfm	29,000 -77,500	33,600 -89, 500	40,300 -107,400	45,600 - 121,800	48,400 - 129,000
cfm @ 500 ft/min through large face area coil	48,400	55,900	67,100	76,200	80,600
Height × width (in)*	108 x 168	108 x 192	122 x 192	122 x 216	122 x 228
Cooling coil face area, sq ft, large	109.79	126.79	134.25	152.25	161.25
Cooling coil face area, sq ft, medium	77.5	89.5	96.;96	109.96	116.46

* Note: Vision air handler units are available in 2-inch increments of height and 4-inch increments of width to fit the exact space requirements...

Form No. 1900-2 (Rev. 3/01)

Bryan "Flexible Water Tube" CL Series Water Boilers

900,000 to 3,000,000 BTUH Atmospheric gas fired

B High efficiency hot water heat for commercial industrial applications

In a range of sizes from 900,000 to 3,000,000 BTUH input, Bryan CL series flexible tube hot water boilers are ideal for many commercial, institutional and industrial applications. These include healthcare facilities; schools; apartments; churches; office buildings; correctional facilities; airports; sewage treatment plants; golf, tennis and fitness clubs.

All Bryan boilers are built in accordance with the requirements of the ASME Boiler and Pressure Vessel Code.

Efficient "Flexible Water Tube" design

The Bryan bent water tube provides rapid internal circulation — for maximum heat transfer and operating efficiency.

Easily replaceable tubes

Tubes are easily removable and replaceable without welding or rolling. Requires little service space.

No "Thermal Shock"

The flexibility of the bent water tube design eliminates all possible damage from "Thermal Shock" and from stresses caused by poor or unequal internal circulation. This is particularly important with forced hot water heating systems designed for higher temperatures and greater temperature drops.

Natural internal circulation

The water tube design and the large downcomer legs provide adequate internal circulation without concern over exterior pumping conditions. Low pressure drop through boiler.

Compact — minimum floor space

Requires less floor space than most boilers-minimum boiler room size.

Shipped completely assembled and wired. Units can also be shipped "Knocked Down" for on-site assembly.

Tubes are easily removable and replaceable, requiring little service space.

Bryan CL Series Water Boiler Specifications

Boiler	Input	Nomina	Output	Net Loa	d Recom. (EDR)	Approx.
Model Number	MBH	MBH	Boiler H.P.	MBH	Hot Water Radiation Sq. Pt.	Shipping Weight
CL-90	900	720	21	626	4,180	1,425
CL-120	1,200	960	29	835	5,560	1,550
CL-150	1,500	1,200	36	1,042	6,870	1,875
CL-180	1,800	1,440	43	1,250	8,350	2,075
CL-210	2,100	1,680	50	1,460	9,750	2,475
CL-240	2,400	1,920	57	1,670	11,120	2,800
CL-270	2,700	2,160	64	1,880	12,500	3,000
CL-300	3,000	2,400	72	2,087	13,920	3,825

Bryan Boilers are designed and built to the requirements of the appropriate A.S.M.E. Boiler code. Not approved for installation on combustible floor.

Look at these unique features of the Bryan CL Series

A. Heavy steel boiler frame, built and stamped in accordance with the ASME Boiler Code. Constructed as standard for hot water operating pressures to 60 psi. Also available for higher pressures.

B. Water leg downcomers to insure rapid internal circulation and temperature equalization.

C. Bryan flexible water tubes, easily replaceable, requiring no welding or rolling.

D. Access panels, interior of boiler easily accessible for service and inspection. Entire burner assembly completely accessible.

E. Boiler tube access panel bolted tightly and sealed to boiler frame. Constructed of high temperature insulation in steel framework. Tubes installed from one side.

F. Boiler frame insulated with 11/2" thick insulating refractory.

G. Boiler jacket, heavy gauge, zinc-coated, rust resistant with attractive enamel and fiberglas insulation.

H. Draft diverter.

J. Gas burner—atmospheric. Quiet electric ignition and operation. No moving parts or complicated adjustments.

K. All controls installed and wired.

Extra Value

20 year warranty

Because of the proven effectiveness of the flexible water tube design in eliminating thermal shock damage, every Bryan Flexible Water tube Boiler is warranted for 20 years, *non-prorated*, against pressure vessel damage due to thermal shock.

Compact design requires minimum floor space

Due to the flexible water tube design, floor space requirements are minimized, while heating surface area per boiler HP is exceptionally high. The CL Series requires only 24" clearance for servicing the water tubes, only on one side of the boiler. Dramatically reduced space requirements in a boiler room mean considerable savings in building costs.

Bryan CL Series Boilers Standard and Optional Equipment

STANDARD EQUIPMENT FURNISHED

Combination thermometer and altitude gauge, ASME Code rated boiler relief valve, water temperature control (240°F Max. Std.), high limit control, probe LWCO, electronic combustion safety control, automatic operating gas valve, safety gas valve, pilot solenoid valve, electric ignition assembly, main manual gas shut-off valve, pilot cock, pilot and main gas pressure regulators, draft diverter, all controls mounted and wired.

OPTIONAL EQUIPMENT, EXTRA COST

- [1] Manual reset high limit control, installed
- [2] Manual reset low water cutoff
- [3] Auxiliary low water cutoff
- [4] Combination low water cutoff and feeder
- [5] Barometric damper
- [6] Alarm bells or horns
- [7] UL, FM, IRI, CSD-1 or other insurance approved control systems
- [8] Indicating lights, as desired[9] Low fire start, Hi-Lo or modulation fire
- control
- [10] Heat exchanger coils for domestic water
- [11] Lead-lag systems for two or more boilers with or without outdoor reset control

OPTIONAL CONSTRUCTION, HIGH TEMPERATURE HOT WATER

Optional construction to ASME Power Boiler Code requirements for temperatures exceeding 250°F and/or pressure exceeding 150 psi to maximum of 300°F and 250 psi, high temperature gauge and operating controls included.

When ordering, please specify:

- [1] Boiler size
 - [2] Supply and return temperatures required[3] Boiler relief valve setting
 - [4] Type of fuel: natural, LP or other gas
 - [5] Gas type, BTU content, specific gravity
 - and pressure available [6] Electric power voltage, phase and
 - frequency
- [7] Optional extra equipment or construction
- [8] Special approvals required (FM, IRI or other)

Bryan CL Series Atmospheric Gas Fired Water Tube Boilers

◄ D>
A ───►
< B>
PLAN VIEW
Barometric Draft Control (optional)
FRONT VIEW

.

