IPRO 349 Solid Fuel from Biomass for Cogeneration

Corn for food Not for fuel

Non-renewable resources

Our Solution

Biomass:

- Solid organic waste
 - Specifically, corn stover

• Corn stover:

- Everything except the corn kernels
 - Does not effect the food supply

Exploratory Project Providing the Basis for Further Study

Our resources:

Publicly available government, industrial, and university reports.

- Phone and e-mail inquiries of individual firms.
- Our project plan and approach:
 - Consolidating, and analysing information
 - Logistics specific to corn stover as solid fuel.

	Task Name	Duration	Start	Finish	F 13, 108	Feb 3, '08	Feb	24,108	Mar 16, '08	M	Apr 6, '08	Apr
1	- Research	24 days	Wed 1/23/88	Mon 2/25/08	-							
2	Transportation	24 days	Wed 1/23/08	Mon 2/25/08		1						
3	Compaction	24 days	Wed 1/23/08	Mon 2/25/08								
4	Legality	24 days	Wed 1/23/08	Mon 2/25/08								
5	Pollution	24 days	Wed 1/23/08	Mon 2/25/08		1						
6	Collection	24 days	Wed 1/23/08	Mon 2/25/08								
7	Charcoal	24 days	Wed 1/23/08	Mon 2/25/08								
8	Turbines	24 days	Wed 1/23/08	Mon 2/25/08								
9	- Process	41 days	Mon 2/11/08	Mon 4/7/08						-	Ψ	
10	Develop a Flow Diagram	41 days	Mon 2/11/08	Mon 4/7/08	1				-	_		
11	Determine a Process	5 days	Tue 2/26/08	Mon 3/3/08	i l		4	_				
12	- Refine Research for specific process	24 days	Tue 3/4/88	Fri 4/4/08	1			—	_		5	
13	Transportation	24 days	Tue 3/4/08	Fri 4/4/08	1				1			
14	Compaction	24 days	Tue 3/4/08	Fri 4/4/08	1							
15	Legality	24 days	Tue 3/4/08	Fri 4/4/08	1							
16	Pollution	24 days	Tue 3/4/08	Fri 4/4/08	1				1			
17	Collection	24 days	Tue 3/4/08	Fri 4/4/08	1							
18	Charcoal	24 days	Tue 3/4/08	Fri 4/4/08	1							
19	Turbines	24 days	Tue 3/4/08	Fri 4/4/08	1				1			
20	- Administration	60 days	Mon 2/11/88	Fri 5/2/08	1	-	_	_		_		_
21	Project Plan	10 days	Mon 2/11/08	Fri 2/22/08	1							
22	Code of Ethics	10 days	Mon 2/25/08	Fri 3/7/08	1							
23	Midtern Presentation	6 days	Mon 3/3/08	Mon 3/10/08								
24	Midtern Report	8 days	Wed 3/5/08	Fri 3/14/08	1							
25	Final Report	35 days	Mon 3/17/08	Fri 5/2/08	1					_		_
26	Final Presentation	15 days	Tue 4/8/08	Mon 4/28/08	1						*	-
27	Poster	45 days	Mon 2/25/08	Fri 4/25/08						_		
28	IPRO Day Preparations	15 days	Mon 4/14/08	Fri 5/2/08	1							_
29	Know Upload	0 days	Fri 5/2/08	Fri 5/2/08	1							
30	IPRO Day	0 days	Fri 5/2/08	Fri 5/2/08	1							

• Result:

Report with detail references and recommendations for follow-up.

Which direction?

• Small Scale

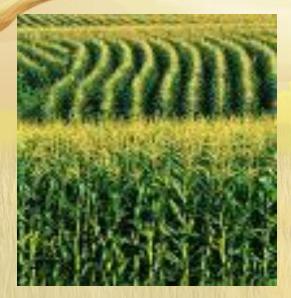
- One farm being self-sufficient

Large Scale

- Many farms
- Centralized processing
- Large power plant

Why not ethanol?

