IPRO 321

Consumer Product Design & Performance Evaluation

Spring 2007

Mr. Seth Lewis President

Consumer Paper Shredders

Goals

Optimize gear train to reduce gear failure

Design more commercially attractive paper shredder

Evaluate and advise improvements to enhance safety features

Reduce operating noise output by 10dB

Teams

Gears Michael Tomsa Electrical Engineering Dmitriy Zverev Mechanical Engineering Safety Raisa Pelae Chemical Engineering ■ Garrett Strassler Aerospace Engineering

Design Julianna Kovacs Engineering Management Chil-Woong Kwon Computer Engineering Sound Richard King Computer Engineering Donald Myers Computer Engineering Gregory Mennenga Computer Engineering Jianyu Chen Electrical Engineering

Goal:

Evaluate the gears and minimize the gear failure at initial shredding cycle.

Issue: Plastic Gear teeth fail at high loads

Nylon Gear Failures

Issue: Center of the metal gears strips when paper shredder is jammed

Non -Stripped Gear

Stripped Gear

Gears

- Test Results
 - Plastic Gears
 - Chemical Analysis Test Nylon
 - Torque Tests Maximum Load 4 in-lb
 - Metal Gears
 - Rockwell Hardness Test B Scale ~ 90 (very soft)
 - Microstructure Test Voids in the material
 - Chemical Analysis Test 1.6% Carbon composition

Gears

Carbon content ~1.6% - enough to heat treat the material to increase hardness and decrease voids.

1.6% CARBON

Gears

Recommended Solutions ■ Plastic Gears Lengthen Motor Worm/widen helical gear ■ Upgrade the material to glass-filled nylon Metal Gears ■ Change shape of center hole on metal gear ■ Heat treat the gear to increase hardness

Goal:

To evaluate the current marketing offerings and price points and create new designs for a line of paper shredders.

Our new design focuses on new shredder features and styles.

Steps to The New Design:
Team formation
Education and goal setting
Gathering information
Design optimization
3D Modeling

Lightweight Glossy Plastic
Clear Grey Universal Plastic Bin
26" by 10" Dimensions
8-11 Sheet Shredder
Attractive Design
Reasonably Priced

3D Modeling Unique Entry Way

Other New Design Concepts Blue, Red and Yellow LED Lights in Entry Way

Blue = Shred Yellow = Standby Red = Reverse

Bright ColorsGlossy BlackE

Bright White Seasonal Colors

Goal:

Evaluate the different models and advise improvements to enhance the safety features to exceed the 2007 UL Standards.

Safety

Issue:

 According to the CPSC: finger amputations of young children are among the most serious injuries

Procedure:

- Manufactured a finger probe according to UL Standard
- Check for UL Standard compliance

Possible new safety features to exceed the UL Standards:

- Touch Sensors:
 - Disables motor when touch sensors detect fingers near shredding gears
 - May conflict with Fellows SafeSenseTM pending patent

Safety

Capacitive Touch Sensor:

- Detects Human Touch through change in Capacitance
- Based on design ideas from edn.com

PARTS	COST (1)	COST (500)	COST (1000)
40106 Hex Inverting Schmitt Trigger	\$0.26	\$0.16	\$0.13
2n5457 JFET	\$0.12	\$0.061	\$0.052
10K Linear Potentiometer	\$0.28	\$0.22	\$0.21
1N4148 Diode	\$0.02	\$0.009	\$0.007
4 x Capacitors (2x1nF, 2x0.1uF)	\$0.10	\$0.05	\$0.03
6 x Resistors (6.8k, 2x10K, 100K, 1M, 10M)	\$0.04	\$0.02	\$0.016
TOTAL Per Unit:	\$1.32	\$0.77	\$0.62

Source: Mouser Electronics (www.mouser.com)

Goal:

To reduce the general noise output with a target of 10db reduction.

Many consumers report that they are dissatisfied with the level of noise produced by paper shredders.

Investigated Solutions: Active Noise Cancellation Passive Noise Correction Noise Dampening Constraints Costs must be less than cost to upgrade to DC motor (\sim \$3.00 per unit)

Apparatus and Setup

Data Capture Equipment

Initial Test Results:

Motor Only

Motor Noise:

- 360hz- 3rd harmonic of power output
- 2880hz-Vibration from carbon brushings
- Majority of Audible due to motor vibrations transmitted through Gear Train

Insulations Tests

Household Insulation

Heat Insulation

Styrofoam

Recommendations ■ Active Noise Cancellation ■ High cost ■ Passive Noise Correction ■ Noise is from the motor vibration Addition of a flywheel ■ Noise Dampening Noise transmitted through case and out from throat Recommend angled or shielded throat.

Suggestion for Future Work

- Determine the amount of force and torque required for shredding different amounts of paper.
- Design an efficient gear train that optimizes the # of gears and minimizes the motor size.
- Based on current results, develop acoustical sound dampeners.