國際政策		1214003				DIMENSION	IS-inches	(cm)					
	A	В	C	D	E	F	G	Н		J	K	L	M
Boiler Model Number	Length of Jacket	Flue Location	Flue Size	Overall Length	Gas Train Conn.	Supply Nozzle	Return Nozzle	Width Outside Jacket	Min. Tube Removal Clearance	Height Over Diverter	Height To Barometric	Height Over Jacket	Floor to Flow Nozzle
CL-90-W	41 ¹ /2	20³/4	14	551/2	1 ¹ / ₄	3" NPT	3" NPT	341/2	24	91³/8	65 ¹ /2	55 ¹ /2	59¹/₂
	(105.41)	(52.71)	(35.56)	(140.9)	(3.18)	(7.62)	(7.62)	(87.63)	(60.96)	(231.99)	(166.37)	(140.97)	(151.1)
CL-120-W	50 ³ /4	25 ³ /8	16	64 ³ / ₄	1 ¹ / ₄	3" NPT	3" NPT	34 ¹ / ₂	24	94 ¹ / ₄	67	55 ¹ /2	59 ¹ /2
	(128.91)	(64.45)	(40.64)	(164.5)	(3.18)	(7.62)	(7.62)	(87.63)	(60.96)	(239.60)	(170.18)	(140.97)	(151.1)
CL-150-W	59 ³ /4	29 ⁷ /8	18	73³/₄	11/2	3" NPT	3" NPT	34 ¹ /2	24	96 ¹ /4	67¹/₂	55 ¹ /2	59 ¹ /2
	(151.77)	(75.88)	(45.72)	(187.3)	(3.81)	(7.62)	(7.62)	(87.63)	(60.96)	(244.48)	(171.45)	(140.97)	(151.1)
CL-180-W	69	34 ¹ /2	20	83	2	3" NPT	3" NPT	34 ¹ / ₂	24	98 ¹ / ₄	68	55 ¹ /2	59 ¹ /2
	(175.26)	(87.63)	(50.80)	(210.82)	(5.08)	(7.62)	(7.62)	(87.63)	(60.96)	(249.56)	(172.72)	(140.97)	(151.1)
CL-210-W	78 ¹ /4	39 ¹ /8	20	92 ¹ / ₄	2	3" NPT	3" NPT	34 ¹ / ₂	24	98¹/₄	681/2	55 ¹ /2	59 ¹ /2
	(198.76)	(99.38)	(50.80)	(234.3)	(5.08)	(7.62)	(7.62)	(87.63)	(60.96)	(249.56)	(173.99)	(140.97)	(151.1)
CL-240-W	87 ¹ /2	43 ³ /4	22	101 ¹ / ₂	2	3" NPT	3" NPT	34 ¹ /2	24	101 ¹ / ₄	69	55 ¹ /2	59 ¹ /2
	(222.25)	(111.13)	(55.88)	(257.8)	(5.08)	(7.62)	(7.62)	(87.63)	(60.96)	(257.18)	(175.26)	(140.97)	(151.1)
CL-270-W	96 ³ /4	48³/s	22	110³/₄	2	3" NPT	3" NPT	34 ¹ /2	24	101 ¹ /4	69 ¹ /2	55 ¹ /2	59 ¹ /2
	(245.75)	(122.87)	(55.88)	(281.3)	(5.08)	(7.62)	(7.62)	(87.63)	(60.96)	(257.18)	(176.53)	(140.97)	(151.1)
CL-300-W	106	53	22	120	2 ¹ /2	3" NPT	3" NPT	34 ¹ / ₂	24	101 ¹ /4	70	55 ¹ /2	59 ¹ /2
	(269.24)	(134.62)	(55.88)	(304.80)	(6.35)	(7.62)	(7.62)	(87.63)	(60.96)	(257.18)	(177.80)	(140.97)	(151.1)

Dimensions and specifications are subject to change without notice. Consult factory for certified dimensions.

Bryan Steam LLC — Leaders Since 1916 783 N. Chili Ave., Peru, Indiana 46970 U.S.A. Phone: 765-473-6651 • Internet: www.bryanboilers.com Fax: 765-473-3074 • E-mail: bryanboilers@iquest.net APPENDIX: HVAC (H-5)

R.S. MEANS COST ESTIMATE SPREADSHEET

IPRO359 Spring 2011

Zip Code Notes			[Adjusted by 2306 [310 0020]					(Adjusted hv 23511313 1220)	[/=1]usted hy 23311313 1200]	Aujusted													
Data Zip I Reiense	Year 2011	Year 2011	Year 2011	Year 2011	Year 2011	Year 2011	Year 2011	Yeer 2011	Year 2011	Year 2014	7 aur 2011	Year 2011	Year 2011	Year 2011	Year 2011	Yeer 2011	Year 2011	Year 2011	Year 2011	Year	Yeer 2011	Year 2011	Year
Labor Type	STD	STD	STD	STD	STD	STD	CIS CIS	STD	STD	E	STD	STD	STD	STD	STD	STD	STD	STD	STD	Es.	STD STD	STD	
Ext Total D&P	*****	****	********	*****	Pressons	Southers	*****	******	*****		******	*******	******		******	******	******	*******	****	******	******	1111111111111	
Ext Equip. O&P				. \$. 9				5											
Ext. Lubor O&P	\$ 28100	\$ 2,625.00	\$ 393.75	\$ 125,160.00	3,000,00	\$ 970.00	\$ 1,205,000 00	\$ 132,550.00	\$ 482,000.00	\$ 72.300.00	\$ 416.00	\$ 8,400.00	\$ 10,650 00	\$ 2,250.00	\$ 9,775.00	\$ 14,250.00	\$ 625.00	\$ 22,400.00	\$ 7,250 00	\$ 12.500 CD	\$ 18,100 00	\$ 4,525.00	
Ext Mat O&P	\$ 2,450 00	\$ 5,375.00	\$ 798.75	\$ 9,240.00	\$ 4,700.00	\$ 28,000 00	\$ 232.000.00				\$ 630.00	\$ 102,000.00	\$ 45,900.00	\$ 39,200.00	\$ 24,500.00	\$ 18,500.00	\$ 7.450.00	\$ 209,500.00	\$ 16,600.00	\$ 142,000 00	\$ 195,000 LU	\$ 54,500.00	90 000 St