• Ethanol is produced through the fermentation and decomposition of simple sugars


Sugar cane - Brazilian cash crop used in their ethanol production processes

$\mathbf{C_6H_{12}O_6} \rightarrow \mathbf{2C_2H_6O} + \mathbf{2CO_2}$

= large amount of sugar

= high efficiency in
producing ethanol

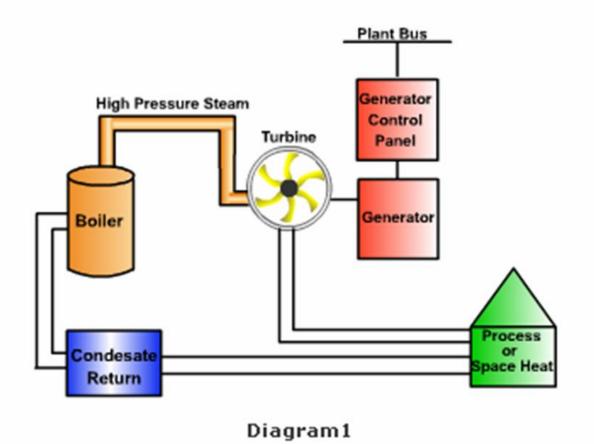
Why not ethanol?

Corn - US cash crop currently used in most ethanol production

≠ comprised of large
amounts of free sugars, but
rather contains mostly
cellulose

• Needs extra processing to make sugars available

High loss of efficiency


However, combustion process release energy directly from cellulosic material!

Perhaps cogeneration is the best route for extracting energy from corn...

Why Cogeneration?

Cogeneration produces a given amount of electric power and process heat with 10% to 30% less fuel than it takes to produce the electricity and process heat separately Higher efficiency than normal electricity generator - Normal generator: 33% - Co-generator: 60-90%

Cogeneration System

	Gas Turbine	Gas Turbine w/Duct Firing	Boiler/Steam Turbine
Capacity, MW	1 -15	1 -15	0.5 -5
Electrical Efficiency, % (HHV)	22 - 32	12 -17	6 -10
Steam Output, Btu/kWh	4,500 - 6,700	12,000 - 20,000	35,000 – 40,000
Overall Efficiency, % (HHV)	65 -70	80 -85	75 -85
Power to Steam Ratio	0.4 - 0.6	0.17 - 0.27	0.08 - 0.12
Installed Costs, \$/kW	1,800 -900	2,000 - 1,000	350 - 900*
Non-fuel O&M Costs, \$/kWh	0.006 - 0.01	0.006 - 0.01	<0.004

Average Farm Size in Illinois: 374 acres

Average Corn Yield in Illinois: 175 bushels/acre

1 bushel of corn = 56 lbs of corn

For every pound of corn harvested, 1 pound of stover is produced

EPA recommends that 30% of stover is left on land in order to prevent erosion

When burned, dry corn stover produces 7540 Btu/lb

Turbines' electrical efficiencies range from 6% to 32%

3.4 Btu's = 1 watt-hour

This means... The average farm in Illinois could produce between <u>3.4 x 10⁸ watt-hours</u> and <u>1.8 x 10⁹ watt-hours</u> in a year.

The average house uses 9.24 MW-hrs/year, so...

Theoretically, between 35 and 195 farm houses could be powered by 1 farm's stover!

Unfortunately, stover can only be collected from farms that use no-tillage farming.

17% of Illinois corn farms use no-tillage farming.

Pure Potential – Large Scale

50MW-hrs/Day * 365Days/Year = 18250MW-hrs/Year

• 3.4Btu/W * 18250MW-hrs/Year = 62050MBtu/Year

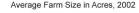
• 175B/Acre * 56lb/B * 70% * 7540Btu/lb = 51.7MBtu/Acre

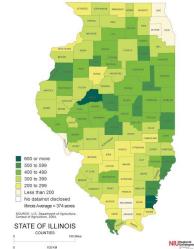
• 62050MBtu/Year / 51.7MBtu/Acre = 1199.63Acre/Year

Pure Potential – Large Scale

 Factoring in the efficiency of the turbine. 6% or 32% respectively 19,993.8Acre/Year or 3,748Acre/Year

27,310,833Acre / 102 County = 267,753
 Acre/County on Avg.