		Total O&P		\$ 2,731.00	\$ 7,950 ()0	\$ 1,192.50	\$ \$	\$ 7,700 (10	\$ 14,485.00	5 14 E		8 482	\$ 072		n .ve'e 4	\$ 18 850 M	\$ 20,725.00	00 00 e	*	\$ 8,075.00	\$ 231,900 (20	\$ 29,850.00	\$ 77,250.00	\$ 106,550.00	\$ 52,025.00
		Equip O&P			\$,															\$		
		Labor O&P	104 Por	60 III	00 679'7	\$ 393.75	s 29	ş 3,000 00	6	s 12.05		\$ 482	5 0.72	10 00 V			\$ 1,125.00 f	10 28 EV		e 00	00 000 77 €	1,250.00	\$ 6,250 JU	C(1) () () () () () () () () () () () () ()	4,520 UI
	ſ	Mat. O&P	2 460 00	2,430,00	00 075'0	\$ 798.75	033	4 70 10		787			315.00			00,008,61	19 600.00	37 OD	8		no inc	2000 2000	00 000	00 00c /s	nn nnc'te
		Ext Total	00 114 0		00 670'0			s 0,300.00				220	REN CO	as nen on			00 00 20 20 00 3		+		5 mmc/c_7	00 0066 61	00 066, 761	2 00 00 1 00 00 1 00 00 00 00 00 00 00 00	00'070'70
		Ext Equip					, A 4			, , , ,															
		Ext. Labor	1.00 MB	4 175 00	000		4 4	4,020.00 8,000	00000	\$ 88,000 00	330 GOD OD		\$ 276 00	556 00	7 050 00		6 450 m	-	-			3	1210000		00 07012
		Ext Mat	\$ 2.225.00				4 12 00 00	5 25 AM ON					\$ 574.00	5 92 (sm p)	00 00 17 S		\$ 22.250.00	\$ 16,750.00	vo arr. a			2			00000
	Total		\$ 2.411.00	90 90 90		213			5	088	3.20		\$ 425.00	\$ 4,003,00	\$ 16 250 00		57 40	\$ 52.30	1 100 00			6 876 00 1	CA FED ON	53 £75 DD	
	Eeuloma	rt	186.00 \$ -	\$ 175.00		, * · ·	25.00 S	, , ,		0.88	3 20 \$ -		138 00 \$ -	273.00 \$ -	\$ 2350.00 \$ -	746 °D \$	12 80 \$ -	18.80 \$ -	415.00 ¢		6.4 260 DM 6	\$ 4 176 DD \$	s 8 n50 m s		
	Material Labor		\$ 2,225.00 \$	5			\$ 4 275 00 \$ 2 025 00	\$ 12,800.00	~				\$ 287.00 \$ 1	**	67			5	\$ # 775 M	90 500 00 \$15					
	Unit		4 Ea.	35 čž1 Ee	ď	0.046.5F	41 096 Ea	667 Ea			<u>e</u>		2 863 Ea	5.812 Ea	SO Ea		ΓE	0 364 Ea	8 571 MCFad	E E	e u		e u	E E	
	F	Output He	4	667		350			145				54	3.4	04		32		38		0 80			4	
	Crew		- 00		nic	014		Ċ.	4. 60		4		s.	nd, 020	nd, 020			9. 1 Shee	25 210		6				ped So
	Unit Cost Estimate Description		extracts system; correct, rol tarpipe extracts system; bell drive, 1400 CFM, 1 H.P.	Preumatic Control Systems: Treating & ventilating, spill system, cooling tower, fan cycle, damper caratol, control system, including water readout in/out at panel	Electronic control systema, for electronic contr, add to Section 23 09 43 10 (13375-200)	Insulation, ductwork, blanket type, fiberglass, flexible, FSK vapor berrier wrep, .75 lb, density, 1" thick	Priaumatic Control wystems, maaimig at whiteleing, spit system, mixed as unitrol, accommisser cycle, panel readout, fump, over 20 tons, including mismissi 60 of Name, add control panelsemed if required	Expansion tarks, steel, I quid expansion rubber disphragm, size is acceptable capacity, 528 gallon capacity, ASNE.	Metal Ductivorili, fabricated rectangular, over 5000 tb., abumrum alloy 3003-H14, includes titlings, joints, supports and allovence for a flexible connection, excludes insulation	Metal Duck-erk, fabricated rectangular, for 30% fittings, add	Metal Ductwork, febricated rectangular for high pressure ductwork, add	The data buckwerk, reproceed TRG angle and 10° 15° high, includes fittings, joints, supparts and advance for a flootbo connection, excludes insulation, add to tabor for elevated installation of labricated ductivers.	Duct accessories, multi-blade dampe opposed blade, 56" x 36"	Fers, air conditioning and process air handing, axial flow, compact, low sound, 2.5" S.P., 3e00 CFM, 5.H.P.	Fans, air conditioning and process air handing, axial flow, compact, hw sound, 2.5° 3, P , 23.000 CFM, 30 H P	Fans, centritupal, airfoll, double weth wheel, beit drive, capacitus at 2000 (pm, 2.5" S.P. for motor size indicated 60,920 CFM, 40 H.P. excludes ration	Diffuser, aluminum, celling, also for sidewall, 2" wide, includes opplised blade damper	Gefle, eluminum, air supply, adjustabi single deflection, 12" x 12"	real rectain unit, next pipe exchange combined supply/exhaust air volume, to 6 MCFM	Water chiller, centrifugal liquid chiller, packaged unit, waller cooled, 450 ton, includes standard controls, excludes water tower	Boiler, gas fire natural or propane, cast iron, steam, grave output, 1275 MBH, includes standard controis and insulated jacket, peckeged	Central station air hending unit, pockaged indoor, watabb air wiume, 2000 CFM, cooling ceils may be chilled water or DX, heating ceils may be hot mailer, steem or electro.	Centrel station air handling unit, packeged indoor, variable eir volume, 30,000 CFM, cooling colis may be chilled water or DX, heating colis may be hot water. steam, or electric	Centrel station ar francing unit, packaged indoor, variable air volun, 15.000 CFM, cooling colis may be chilled water or DM. heating colis may be hot water, steam or electing	Conting towner, partiaged unit, galvanized steel, Intow through, centrifugal type, \$50
91909	Sour	ce SubC			∢					×	A	4													
4	LineNumber		23.516108012	200943100620	20043100620	235/13103160	20943100260	232120410160	23311 01000	233113130160	233113130160	233113130160	233313136200	233413100050	231413100160	233416104280	233713100120	253713300220	252015201120	236416100282	215221202280	237313202070	237313202250	237313202080	
Unicago Data Release Year	Quantity		1	-	-	42000	-	2	100000	F	-	-	2	30	m	2	500	500	1	-	٠	2	2	F	

IPRO369-Mechanical estimate City of Chicago 2920 South Ellis Avenue Chicago

60616

4

Development Inputs Development/ Renovation Costs	Adjustable Inputs \$30,000,000	<u>Non-Adjustable</u> <u>Inputs</u>
<u>Loan/Debt Inputs</u> Loan to Value Developer Contribution % Debt Rate Length of Loan (up to 30 years)	70.00% 7.50% 30	30.00%
<u>Revenue/Expense Inputs</u> Venue Annual Rent (Assuming a 30 yr lease) Revenue Inflation Expense Inflation	\$2,000,000 3.00% 3.00%	
<u>Developer Return Requirements</u> Developer Annual Return Requirement (IRR)	18.00%	
Cap Rate Used for Disposition After 30 yrs Reversion Cap Rate on Developer Sale	10.00%	

KEY MODEL INPUTS		Parking per Space
Component:	1 Children's Museum	2 Parking
Estimated Stabilized Occupancy Rate	65%	75%
Assumed Annual Lease Expiration	5.00%	N/A
Revenues:		
Lease Rate	\$20.00	\$900.00
Unit/Duration	Per RSF/Yr	Per Space/Yr
Revenue Assumptions		
Concessions		N/A
Other Income	N/A	N/A
Vacancy/Credit Loss (% of Rental Revenue)	3.00%	3.00%
Expenses:		
Stabilized Operating Expenses	\$3.00	\$300.00
	N/A	N/A
Stabilized Real Estate Taxes	\$0.00	\$0.00
structural improvements	\$0.00	N/A
Capital Reserve	\$0.00	\$0.00
Development Costs:	\$5.00	\$0.00
Development/ Renovation Costs		
Hard Costs		
Base Building (per Gross Square Foot)		\$5,000.00
Escalation Contingency (% of Base Bldg Cost)		3.00%
Construction Contingency (% of Base Bldg + Escalation Conting)		5.00%
(\$/RSF)		N/A
Site Work	\$15.00	\$500.00
Owner/Design Contingency (% of Total Hard Costs above)		3.00%
Soft Costs (\$/sf)	\$25.00	\$1,000.00
Development Fee % of Total Project Costs)	0.00%	0.00%
	0.00%	0.00%
Square Feet developed/Parking Spaces	278,045	243
Specifications	Adjustable Inputs	non
Debt Rate	7.50%	
_ength of Loan (years)	30	
Revenue Inflation	3.00%	
Expense Inflation	3.00%	
Financing Fees (% of Total Development Loan)	1.00%	
_oan to Value	70.00%	
Private Developer Contribution % (where applic.)		30%
Reversion Cap Rate on Developer Sale	10.00%	
Discount Rate (the rate of return that could be earned on an	10.0070	
Jocount Nate (the rate of return that could be earlied on and		