 Meaning it would be possible to supply a 50MW-hrs/Day plant on a Btu / county basis.


	Small Transportation Processing Cogeneration
F	
Large	Transportation Processing Cogeneration

cogen

• No stover can be collected from tilled fields (83% of Illinois corn fields)

- Accounting for tilled fields and 30% coverage for erosion preventions, 2.7 x 10⁸ bushels of stover available in Illinois
- Right now, stover is either used for animal feed or just left on the land

Single-Pass Harvest

Field

Harves

Bunch

Storage

Transport

Coden

 Stover is collected simultaneously with corn

- Needs attachment to combines used by farmers
- In development, not available to public

Multi-Pass Harvest

- Stover is collected after harvest
- Stover can decompose over time
- Requires baling to gather and store
- Currently used to collect stover

Field

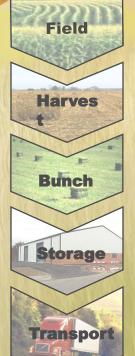
Harves

Bunch

Storage

Transport

Goden


- Requires multiple people
- Easier to move on trucks
- More can be stacked in a storage barn
 - \$17.70 per acre

- Can be done by one person
- Harder to move
- Inefficient stacking
- \$22.70 per acre



CF Nielsen BP6000 Briquetter 100 mm diameter briquettes produced 55 kW power consumption Capacity: 2200 kg/h •weight: 5000 kg automatic operation

Small Scale – Cogeneration

- Cogeneration System: 50kW
- Measured performance:
 - Combustion temperature 900-1150oC
 - Turbine entry temperature 700-850oC
 - Net electrical output testing range 18-35kW
 - Heat exchanger efficiency 71%
 - Exhaust gas temperature 300-330oC (for CHP)
 - Compressor isentropic efficiency 62%
 - Turbine isentropic efficiency 80%
 - Measured emissions:
 - CO 0.001 to 0.01 vol %
 - CO2 7.4 to 7.5 vol %
 - NOx 2-10 ppm
 - Particulate emission 50 mg/m3

Large Scale - Transportation

- 7540 Btu/lb of dried corn stover
- 1300 lbs per rectangular bale
- 26 bales per truck