IPRO 359 Proforma

				Construction Year	Operational Year 1		
			1	Developer Capital Contribution	Yr 1	Yr 2	Yr 3
al Developmen	Total Development Financial Impact	Total SF or spaces	Total Project Costs	2012	2013	2014	2015
	Children's Museum Capital Costs Children's Museum Cash Flow Children's Museum Property Sale Yr 31	278,045	\$51,347,569	(\$15,404,271)	\$4,515,254	\$2,211,221	\$2,397,618
	Parking Capital Costs Parking Cash Flow Parking Property Sale Yr 31	243	\$8,479,500	(\$520,092)	\$473,127	\$477,353	\$481,706
	Total Development Costs		\$59,827,069				
	Cumulative Financial Impact			(\$15,924,363)	\$4,988,380	\$2,688,574	\$2,879,324
	Total Annual Cash Flow			\$0	\$4,988,380	\$2,688,574	\$2,879,324
	Terminal Value (Yr 31)						

IPRO 359 Proforma

Yr 4	Yr 5	Yr 6	Yr 7	Yr 8	Yr 9	Yr 10	Yr 11
2016	2017	2018	2019	2020	2021	2022	2023

Children's Museum Capital Costs Children's Museum Cash Flow Children's Museum Property Sale Yr 31	\$2,589,606	\$2,787,354	\$2,991,034	\$3,200,825	\$3,416,910	\$3,639,477	\$3,868,721	\$4,104,842
Parking Capital Costs Parking Cash Flow Parking Property Sale Yr 31	\$486,190	\$490,808	\$495,565	\$500,465	\$505,511	\$510,709	\$516,063	\$521,577
Total Development Costs								
Cumulative Financial Impact	\$3,075,796	\$3,278,162	\$3,486,599	\$3,701,290	\$3,922,421	\$4,150,186	\$4,384,784	\$4,626,420
Total Annual Cash Flow	\$3,075,796	\$3,278,162	\$3,486,599	\$3,701,290	\$3,922,421	\$4,150,186	\$4,384,784	\$4,626,420
Terminal Value (Yr 31)								

nal Value (Yr 31) D

IPRO 359 Proforma

		Yr 17 Yr 18	2029	
		Yr 16	2028	
		Yr 15	2027	
		Yr 14	2026	
		Yr 13	2025	
		Yr 12	2024	
Portfolio-Projections				Total Development Financial Impact

Children's Museum Capital Costs Children's Museum Cash Flow Children's Museum Property Sale Yr 31	\$4,348,047	\$4,598,549	\$4,856,565	\$5,122,322	\$9,564,681	\$9,846,622	\$10,137,022
Parking Capital Costs Parking Cash Flow Parking Property Sale Yr 31	\$527,257	\$533,108	\$539,133	\$545,340	\$551,733	\$558,317	\$565,099
Total Development Costs							
Cumulative Financial Impact	\$4,875,305	\$5,131,656	\$5,395,698	\$5,667,662	\$10,116,414	\$10,404,940	\$10,702,121
Total Annual Cash Flow	\$4,875,305	\$5,131,656	\$5,395,698	\$5,667,662	\$10,116,414	\$9,846,622	\$10,137,022

Terminal Value (Yr 31)

IPRO 359 Proforma

Yr 19	Yr 20	Yr 21	Yr 22	Yr 23	Yr 24
2031	2032	2033	2034	2035	2036

Children's Museum Capital Costs Children's Museum Cash Flow Children's Museum Property Sale Yr 31	\$10,436,134	\$10,744,219	\$11,061,546	\$11,388,393	\$11,725,046	\$12,071,798
Parking Capital Costs Parking Cash Flow Parking Property Sale Yr 31	\$572,085	\$579,280	\$586,691	\$594,324	\$602,187	\$610,285
Total Development Costs						
Cumulative Financial Impact	\$11,008,219	\$11,323,499	\$11,648,237	\$11,982,718	\$12,327,233	\$12,682,083
Total Annual Cash Flow	\$11,008,219	\$11,323,499	\$11,648,237	\$11,982,718	\$12,327,233	\$12,682,083
Terminal Value (Yr 31)						

Children's Museum Operating Pro Forma

F	
I Year	
tiona	-
pera	
0	
	I Year
	tion
	struc
	UO

Foundations	\$250,000	\$200,000	\$200,000	\$200.000	\$200.000	\$200,000		\$200 000			000 0003	6000 000
Corporations	\$1,500,000	\$1,200,000	\$1,200,000	\$1,200,000	\$1,200,000	\$1,200,000	\$1,200,000	\$1,200,000	\$1.200.000	\$1.200.000	\$1.200.000	\$1 200 000
Governemt Grants	\$75,000	\$55,000	\$55,000	\$55,000	\$55,000	\$55,000	\$55,000	\$55,000	\$55,000	\$55,000	\$55.000	\$55.000
benefit Events Admissions	\$1,100,000 \$2,265,000	\$1,100,000	\$1,100,000	\$1,100,000	\$1,100,000	\$1,100,000	\$1,100,000	\$1,100,000	\$1,100,000	\$1,100,000	\$1,100,000	\$1,100,000
Museum store	\$175,000	000'0CL\$	\$150,000	\$150,000	\$150,000	\$150,000	\$150,000	\$150,000	\$150,000	\$150,000	\$150,000	\$150,000
Investment income	\$145,000	\$145.000	\$145,000	\$175,000	\$145,000	\$1/3,000 \$145,000	\$1 /5,UUU	\$1/5,000	\$1/5,000	\$175,000	\$175,000	\$175,000
Membership Dues	\$185,000	\$185,000	\$185,000	\$185,000	\$185,000	\$185,000	\$185,000	\$185,000	\$185,000	\$185.000	\$185 000	\$145,000
Rental Revenues Contributed Goode and Services	\$3,614,585	\$3,723,023	\$3,834,713	\$3,949,755	\$4,068,247	\$4,190,295	\$4,316,004	\$4,445,484	\$4,578,848	\$4,716,214	\$4,857,700	\$5,003,431
revenues	\$17.561.387	\$10 282 374	\$3,449,832 \$10.404 545	\$3,553,327	\$3,659,926	\$3,769,724	\$3,882,816	\$3,999,300	\$4,119,279	\$4,242,858	\$4,370,144	\$4,501,248
Venue Annual Rent	\$2,000.000	\$2,000,000	S2 000 000 52	\$2 000 000	\$2 000 000	\$1 1, 1, 0, 013 \$2 000 000	\$11,408,818 \$2,000,000	\$11,604,784	\$11,908,128	\$12,169,071	\$12,437,844	\$12,714,675
Employee Salaries	\$1,750,000	\$1,750,000	\$1,750,000	\$1.750,000	\$1.750.000	\$1.750.000	\$1,750,000	\$1 750 000	\$1 750 000	\$1,750,000	\$2,000,000	\$2,000,000
Marketing/Communications	\$67,550	\$67,550	\$67,550	\$67,550	\$67,550	\$67,550	\$67,550	\$67,550	\$67,550	\$67,550	\$67,550	#1,730,000 \$67,550
Fundraising	\$875,480	\$875,480	\$875,480	\$875,480	\$875,480	\$875,480	\$875,480	\$875,480	\$875,480	\$875,480	\$875,460	\$875.480
Program Services	\$1,475,600	\$1,475,600	\$1,475,600	\$1,475,600	\$1,475,600	\$1,475,600	\$1,475,600	\$1,475,600	\$1,475,600	\$1,475,600	\$1,475,600	\$1,475,600
Operating Expenses Stabilized Real Estate Taxes	\$834,135 \$0	\$859,159 *0	\$884,934 *0	\$911,482 £0	\$938,826	\$966,991	\$996,001	\$1,025,881	\$1,056,657	\$1,088,357	\$1,121,008	\$1,154,638
Total Expenses	\$5,002,765	\$5,027,789	\$5,053,564	\$5,080,112	\$5,107,456	\$5,135,621	\$5,164,631	\$5,194,511	\$0.225.287	\$0 \$5.256.987	\$0 \$5.289.638	\$0 \$5.323.268
ION	\$7,558,617	\$5.254.585	\$5.440.981	\$5.632.969	\$5,830.717	SG 034 398	¢6 244 189	¢¢ 460 979	010 000 00	100 C 10 00	01 110 000	111 FUL 24
									040'700'00	400'71 2'00	\$1,140,200	L14,100,1¢
Capital Reserve structural Improvements	80 \$	\$0 \$0	\$0 8	80 80	80 80	\$0 \$0	\$0 \$	80 8	\$0 \$	\$0 \$	20 80 80	\$0 \$0
Cash Flow - Pre Debt Service	\$7,558,617	\$5,254,585	\$5,440,981	\$5,632,969	\$5,830,717	\$6,034,398	\$6,244,189	\$6,460,273	\$6,682,840	\$6,912,084	\$7,148,206	\$7,391,411
Davalonment Coste												
Hard Costs Soft Costs Construction Financing Costs Developer Fee Total Development Costs	\$44,039,510 \$6,951,125 \$356,934 \$0 \$51,347,569											
Development Equity Required	(\$15,404,271)											
Annual Debt Service	(53,040,264)	123 642 284	120 010 520	(62 DAC 264)	100 CV3 20W	AD 040 00	1000000000	100 040 00 M	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
Ending Cash Balance (Cash Flow) (\$15,404.271) Cumulative Cash Flow		\$2,211,221 \$6,726,475	\$2,397,618 \$9,124,092	\$2,589,606 \$11,713,698	\$2,787,354 \$14,501,052	\$2,991,034 \$17,492,087	\$3,200,825 \$20,692,912	\$3,416,910 \$24,109,822	\$3,639,477 \$27,749,298	\$3,868,721 \$3,868,721 \$31,618,019	\$4,104,842 \$35.722.862	\$4,348,047 \$40,070,909
DSCR	2.484	1.727	1.788	1.851	1.916	1.983	2.052	2.123	2.196	2.271	2.349	2.429
NPV of Projected Future Cash Flows (Present Value of Land)	\$12,653,892.68											
Sale in year 31:	\$178,518,474											
Loan Payoff	0\$											
Cash Flows: (\$15,404.271)	\$4,515,254	\$2,211,221	\$2,397,618	\$2,589,606	\$2,787,354	\$2,991,034	\$3,200,825	\$3,416,910	\$3,639,477	\$3,868,721	\$4,104,842	\$4.348.047
Developer Annual Return on Investment:	23.43%											
Sale in year 11:	\$71,482,059											
Cash Flows: (\$15,404.271)	\$4,515,254	\$2,211,221	\$2,397,618	\$2,589,606	\$2,787,354	\$2,991,034	\$3,200,825	\$3,416,910	\$3,639,477	\$44,325,237		
Developer Annual Return on Investment:	25.15%											

\$13,967,982 \$192,900,49	\$13,566,001	\$13,175,728	\$12,796,823	\$12,428,953	\$12,071,798	\$11,725,046	\$11,388,393	\$11,061,546	\$10,744,219	\$10,436,134	\$10,137,022	\$9,846,622
5.726	5.458	5.329	5.205	5.084	4.967	4.853	4.742	4.635	4.530	4.429	4.331	4.235
(35,043,044) (53,045,35 \$13,967,982 \$14,382,02 \$217,559,293 \$231,941,31	(\$3,043,554) \$13,566,001 \$203,591,311	(\$3 040, 354) \$13,175,728 \$190,025,310	(\$3,048,034) \$12,796,823 \$176,849,582	(\$3,043,364) \$12,428,953 \$164,052,759	(\$3.042,364) \$12,071,798 \$151,623,806	(\$5,042,334) \$11,725,046 \$139,552,008	(\$0.040,304) \$11,388,393 \$127,826,962	(52,043,764) \$11,061,546 \$116,438,568	(\$\$,043,554) \$10,744,219 \$105,377,022	(S3,C43, 334) \$10,436,134 \$94,632,804	(\$3,040,364) \$10,137,022 \$84,196,670	(\$3 0.13 364) \$9,846,622 \$74,059,648
\$17,011,345 \$17,425,38	\$16,609,364	\$16,219,092	\$15,840,186	\$15,472,317	\$15,115,162	\$14,768,410	\$14,431,757	\$14,104,910	\$13,787,582	\$13,479,497	\$13,180,386	\$12,889,986
\$0 8	0 0 \$	20 \$0	80 80	80 80	80 80	\$0 \$	\$0 \$0	80 80	800	0 0	80 80	80 80
5	\$16,609,364	\$16,219,092	\$15,840,186	\$15,472,317	\$15,115,162	\$14,768,410	\$14,431,757	\$14,104,910	\$13,787,582	\$13,479,497	\$13,180,386	\$12,889,986
\$1,908,441 \$1,965,69	\$1,852,855	\$1,798,888	\$1,746,493	\$1,695,625	\$1,646,238	\$1,598,289	\$1,551,737	\$1,506,541	\$1,462,661	\$1,420,059	\$1,378,698	\$1,338,542
\$1,475,600 \$1,475,60 \$1,908,441 \$1,965,69	\$1,475,600 \$1,852,855	\$1,475,600 \$1,798,888	\$1,475,600 \$1,746,493	\$1,475,600 \$1,695,625 \$0	\$1,475,600 \$1,646,238 \$0	\$1,475,600 \$1,598,289 \$0	\$1,475,600 \$1,551,737 \$0	\$1,475,600 \$1,506,541 \$0	\$1,475,600 \$1,462,661 \$0	\$1,475,600 \$1,420,059 \$0	\$1,475,600 \$1,378,698 \$0	\$1,475,500 \$1,338,542 \$0
\$67,550 \$67,550 \$875,480 \$875,480	\$67,550 \$875,480	\$67,550 \$875,480	\$67,550 \$875,480	\$67,550 \$875,480	\$67,550 \$875,480	\$67,550 \$875,480	\$67,550 \$875,480	\$67,550 \$875,480	\$875,480	\$875,480	\$875,480	\$875,480
	\$2,000,000 \$1,750,000	\$2,000,000 \$1,750,000	\$2,000,000 \$1,750,000	\$2,000,000 \$1,750,000	\$2,000,000 \$1,750,000	\$2,000,000 \$1,750,000	\$2,000,000 \$1,750,000	\$2,000,000 \$1,750,000	\$2,000,000 \$1,750,000	\$1,750,000	\$1,750,000 \$1,750,000	\$1,750,000 \$1,750,000
\$7,439,877 \$7,663,073 \$18,919,786 \$19,391,08	\$7,223,181 \$18,462,219	\$7,012,798 \$18,017,980	\$17,586,680	\$17,167,941	\$16,417,703 \$16,761,399	\$6,230,780 \$16,366,698	\$6,049,301 \$15,983,494	\$15,8/3,108 \$15,611,450	\$15,250,243	\$14,899,556	\$14,559,084	\$14,228,528
\$185,000 \$185,000 \$8,269,909 \$8,518,000	\$185,029,038 \$8,029,038	\$7,795,182	\$7,568,138	\$7,347,707	\$7,133,696	\$6,925,919	\$6,724,193	\$6,528,343	\$6,338,197	\$6,153,589	\$5,974,358	\$5,800,348
	\$145,000 \$185,000	\$145,000	\$145,000 \$185,000	\$145,000	\$145,000 \$185 000	\$145,000 \$185,000	\$145,000 \$185,000	\$145,000 \$185.000	\$145,000 \$185.000	\$145,000 \$185,000	\$145,000 \$185,000	\$145,000 \$185,000
\$150,000 \$150,000 \$175.000 \$175.000	\$150,000 \$175,000	\$150,000 \$175,000	\$150,000 \$175,000	\$150,000 \$175,000	\$150,000 \$175,000	\$150,000 \$175,000	\$150,000 \$175,000	\$175,000	\$175,000	\$175,000	\$175,000	\$175,000
\$55,000 \$55,000 \$1,100,000 \$1,100,000	\$55,000 \$1,100,000	\$55,000 \$1,100,000	\$55,000 \$1,100,000	\$55,000 \$1,100,000	\$55,000 \$1,100,000	\$55,000 \$1,100,000	\$1,100,000	\$1,100,000	\$1,100,000	\$1,100,000	\$1,100,000	\$1,100,000
\$1,200,000 \$1,2	\$200,000 \$1,200,000	\$200,000	\$200,000 \$1,200,000	\$200,000 \$1,200,000	\$1,200,000	\$200,000 \$1,200,000	\$200,000 \$1,200,000	\$200,000	\$200,000 \$1,200,000	\$200,000 \$1,200,000	\$1,200,000	\$1,200,000
											\$200,000	\$200,000
\$	000'0	\$1,20		\$200,000 \$1,200,000	\$200,000 \$200,000 \$1,200,000 \$1,200,000	\$200,000 \$200,000 \$200,000 \$1,200,000 \$1,200,000 \$1,200,000 \$65,000 \$55,000 \$55,000	\$200,000 \$200,000 \$200,000 \$200,000 \$1,200,000 \$1,200,000 \$1,200,000 \$55.000 \$55.000 \$1,200,000 \$5.000 \$55.000 \$55.000 \$55.000 \$55.000	\$200,000 \$200,000 \$200,000 \$200,000 \$200,000 \$1,200,000 \$1,200,000 \$1,200,000 \$1,200,000 \$55,000 \$55,000 \$55,000 \$1,200,000 \$25,000	\$200,000 \$200,000 \$200,000 \$200,000 \$200,000 \$200,000 \$1,200,000 \$1,200,000 \$1,200,000 \$1,200,000 \$1,200,000 \$55,000 \$65,000 \$50,000 \$55,0000 \$55,0000 \$55,0000 \$55,0000 \$55,0000 \$55,0000 \$55,0000 \$55,0000 \$55,0000 \$55,0000 \$55,000	\$2200,000 \$2200,000 \$200,000 \$200,000 \$200,000 \$1,200,00	1 51,200,000	\$1,200,000 \$1,200,0000