Field

Harves

Bunch

Storage

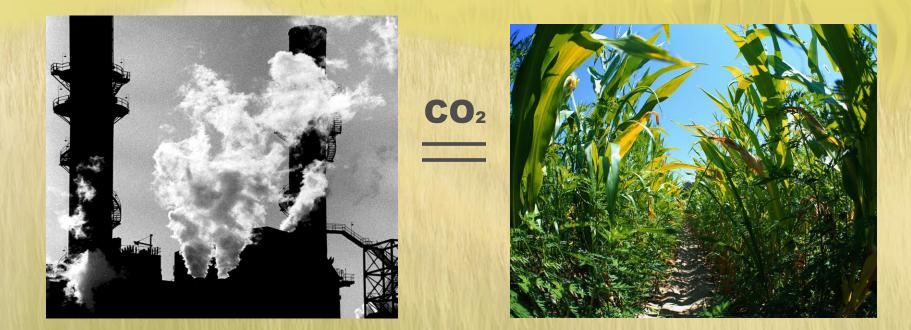
Transport

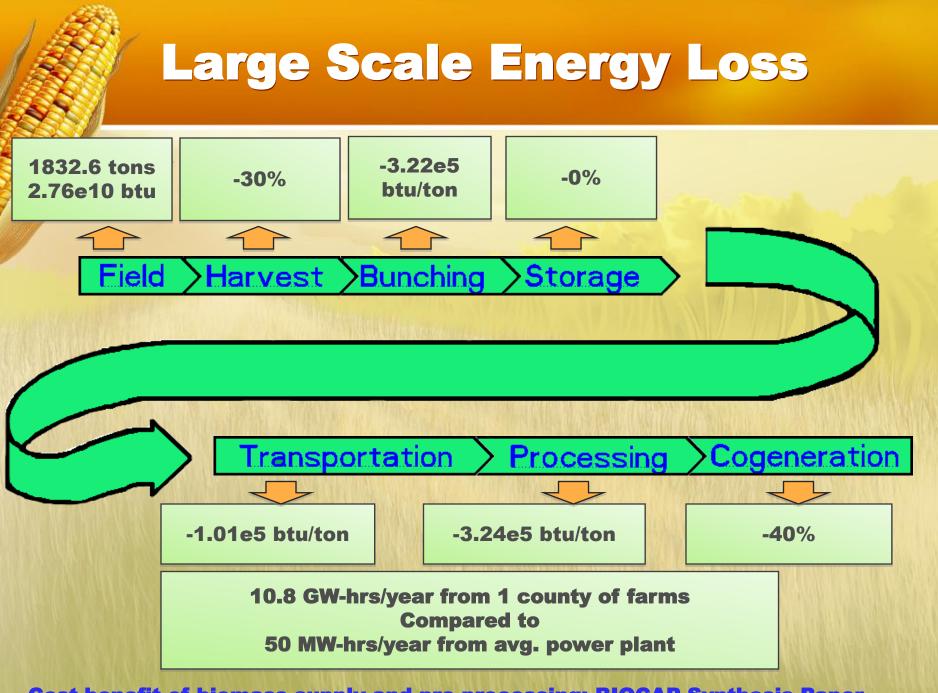
- 26 x 1300 x 7540 = 2.54 x 10⁸ btu (74689 kw*hr)
- When burnt, diesel releases 154000 kJ/G or 42.8 (kw*hr)/G
- One truck full of corn stover is equivalent to 74689 (kw*hr)/42.8 (kw*hr)/G = 1745 G diesel
- Semi trucks achieve 5-10 miles per gallon

• Using worst case scenario, a fully loaded truck with corn stover can travel 1745 G * 5 mpg = 8725 miles before the energy balance between diesel fuel and stover is zero

Large Scale – Cogeneration

- Cogeneration System: 50MW
- Cost: \$1,700,000
- Brown Boveri Synchronous Generator:
 - Type WX16L-037LLT
 - S/N# STG-00605
 - 51,200 kVA
 - 13,200 Volts
 - 2,240 Amps
 - 3,600 Rpm
 - 3 Phase 60 Hz
 - Power Factor .85
 - Inlet Temp 40 Degrees C
 - Temp Rise 70 Degrees C Stator 85 Degrees C Rotor
 - Efficiency: 35%
 - Emission:
 - NO <120 mg/Nm (15% O , dry)
 - CO <10 mg/ Nm (15% O , dry)





CARBON ZERO NET GAIN

CO2 RELEASED DURING BURNING OF BIOMASS

IS LATER ABSORBED BY THE GROWING CROP

Cost benefit of biomass supply and pre-processing; BIOCAP Synthesis Paper

Conclusions/Recommendations

- Our team explored the several benefits of converting some waste that would otherwise be left on the field for no further use to a commodity that could provide power and heat to numerous facilities.
- Collaboration of the work of both the business and research team has lead to an outstanding end product which describes all the logistics taken into consideration.
- Additional equipment costs/ requirements would further support that corn stover is indeed a novel fuel for generating electricity.

Ethics

- Follow all laws concerning EPA guidelines and emissions standards
- Fair agreements will be made with farmers, contractors and employees for the purchase of their stover and/or labor
- Only warranted and truthful data will be presented to prove the process
- Quality control standards for equipment and processes will be maintained and followed
- A good working relationship will be maintained with the farming community
- An atmosphere of cooperation and interdependence will be created through this process as means of contributing to the community and society
- Participants on the operation of the process will be treated with respect and dignity

Teams

- Research Team Research raw data on Biofuel
 - Anna D., Jonathan, Josh, Joseph, Xin Yi, Bing, Anna V.
- Business Team Organize tasks for efficiency
 - Serena, Ryan, Terrance
- Visual Team (poster, etc.)
 - Anna D., Anna V., Xin Yi, Bing, Joe, Terrance
- Report Team
 - Xin Yi, Jonathan
- Flowchart Team
 - Ryan
- Deliverable Team
 - Serena, Ryan
- Presentation Team
 - Josh, Terrance, Ryan