Parking Operating Pro Forma

Co	Construction Year	Operational Year 1										
Parking Revenue		\$435,000	\$435.000	\$435.000	\$435 000	\$435,000	\$435 000	CA35 000	CA35 000	000 2074	000 JOL	
Rental Revenues		\$164,025	\$168.946	\$174,014	\$179 235	\$184 612	\$190.150	\$105 854	000,0004	000,000 8003 7000	9433,UUU	000,054¢
Expense Recoveries		\$54,675	\$56.315	\$58.005	\$59 745	\$61537	\$63 383	*65 785	\$67 7 43	4401,1024	010'+17¢	\$220,430
Vacancy/Credit Loss		(\$4,921)	(\$5,068)	(\$5,220)	(\$5,377)	(\$5.538)	(\$5.704)	(\$5.876)	(156 052)	102,604	0000114	410,419 /56 6131
Total Revenues		\$648,779	\$655,193	\$661,798	\$668,602	\$675,610	\$682,829	\$690,264	\$697,922	\$705,809	\$713,933	\$722,301
Operating Expenses		\$72.900	\$75.087	\$77.340	\$70 GED	682 050	COA 544	007 010	010	0.000		
Stabilized Real Estate Taxes		80	80	80	\$0 \$0	00°,20¢	110,404	\$07,∪40 \$0	\$058 \$0	\$92,348 \$0	\$95,118 &0	\$97,972
Total Expenses		\$72,900	\$75,087	\$77,340	\$79,660	\$82,050	\$84,511	\$87,046	\$89,658	\$92,348	\$95,118	\$97,972
ION		\$575,879	\$580,106	\$584.,459	\$588,943	\$593,561	\$598,318	\$603,217	\$608,264	\$613,462	\$618,815	\$624,330
Capital Reserve		0\$	\$0	\$0	\$0	\$0	\$0	\$0	0\$	\$0	\$0	\$0
Cash Flow - Pre Debt Service		\$575,879	\$580,106	\$584,459	\$588,943	\$593,561	\$598,318	\$603,217	\$608,264	\$613,462	\$618,815	\$624,330
Datalanmont Carda												8
Development Costs Hard Costs Soft Costs		\$1,478,588 \$243,000										
Construction Financing Costs		\$12,051										
Total Development Costs		\$1,733,639										
Development Equity Required		(\$520,092)										
Annual Debt Service Ending Cash Balance (Cash Flow) Cumulative Cash Flow	(\$520,092)	(\$102,753) \$473,127 \$473,127	(\$102.753) \$477,353 \$950,480	(\$102,753) \$481,706 \$1,432,186	(\$102,753) \$486,190 \$1,918,376	(\$102,753) \$490,808 \$2,409,184	(\$102,753) \$495,565 \$2,904,749	(\$102,753) \$500,465 \$3,405,214	(\$102.753) \$505,511 \$3.910.725	(\$102,753) \$510,709 \$4.421,434	(\$102.753) \$516,063 \$4.937.497	(\$102,753 \$521,577 \$5 459 074
DSCR		5.605	5.646	5.688	5.732	5.777	5.823	5.871	5.920	5.970	6.022	6.076

\$255,546 \$233,122 \$717,008 \$735,000 \$435,000 <td< th=""><th>\$435,000</th><th>\$435,000</th><th>\$435 000</th><th>\$435 DOD</th><th>C 425 000</th><th>\$ 47E 000</th><th>#10F 000</th><th>101 000</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>	\$435,000	\$435,000	\$435 000	\$435 DOD	C 425 000	\$ 47E 000	#10F 000	101 000							
\$86,182 \$67,737 \$90,389 \$59,573 \$90,171 \$10,703 \$10,703 \$44,477 \$114,497 \$114,191 \$115,216 \$114,192 \$11	\$248.103	\$255,546	\$263.212	\$271,108	\$279,242	\$287.610	\$430,000 \$206,247	\$435,000 \$205,125	\$435,000	\$435,000	\$435,000	\$435,000	\$435,000	\$435,000	\$435,(
(57/306) (57/306) (58/13) (58/37) (58/37) (58/37) (58/37) (58/37) (58/37) (58/37) (58/37) (58/37) (58/37) (58/37) (58/37) (51/30) (51/30) (51/31) (51/30) (51/31) (51/30) (51/30) (51/31) (51/30) (51/30) (51/31) (51/30)	\$82.701	\$85.182	\$87.737	\$90.369	\$93 081	205 873	\$08 740	CC1 2000	\$314,209	\$17,525 \$107,006	\$333,429	\$343,432	\$353,735	\$364,347	\$375,
\$768,061 \$778,053 \$788,345 \$809,865 \$821,109 \$822,692 \$844,623 \$666,912 \$685,569 \$882,606 \$596,034 \$909,865 \$113,576 \$116,983 \$124,107 \$127,831 \$131,666 \$135,615 \$139,684 \$143,874 \$148,191 \$152,636 \$157,216 \$161,932 \$0 \$161,932	(\$7,443)	(\$7,666)	(\$7.396)	(\$8,133)	(\$8,377)	(\$8,629)	(\$8,387)	(\$9,154)	(\$9.429)	\$107,300 (\$9.712)	(\$10,003)	\$114,477	\$117,912 (\$10,612)	\$121,449	\$125,(
\$113,576 \$116,983 \$120,493 \$124,107 \$127,831 \$131,666 \$135,615 \$139,684 \$143,874 \$148,191 \$152,636 \$157,216 \$161,932 \$0 \$10,70 \$161,932 \$161,932 \$161,932 \$161,932 \$171,933 \$713,037 \$713,037	\$758,360	\$768,061	\$778,053	\$788,345	\$798,945	\$809,863	\$821,109	\$832,692	\$844,623	\$856,912	\$869,569	\$882,606	\$896,034	\$909,865	\$924.
\$0 \$0<	\$110,268	\$113,576	\$116,983	\$120,493	\$124,107	\$127,831	\$131,666	\$135.615	\$139.684	\$143.874	\$148 191	\$152 636	\$157 216	\$161 037	¢166 '
\$113,676 \$113,676 \$120,493 \$124,107 \$127,216 \$161,932 \$664,485 \$661,070 \$667,852 \$674,837 \$689,444 \$697,077 \$704,939 \$713,037 \$729,970 \$738,819 \$747,934 \$664,485 \$661,070 \$667,852 \$674,837 \$689,444 \$697,077 \$704,939 \$713,037 \$729,970 \$738,819 \$747,934 \$664,485 \$661,070 \$667,852 \$674,837 \$689,444 \$697,077 \$704,939 \$713,037 \$729,970 \$738,819 \$747,934 \$654,485 \$661,070 \$667,852 \$674,837 \$689,444 \$697,077 \$704,939 \$713,037 \$721,379 \$728,970 \$747,934	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	20\$	80	\$0 \$0	\$0 \$0	*00\$
\$654,485 \$661,070 \$667,852 \$674,837 \$697,077 \$704,939 \$713,037 \$729,970 \$738,819 \$747,934 \$0 </th <th>\$110,268</th> <th>\$113,576</th> <th>\$116,983</th> <th>\$120,493</th> <th>\$124,107</th> <th>\$127,831</th> <th>\$131,666</th> <th>\$135,615</th> <th>\$139,684</th> <th>\$143,874</th> <th>\$148,191</th> <th>\$152,636</th> <th>\$157,216</th> <th>\$161,932</th> <th>\$166,</th>	\$110,268	\$113,576	\$116,983	\$120,493	\$124,107	\$127,831	\$131,666	\$135,615	\$139,684	\$143,874	\$148,191	\$152,636	\$157,216	\$161,932	\$166,
\$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$	\$648,093	\$654,485	\$661,070	\$667,852	\$674,837	\$682,033	\$689,444	\$697,077	\$704,939	\$713,037	\$721,379	\$729,970	\$738,819	\$747,934	\$757,
\$654,485 \$661,070 \$667,852 \$674,837 \$682,033 \$689,444 \$697,077 \$704,939 \$713,037 \$721,379 \$729,970 \$738,819 \$747,934	\$0	\$0	\$0	0\$	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	ŝo	\$0
	\$648,093	\$654,485	\$661,070	\$667,852	\$674,837	\$682,033	\$689,444	\$697,077	\$704,939	\$713,037	\$721,379	\$729,970	\$738,819	\$747,934	\$757,5

(\$102. \$654,5 \$16,005	7.37	
(\$102,753) \$645,181 \$15,351,004	7.279	
(\$102,753) \$636,066 \$14,705,823	7.190	
(\$102,753) \$627,217 \$14,069,757	7.104	
(\$102,753) \$618,626 \$13,442,540	7.021	
(\$102.753) \$610,285 \$12,823,914	6.939	
(\$102,753) \$602,187 \$12,213,629	6.861	
(\$102.753) \$594,324 \$11,611,442	6.784	
(\$102,753) \$586,691 \$11,017,118	6.710	
(\$102,753) \$579,280 \$10,430,427	6.638	
(\$102,753) \$572,085 \$9,851,147	6.568	
(\$102,753) \$565,099 \$9,279,062	6.500	
(\$102.753) \$658,317 \$8,713,963	6.434	
(\$102,753) \$551,733 \$8,155,645	6.370	
(\$102,753) \$545,340 \$7,603,913	6.307	

APPENDIX: SQUARE FOOT COST (C-1)

UNDERGROUND PARKING GARAGE COST

IPRO359 Spring 2011

Square Foot Cost Estimate Report

Estimate Name:	IPRO 359 Parking Garage S Cottage Grove Ave & E 31st St, Chicago , Illinois, 60616	
Building Type:	Garage, Underground Parking with Reinforced Concrete / R/Conc. Frame	
Location:	CHICAGO, IL	
Story Count:	1	
Story Height (L.F.):	10	
Floor Area (S.F.):	86933	
Labor Type:	Union	
Basement Included:	No	E (removed)
Data Release: Cost Per Square	Year 2011	Costs are derived from a building model with basic components.
Foot:	\$97.54	Scope differences and market conditions can cause costs to vary significantly
Building Cost:	\$8,479,500	

		% of Total	Cost Per S.F.	Cost
A Substructure		22.60%	\$16.36	\$1,422,000
A1010	Standard Foundations Strip footing, concrete, reinforced, load 11.1 KLF, soil bea capacity 6 KSF, 12" deep x 24" wide Spread footings, 3000 PSI concrete, load 200K, soil bear capacity 3 KSF, 8' -6" square x 20" deep Spread footings, 3000 PSI concrete, load 300K, soil bear capacity 3 KSF, 10' - 6" square x 25" deep	ing	\$6.19	\$538,500
	Foundation dampproofing, asphalt with fibers, 1/8" thick,	8' high		
A1030	Slab on Grade		\$4.07	\$354,000
A2010	Slab on grade, 5" thick, light industrial, reinforced Basement Excavation earth, off site storage		\$6.09	\$529,500
B Shell		55.10%	\$39.84	\$3,463,000
B1010	Floor Construction		\$16.17	\$1,405,500
	Cast-in-place concrete column, 28", square, tied, minimur reinforcing, 1000K load, 10'-14' story height, 740 lbs/LF, 4 Cast-in-place concrete beam and slab, 9" slab, one way, 2 column, 35'x35' bay, 200 PSF superimposed load, 355 PS load	1000PSI 26"		
B1020	Floor, metal deck, 18 ga, 2" deep, concrete slab, 10' span 125 PSF superimposed load, 165 PSF total load Roof Construction	i, 4" deep,	\$14.89	\$1,294,500
B2010	Floor, concrete, beam and slab, 35'x35' bay, 40 PSF supe load, 26" deep beam, 9" slab, 209 PSF total load Exterior Walls Concrete wall, reinforced, 8' high, 8" thick, plain finish, 400	1	\$5.89	\$512,000

B2030	Exterior Doors Door, aluminum & glass, with transom, black finish, double door, hardware, 6'-0" x 10'-0" opening Door, steel 18 gauge, hollow metal, 1 door with frame, no label, 3'- 0" x 7'-0" opening	\$0.19	\$16,500
B3010	Roof Coverings Vinyl and neoprene membrane traffic deck	\$2.70	\$234,500
C Interiors	2.60%	\$1.86	\$162,000
C1010	Partitions	\$1.20	\$104,000
	Concrere block (CMU) partition, light weight, hollow, 8" thick, no finish 8" concrete block partition		
C1020	Interior Doors	\$0.11	\$9,500
	Door, single leaf, kd steel frame, hollow metal, commercial quality, flush, 3'-0" x 7'-0" x 1-3/8"		<i>v</i> , v
C2010	Stair Construction	\$0.41	\$35,500
	Stairs, CIP concrete, w/landing, 16 risers, with nosing		
C3010	Wall Finishes	\$0.15	\$13,000
	Painting, masonry or concrete, latex, brushwork, primer & 2 coats		
D Services D1010	Elevators and Lifts	and the second second second second	\$1,199,500
DIVIO	2 - Hydraulic, passenger elevator, 1500 lb, 2 floors, 100 FPM	\$3.10	\$269,500
	Hydraulic passenger elevator, 2500 lb., 2 floor, 125 FPM		
D2010	Plumbing Fixtures	\$0.06	\$5,500
	Water closet, vitreous china, bowl only with flush valve, floor mount		
	Lavatory w/trim, wall hung, PE on CI, 19" x 17"		
D2020	Domestic Water Distribution	\$0.10	\$8,500
	Electric water heater, commercial, 100< F rise, 50 gallon tank, 9 KW 37 GPH		
D2040	Rain Water Drainage	\$1.46	\$127,000
	Roof drain, steel galv sch 40 threaded, 3" diam piping, 10' high		8
	Roof drain, steel galv sch 40 threaded, 3" diam piping, for each additional foot add		
D3050	Terminal & Package Units	\$0.16	\$14,000
	16000 CFM, 5 HP vane axial fan		
D4010	Sprinklers	\$4.51	\$392,000
	Dry pipe sprinkler systems, steel, ordinary hazard, 1 floor, 50,000 SF		
D 4000	Dry pipe sprinkler systems, steel, ordinary hazard, each additional floor, 50,000 SF		
D4020	Standpipes	\$0.16	\$14,000
	Dry standpipe risers, class III, steel, black, sch 40, 4" diam pipe, 1 floor Dry standpipe risers, class III, steel, black, sch 40, 4" diam pipe,		
	additional floors		

D5010	Electrical Service/Distribution Service installation, includes breakers, metering, 20' cond 3 phase, 4 wire, 120/208 V, 200 A	uit & wire,	\$0.14	\$12,500
	Feeder installation 600 V, including RGS conduit and XHF 200 A	,		
	Switchgear installation, incl switchboard, panels & circuit t 400 A	oreaker,		
D5020	Lighting and Branch Wiring Receptacles incl plate, box, conduit, wire, 2.5 per 1000 SF per SF	-, .3 watts	\$3.85	\$334,500
	Miscellaneous power, to .5 watts			
	Fluorescent fixtures recess mounted in ceiling, 0.8 watt pe FC, 5 fixtures @32 watt per 1000 SF	er SF, 20		
D5030	Communications and Security		\$0.19	\$16,500
	Communication and alarm systems, fire detection, addres	sable, 12		
	detectors, includes outlets, boxes, conduit and wire Fire alarm command center, addressable without voice, ex	xcl wire		
	& conduit	Kol. Who		
D5090	Other Electrical Systems		\$0.06	\$5,500
	Generator sets, w/battery, charger, muffler and transfer sw			
	gas/gasoline operated, 3 phase, 4 wire, 277/480 V, 11.5 k			
E Equipment & F E1030		0.60%	\$0.40	\$34,500
E1030	Vehicular Equipment	0.57	\$0.40	\$34,500
	Architectural equipment, parking equipment, automatic ga arm, 1 way	tes, 8 F I		
	Architectural equipment, parking equipment, booth for atte	endant,		
	Architectural equipment, parking equipment, ticket			
	printer/dispenser, rate computing			
E1090	Other Equipment		\$0.00	\$0
F Special Constr		0.00%	\$0.00	\$0
G Building Sitew	lork	0.00%	\$0.00	\$0
SubTotal		100%	\$72.25	\$6,281,000
Contractor Fees	(General Conditions, Overhead, Profit)	25.00%	\$18.07	\$1,570,500
Architectural Fee		8.00%	\$7.22	\$628,000
User Fees		0.00%	\$0.00	\$0
Total Building Co	ost		\$97.54	\$8,479,500

APPENDIX: SQUARE FOOT COST (C-2)

OVERALL BUILDING COST SPREADSHEET

IPRO359 Spring 2011

Spaces	% of Building	Proposed Size (sq ft)	3/4 Unit Cost (\$)		Typical Size Gross Sq Ft	Size Factor	Cost Multiplier	Location Factor	Square Foot Estimate (\$)
Restaurant	0.04	11856 50	100		OOFF				
	10.0	1000.02	177	20202.2022	4400	2.094003030	0.91	1.16	\$ 2,765,979.10
Elementary School	0.43	127457.59	152	193735.537	41000	3.108721707	0.903	1.16	\$ 20,293,410.01
Office	0.142857143	42344.71429	154	65210.86	20000	2.117235714	0.932	1.16	\$ 7.050.076.50
Community Center	0.1	29641.3	132	39126.516	9400	3.153329787	0.9	1.16	\$ 4 084 808 27
Retail Store	0.05	14820.65	110	16302.715	7200	2.058423611	0.94	1.16	\$ 1,777,648.04
Gymnasium	0.15	44461.95	172	76474.554	19200	2.315726563	0.92	1.16	\$ 8,161,364.40
Auditorium	0.09	26677.17	202	53887.8834	25000	1.0670868	0.99	1.16	\$ 6,188,484.53
								Σ Square Foot Estimate (sq ft)	\$ 50,321,770.85
	1.17.13.EV								
	Additives								
Elevators, Hydraulic Passenger, 2 stops	1500# Capacity	\$60,900.00	Additional Stops	Add 8,500.00	Escalators 48" wide, 10' story height	\$148,200.00			
Total	4	\$243,600.00	4	34000	Ø	\$889,200.00			
Final Square Foot Cost	\$51,488,570.85								

Choolfin Conto
opecific Costs
\$1,549,805.98
\$3,604,199.96
\$5,329,067.08
\$4,633,971.38
\$12,872,142.71
\$19,411,191.21
\$2,625,917.11
\$12,099,814.15

Light Ener	gy Cos	st Estimate	Source
Lighting Area	sf	270,000	
Watts/area	W/sf	1.1	2009 IECC Lighting Provisions
Total Watts	W	297000	
Useage	h/day	12	
Daily Watts	W	3564000	
	kWh	3564	
Chicago Rate	\$/kWh	\$0.15	U.S. Bureau of Labor Statistics
Cost/day		\$531.04	
Cost/month		\$16,462.12	
Cost/year		\$197,545.39	